Structure borelTheory


Source File Identifier index Theory binding index

signature borelTheory =
sig
  type thm = Thm.thm
  
  (*  Definitions  *)
    val AE_def : thm
    val Borel : thm
    val almost_everywhere_def : thm
    val ext_lborel_def : thm
    val lambda0_def : thm
    val lborel_def : thm
  
  (*  Theorems  *)
    val AE_ALT : thm
    val AE_BIGINTER : thm
    val AE_BIGUNION : thm
    val AE_DEF : thm
    val AE_FORALL_SWAP_THM : thm
    val AE_I : thm
    val AE_IMP_MEASURABLE_SETS : thm
    val AE_INTER : thm
    val AE_NOT_IN : thm
    val AE_T : thm
    val AE_THM : thm
    val AE_UNION : thm
    val AE_cong : thm
    val AE_eq_add : thm
    val AE_eq_sum : thm
    val AE_filter : thm
    val AE_iff_measurable : thm
    val AE_iff_null : thm
    val AE_iff_null_sets : thm
    val AE_not_in : thm
    val AE_subset : thm
    val BOREL_2D : thm
    val BOREL_MEASURABLE_INFINITY : thm
    val BOREL_MEASURABLE_SETS : thm
    val BOREL_MEASURABLE_SETS1 : thm
    val BOREL_MEASURABLE_SETS10 : thm
    val BOREL_MEASURABLE_SETS2 : thm
    val BOREL_MEASURABLE_SETS3 : thm
    val BOREL_MEASURABLE_SETS4 : thm
    val BOREL_MEASURABLE_SETS5 : thm
    val BOREL_MEASURABLE_SETS6 : thm
    val BOREL_MEASURABLE_SETS7 : thm
    val BOREL_MEASURABLE_SETS8 : thm
    val BOREL_MEASURABLE_SETS9 : thm
    val BOREL_MEASURABLE_SETS_CC : thm
    val BOREL_MEASURABLE_SETS_CO : thm
    val BOREL_MEASURABLE_SETS_CR : thm
    val BOREL_MEASURABLE_SETS_EMPTY : thm
    val BOREL_MEASURABLE_SETS_FINITE : thm
    val BOREL_MEASURABLE_SETS_NORMAL : thm
    val BOREL_MEASURABLE_SETS_NOT_SING : thm
    val BOREL_MEASURABLE_SETS_OC : thm
    val BOREL_MEASURABLE_SETS_OO : thm
    val BOREL_MEASURABLE_SETS_OR : thm
    val BOREL_MEASURABLE_SETS_RC : thm
    val BOREL_MEASURABLE_SETS_RO : thm
    val BOREL_MEASURABLE_SETS_SING : thm
    val BOREL_MEASURABLE_SETS_SING' : thm
    val Borel_def : thm
    val Borel_eq_ge : thm
    val Borel_eq_gr : thm
    val Borel_eq_le : thm
    val FORALL_IMP_AE : thm
    val IN_MEASURABLE_BOREL : thm
    val IN_MEASURABLE_BOREL_2D_FUNCTION : thm
    val IN_MEASURABLE_BOREL_2D_MUL : thm
    val IN_MEASURABLE_BOREL_2D_VECTOR : thm
    val IN_MEASURABLE_BOREL_ABS : thm
    val IN_MEASURABLE_BOREL_ABS' : thm
    val IN_MEASURABLE_BOREL_ABS_POWR : thm
    val IN_MEASURABLE_BOREL_ADD : thm
    val IN_MEASURABLE_BOREL_ADD' : thm
    val IN_MEASURABLE_BOREL_AE_EQ : thm
    val IN_MEASURABLE_BOREL_AINV : thm
    val IN_MEASURABLE_BOREL_ALL : thm
    val IN_MEASURABLE_BOREL_ALL_ABS : thm
    val IN_MEASURABLE_BOREL_ALL_MEASURE : thm
    val IN_MEASURABLE_BOREL_ALL_MEASURE_ABS : thm
    val IN_MEASURABLE_BOREL_ALL_MEASURE_ABS' : thm
    val IN_MEASURABLE_BOREL_ALT1 : thm
    val IN_MEASURABLE_BOREL_ALT1_IMP : thm
    val IN_MEASURABLE_BOREL_ALT2 : thm
    val IN_MEASURABLE_BOREL_ALT2_IMP : thm
    val IN_MEASURABLE_BOREL_ALT3 : thm
    val IN_MEASURABLE_BOREL_ALT3_IMP : thm
    val IN_MEASURABLE_BOREL_ALT4 : thm
    val IN_MEASURABLE_BOREL_ALT4_IMP : thm
    val IN_MEASURABLE_BOREL_ALT5 : thm
    val IN_MEASURABLE_BOREL_ALT5_IMP : thm
    val IN_MEASURABLE_BOREL_ALT6 : thm
    val IN_MEASURABLE_BOREL_ALT6_IMP : thm
    val IN_MEASURABLE_BOREL_ALT7 : thm
    val IN_MEASURABLE_BOREL_ALT7_IMP : thm
    val IN_MEASURABLE_BOREL_ALT8 : thm
    val IN_MEASURABLE_BOREL_ALT9 : thm
    val IN_MEASURABLE_BOREL_BOREL_ABS : thm
    val IN_MEASURABLE_BOREL_BOREL_ABS_POWR : thm
    val IN_MEASURABLE_BOREL_BOREL_AINV : thm
    val IN_MEASURABLE_BOREL_BOREL_CONST : thm
    val IN_MEASURABLE_BOREL_BOREL_I : thm
    val IN_MEASURABLE_BOREL_BOREL_MAX : thm
    val IN_MEASURABLE_BOREL_BOREL_MIN : thm
    val IN_MEASURABLE_BOREL_BOREL_MONO_DECREASING : thm
    val IN_MEASURABLE_BOREL_BOREL_MONO_INCREASING : thm
    val IN_MEASURABLE_BOREL_BOREL_POW : thm
    val IN_MEASURABLE_BOREL_CC : thm
    val IN_MEASURABLE_BOREL_CMUL : thm
    val IN_MEASURABLE_BOREL_CMUL_INDICATOR : thm
    val IN_MEASURABLE_BOREL_CMUL_INDICATOR' : thm
    val IN_MEASURABLE_BOREL_CO : thm
    val IN_MEASURABLE_BOREL_COMP : thm
    val IN_MEASURABLE_BOREL_COMP_BOREL : thm
    val IN_MEASURABLE_BOREL_CONG : thm
    val IN_MEASURABLE_BOREL_CONG' : thm
    val IN_MEASURABLE_BOREL_CONST : thm
    val IN_MEASURABLE_BOREL_CONST' : thm
    val IN_MEASURABLE_BOREL_CR : thm
    val IN_MEASURABLE_BOREL_EQ : thm
    val IN_MEASURABLE_BOREL_EQ' : thm
    val IN_MEASURABLE_BOREL_EXP : thm
    val IN_MEASURABLE_BOREL_FN_MINUS : thm
    val IN_MEASURABLE_BOREL_FN_PLUS : thm
    val IN_MEASURABLE_BOREL_IMP : thm
    val IN_MEASURABLE_BOREL_IMP_BOREL : thm
    val IN_MEASURABLE_BOREL_IMP_BOREL' : thm
    val IN_MEASURABLE_BOREL_INDICATOR : thm
    val IN_MEASURABLE_BOREL_INF : thm
    val IN_MEASURABLE_BOREL_INV : thm
    val IN_MEASURABLE_BOREL_LE : thm
    val IN_MEASURABLE_BOREL_LT : thm
    val IN_MEASURABLE_BOREL_MAX : thm
    val IN_MEASURABLE_BOREL_MAXIMAL : thm
    val IN_MEASURABLE_BOREL_MAX_FN_SEQ : thm
    val IN_MEASURABLE_BOREL_MIN : thm
    val IN_MEASURABLE_BOREL_MINIMAL : thm
    val IN_MEASURABLE_BOREL_MINUS : thm
    val IN_MEASURABLE_BOREL_MONO_INF : thm
    val IN_MEASURABLE_BOREL_MONO_SUP : thm
    val IN_MEASURABLE_BOREL_MUL : thm
    val IN_MEASURABLE_BOREL_MUL' : thm
    val IN_MEASURABLE_BOREL_MUL_INDICATOR : thm
    val IN_MEASURABLE_BOREL_MUL_INDICATOR_EQ : thm
    val IN_MEASURABLE_BOREL_MUL_INV : thm
    val IN_MEASURABLE_BOREL_NEGINF : thm
    val IN_MEASURABLE_BOREL_NORMAL_REAL : thm
    val IN_MEASURABLE_BOREL_NOT_NEGINF : thm
    val IN_MEASURABLE_BOREL_NOT_POSINF : thm
    val IN_MEASURABLE_BOREL_NOT_SING : thm
    val IN_MEASURABLE_BOREL_OC : thm
    val IN_MEASURABLE_BOREL_OO : thm
    val IN_MEASURABLE_BOREL_OR : thm
    val IN_MEASURABLE_BOREL_PLUS_MINUS : thm
    val IN_MEASURABLE_BOREL_POSINF : thm
    val IN_MEASURABLE_BOREL_POW : thm
    val IN_MEASURABLE_BOREL_POW' : thm
    val IN_MEASURABLE_BOREL_POW_EXP : thm
    val IN_MEASURABLE_BOREL_PROD : thm
    val IN_MEASURABLE_BOREL_PROD' : thm
    val IN_MEASURABLE_BOREL_RC : thm
    val IN_MEASURABLE_BOREL_RO : thm
    val IN_MEASURABLE_BOREL_SING : thm
    val IN_MEASURABLE_BOREL_SQR : thm
    val IN_MEASURABLE_BOREL_SUB : thm
    val IN_MEASURABLE_BOREL_SUB' : thm
    val IN_MEASURABLE_BOREL_SUM : thm
    val IN_MEASURABLE_BOREL_SUM' : thm
    val IN_MEASURABLE_BOREL_SUMINF : thm
    val IN_MEASURABLE_BOREL_SUP : thm
    val IN_MEASURABLE_BOREL_TIMES : thm
    val IN_MEASURABLE_BOREL_TIMES' : thm
    val MEASURABLE_BOREL : thm
    val MEASURE_SPACE_LBOREL : thm
    val RIGHT_IMP_AE_THM : thm
    val RIGHT_IMP_AE_THM' : thm
    val SIGMA_ALGEBRA_BOREL : thm
    val SIGMA_ALGEBRA_BOREL_2D : thm
    val SIGMA_FINITE_LBOREL : thm
    val SPACE_BOREL : thm
    val SPACE_BOREL_2D : thm
    val borel_eq_real_set : thm
    val in_borel_measurable_from_Borel : thm
    val in_borel_measurable_imp : thm
    val in_measurable_sigma_pow : thm
    val lambda0_empty : thm
    val lambda0_not_infty : thm
    val lambda_closed_interval : thm
    val lambda_closed_interval_content : thm
    val lambda_empty : thm
    val lambda_eq : thm
    val lambda_not_infty : thm
    val lambda_open_interval : thm
    val lambda_prop : thm
    val lambda_sing : thm
    val lborel0_additive : thm
    val lborel0_finite_additive : thm
    val lborel0_positive : thm
    val lborel0_premeasure : thm
    val lborel0_subadditive : thm
    val m_space_lborel : thm
    val measure_space_lborel : thm
    val seq_le_imp_lim_le : thm
    val seq_mono_le : thm
    val sets_lborel : thm
    val sigma_finite_lborel : thm
    val space_lborel : thm
    val sup_seq' : thm
  
  val borel_grammars : type_grammar.grammar * term_grammar.grammar
(*
   [measure] Parent theory of "borel"
   
   [real_borel] Parent theory of "borel"
   
   [AE_def]  Definition
      
      ⊢ $AE = (λP. almost_everywhere lborel P)
   
   [Borel]  Definition
      
      ⊢ Borel =
        (𝕌(:extreal),
         {B' |
          ∃B S.
            B' = IMAGE Normal B ∪ S ∧ B ∈ subsets borel ∧
            S ∈ {∅; {−∞}; {+∞}; {−∞; +∞}}})
   
   [almost_everywhere_def]  Definition
      
      ⊢ ∀m P.
          almost_everywhere m P ⇔
          ∃N. null_set m N ∧ ∀x. x ∈ m_space m DIFF N ⇒ P x
   
   [ext_lborel_def]  Definition
      
      ⊢ ext_lborel = (space Borel,subsets Borel,lambda ∘ real_set)
   
   [lambda0_def]  Definition
      
      ⊢ ∀a b. a ≤ b ⇒ lambda0 (right_open_interval a b) = Normal (b − a)
   
   [lborel_def]  Definition
      
      ⊢ (∀s. s ∈ subsets right_open_intervals ⇒ lambda s = lambda0 s) ∧
        measurable_space lborel = borel ∧ measure_space lborel
   
   [AE_ALT]  Theorem
      
      ⊢ ∀m P.
          (AE x::m. P x) ⇔
          ∃N. null_set m N ∧ {x | x ∈ m_space m ∧ ¬P x} ⊆ N
   
   [AE_BIGINTER]  Theorem
      
      ⊢ ∀m P s.
          measure_space m ∧ countable s ∧ (∀n. n ∈ s ⇒ AE x::m. P n x) ⇒
          AE x::m. ∀n. n ∈ s ⇒ P n x
   
   [AE_BIGUNION]  Theorem
      
      ⊢ ∀m P s.
          measure_space m ∧ (∃n. n ∈ s ∧ AE x::m. P n x) ⇒
          AE x::m. ∃n. n ∈ s ∧ P n x
   
   [AE_DEF]  Theorem
      
      ⊢ ∀m P.
          (AE x::m. P x) ⇔
          ∃N. null_set m N ∧ ∀x. x ∈ m_space m DIFF N ⇒ P x
   
   [AE_FORALL_SWAP_THM]  Theorem
      
      ⊢ ∀m P.
          measure_space m ∧ countable 𝕌(:'index) ⇒
          ((AE x::m. ∀i. P i x) ⇔ ∀i. AE x::m. P i x)
   
   [AE_I]  Theorem
      
      ⊢ ∀N M P.
          null_set M N ⇒ {x | x ∈ m_space M ∧ ¬P x} ⊆ N ⇒ AE x::M. P x
   
   [AE_IMP_MEASURABLE_SETS]  Theorem
      
      ⊢ ∀m P.
          complete_measure_space m ∧ (AE x::m. P x) ⇒
          {x | x ∈ m_space m ∧ P x} ∈ measurable_sets m
   
   [AE_INTER]  Theorem
      
      ⊢ ∀m P Q.
          measure_space m ∧ (AE x::m. P x) ∧ (AE x::m. Q x) ⇒
          AE x::m. P x ∧ Q x
   
   [AE_NOT_IN]  Theorem
      
      ⊢ ∀N M. null_set M N ⇒ AE x::M. x ∉ N
   
   [AE_T]  Theorem
      
      ⊢ ∀m. measure_space m ⇒ AE x::m. T
   
   [AE_THM]  Theorem
      
      ⊢ ∀m P. (AE x::m. P x) ⇔ almost_everywhere m P
   
   [AE_UNION]  Theorem
      
      ⊢ ∀m P Q.
          measure_space m ∧ ((AE x::m. P x) ∨ AE x::m. Q x) ⇒
          AE x::m. P x ∨ Q x
   
   [AE_cong]  Theorem
      
      ⊢ ∀m P Q.
          (∀x. x ∈ m_space m ⇒ (P x ⇔ Q x)) ⇒
          ((AE x::m. P x) ⇔ AE x::m. Q x)
   
   [AE_eq_add]  Theorem
      
      ⊢ ∀m f fae g gae.
          measure_space m ∧ (AE x::m. f x = fae x) ∧ (AE x::m. g x = gae x) ⇒
          AE x::m. f x + g x = fae x + gae x
   
   [AE_eq_sum]  Theorem
      
      ⊢ ∀m f fae s.
          FINITE s ∧ measure_space m ∧
          (∀n. n ∈ s ⇒ AE x::m. f n x = fae n x) ⇒
          AE x::m. ∑ (C f x) s = ∑ (C fae x) s
   
   [AE_filter]  Theorem
      
      ⊢ ∀m P.
          (AE x::m. P x) ⇔
          ∃N. N ∈ null_set m ∧ {x | x ∈ m_space m ∧ x ∉ P} ⊆ N
   
   [AE_iff_measurable]  Theorem
      
      ⊢ ∀N M P.
          measure_space M ∧ N ∈ measurable_sets M ∧
          {x | x ∈ m_space M ∧ ¬P x} = N ⇒
          ((AE x::M. P x) ⇔ measure M N = 0)
   
   [AE_iff_null]  Theorem
      
      ⊢ ∀M P.
          measure_space M ∧ {x | x ∈ m_space M ∧ ¬P x} ∈ measurable_sets M ⇒
          ((AE x::M. P x) ⇔ null_set M {x | x ∈ m_space M ∧ ¬P x})
   
   [AE_iff_null_sets]  Theorem
      
      ⊢ ∀N M.
          measure_space M ∧ N ∈ measurable_sets M ⇒
          (null_set M N ⇔ AE x::M. ¬N x)
   
   [AE_not_in]  Theorem
      
      ⊢ ∀N M. null_set M N ⇒ AE x::M. ¬N x
   
   [AE_subset]  Theorem
      
      ⊢ ∀m P Q.
          (AE x::m. P x) ∧ (∀x. x ∈ m_space m ∧ P x ⇒ Q x) ⇒ AE x::m. Q x
   
   [BOREL_2D]  Theorem
      
      ⊢ Borel × Borel =
        (𝕌(:extreal # extreal),
         {B' |
          ∃B S B1 B2 B3 B4.
            B' = IMAGE (λ(x,y). (Normal x,Normal y)) B ∪ S ∧
            B ∈ subsets (borel × borel) ∧
            S = {+∞} × B1 ∪ {−∞} × B2 ∪ B3 × {+∞} ∪ B4 × {−∞} ∧
            B1 ∈ subsets Borel ∧ B2 ∈ subsets Borel ∧ B3 ∈ subsets Borel ∧
            B4 ∈ subsets Borel})
   
   [BOREL_MEASURABLE_INFINITY]  Theorem
      
      ⊢ {+∞} ∈ subsets Borel ∧ {−∞} ∈ subsets Borel
   
   [BOREL_MEASURABLE_SETS]  Theorem
      
      ⊢ (∀c. {x | x < c} ∈ subsets Borel) ∧
        (∀c. {x | c < x} ∈ subsets Borel) ∧
        (∀c. {x | x ≤ c} ∈ subsets Borel) ∧
        (∀c. {x | c ≤ x} ∈ subsets Borel) ∧
        (∀c d. {x | c ≤ x ∧ x < d} ∈ subsets Borel) ∧
        (∀c d. {x | c < x ∧ x ≤ d} ∈ subsets Borel) ∧
        (∀c d. {x | c ≤ x ∧ x ≤ d} ∈ subsets Borel) ∧
        (∀c d. {x | c < x ∧ x < d} ∈ subsets Borel) ∧
        (∀c. {c} ∈ subsets Borel) ∧ ∀c. {x | x ≠ c} ∈ subsets Borel
   
   [BOREL_MEASURABLE_SETS1]  Theorem
      
      ⊢ ∀c. {x | x < c} ∈ subsets Borel
   
   [BOREL_MEASURABLE_SETS10]  Theorem
      
      ⊢ ∀c. {x | x ≠ c} ∈ subsets Borel
   
   [BOREL_MEASURABLE_SETS2]  Theorem
      
      ⊢ ∀c. {x | c ≤ x} ∈ subsets Borel
   
   [BOREL_MEASURABLE_SETS3]  Theorem
      
      ⊢ ∀c. {x | x ≤ c} ∈ subsets Borel
   
   [BOREL_MEASURABLE_SETS4]  Theorem
      
      ⊢ ∀c. {x | c < x} ∈ subsets Borel
   
   [BOREL_MEASURABLE_SETS5]  Theorem
      
      ⊢ ∀c d. {x | c ≤ x ∧ x < d} ∈ subsets Borel
   
   [BOREL_MEASURABLE_SETS6]  Theorem
      
      ⊢ ∀c d. {x | c < x ∧ x ≤ d} ∈ subsets Borel
   
   [BOREL_MEASURABLE_SETS7]  Theorem
      
      ⊢ ∀c d. {x | c ≤ x ∧ x ≤ d} ∈ subsets Borel
   
   [BOREL_MEASURABLE_SETS8]  Theorem
      
      ⊢ ∀c d. {x | c < x ∧ x < d} ∈ subsets Borel
   
   [BOREL_MEASURABLE_SETS9]  Theorem
      
      ⊢ ∀c. {c} ∈ subsets Borel
   
   [BOREL_MEASURABLE_SETS_CC]  Theorem
      
      ⊢ ∀c d. {x | c ≤ x ∧ x ≤ d} ∈ subsets Borel
   
   [BOREL_MEASURABLE_SETS_CO]  Theorem
      
      ⊢ ∀c d. {x | c ≤ x ∧ x < d} ∈ subsets Borel
   
   [BOREL_MEASURABLE_SETS_CR]  Theorem
      
      ⊢ ∀c. {x | c ≤ x} ∈ subsets Borel
   
   [BOREL_MEASURABLE_SETS_EMPTY]  Theorem
      
      ⊢ ∅ ∈ subsets Borel
   
   [BOREL_MEASURABLE_SETS_FINITE]  Theorem
      
      ⊢ ∀s. FINITE s ⇒ s ∈ subsets Borel
   
   [BOREL_MEASURABLE_SETS_NORMAL]  Theorem
      
      ⊢ ∀b. b ∈ subsets borel ⇒ IMAGE Normal b ∈ subsets Borel
   
   [BOREL_MEASURABLE_SETS_NOT_SING]  Theorem
      
      ⊢ ∀c. {x | x ≠ c} ∈ subsets Borel
   
   [BOREL_MEASURABLE_SETS_OC]  Theorem
      
      ⊢ ∀c d. {x | c < x ∧ x ≤ d} ∈ subsets Borel
   
   [BOREL_MEASURABLE_SETS_OO]  Theorem
      
      ⊢ ∀c d. {x | c < x ∧ x < d} ∈ subsets Borel
   
   [BOREL_MEASURABLE_SETS_OR]  Theorem
      
      ⊢ ∀c. {x | c < x} ∈ subsets Borel
   
   [BOREL_MEASURABLE_SETS_RC]  Theorem
      
      ⊢ ∀c. {x | x ≤ c} ∈ subsets Borel
   
   [BOREL_MEASURABLE_SETS_RO]  Theorem
      
      ⊢ ∀c. {x | x < c} ∈ subsets Borel
   
   [BOREL_MEASURABLE_SETS_SING]  Theorem
      
      ⊢ ∀c. {c} ∈ subsets Borel
   
   [BOREL_MEASURABLE_SETS_SING']  Theorem
      
      ⊢ ∀c. {x | x = c} ∈ subsets Borel
   
   [Borel_def]  Theorem
      
      ⊢ Borel = sigma 𝕌(:extreal) (IMAGE (λa. {x | x < Normal a}) 𝕌(:real))
   
   [Borel_eq_ge]  Theorem
      
      ⊢ Borel = sigma 𝕌(:extreal) (IMAGE (λa. {x | Normal a ≤ x}) 𝕌(:real))
   
   [Borel_eq_gr]  Theorem
      
      ⊢ Borel = sigma 𝕌(:extreal) (IMAGE (λa. {x | Normal a < x}) 𝕌(:real))
   
   [Borel_eq_le]  Theorem
      
      ⊢ Borel = sigma 𝕌(:extreal) (IMAGE (λa. {x | x ≤ Normal a}) 𝕌(:real))
   
   [FORALL_IMP_AE]  Theorem
      
      ⊢ ∀m P. measure_space m ∧ (∀x. x ∈ m_space m ⇒ P x) ⇒ AE x::m. P x
   
   [IN_MEASURABLE_BOREL]  Theorem
      
      ⊢ ∀f a.
          sigma_algebra a ⇒
          (f ∈ Borel_measurable a ⇔
           f ∈ (space a → 𝕌(:extreal)) ∧
           ∀c. {x | f x < Normal c} ∩ space a ∈ subsets a)
   
   [IN_MEASURABLE_BOREL_2D_FUNCTION]  Theorem
      
      ⊢ ∀a X Y f.
          sigma_algebra a ∧ X ∈ Borel_measurable a ∧
          Y ∈ Borel_measurable a ∧ f ∈ Borel_measurable (Borel × Borel) ⇒
          (λx. f (X x,Y x)) ∈ Borel_measurable a
   
   [IN_MEASURABLE_BOREL_2D_MUL]  Theorem
      
      ⊢ (λ(x,y). x * y) ∈ Borel_measurable (Borel × Borel)
   
   [IN_MEASURABLE_BOREL_2D_VECTOR]  Theorem
      
      ⊢ ∀a X Y.
          sigma_algebra a ∧ X ∈ Borel_measurable a ∧ Y ∈ Borel_measurable a ⇒
          (λx. (X x,Y x)) ∈ measurable a (Borel × Borel)
   
   [IN_MEASURABLE_BOREL_ABS]  Theorem
      
      ⊢ ∀a f g.
          sigma_algebra a ∧ f ∈ Borel_measurable a ∧
          (∀x. x ∈ space a ⇒ g x = abs (f x)) ⇒
          g ∈ Borel_measurable a
   
   [IN_MEASURABLE_BOREL_ABS']  Theorem
      
      ⊢ ∀a f.
          sigma_algebra a ∧ f ∈ Borel_measurable a ⇒
          abs ∘ f ∈ Borel_measurable a
   
   [IN_MEASURABLE_BOREL_ABS_POWR]  Theorem
      
      ⊢ ∀a p f.
          f ∈ Borel_measurable a ∧ 0 ≤ p ∧ p ≠ +∞ ⇒
          (λx. abs (f x) powr p) ∈ Borel_measurable a
   
   [IN_MEASURABLE_BOREL_ADD]  Theorem
      
      ⊢ ∀a f g h.
          sigma_algebra a ∧ f ∈ Borel_measurable a ∧
          g ∈ Borel_measurable a ∧
          (∀x. x ∈ space a ⇒ f x ≠ −∞ ∧ g x ≠ −∞ ∨ f x ≠ +∞ ∧ g x ≠ +∞) ∧
          (∀x. x ∈ space a ⇒ h x = f x + g x) ⇒
          h ∈ Borel_measurable a
   
   [IN_MEASURABLE_BOREL_ADD']  Theorem
      
      ⊢ ∀a f g h.
          sigma_algebra a ∧ f ∈ Borel_measurable a ∧
          g ∈ Borel_measurable a ∧ (∀x. x ∈ space a ⇒ h x = f x + g x) ⇒
          h ∈ Borel_measurable a
   
   [IN_MEASURABLE_BOREL_AE_EQ]  Theorem
      
      ⊢ ∀m f g.
          complete_measure_space m ∧ (AE x::m. f x = g x) ∧
          f ∈ Borel_measurable (measurable_space m) ⇒
          g ∈ Borel_measurable (measurable_space m)
   
   [IN_MEASURABLE_BOREL_AINV]  Theorem
      
      ⊢ ∀a f.
          sigma_algebra a ∧ f ∈ Borel_measurable a ⇒
          (λx. -f x) ∈ Borel_measurable a
   
   [IN_MEASURABLE_BOREL_ALL]  Theorem
      
      ⊢ ∀f a.
          sigma_algebra a ∧ f ∈ Borel_measurable a ⇒
          (∀c. {x | f x < c} ∩ space a ∈ subsets a) ∧
          (∀c. {x | c ≤ f x} ∩ space a ∈ subsets a) ∧
          (∀c. {x | f x ≤ c} ∩ space a ∈ subsets a) ∧
          (∀c. {x | c < f x} ∩ space a ∈ subsets a) ∧
          (∀c d. {x | c ≤ f x ∧ f x < d} ∩ space a ∈ subsets a) ∧
          (∀c d. {x | c < f x ∧ f x ≤ d} ∩ space a ∈ subsets a) ∧
          (∀c d. {x | c ≤ f x ∧ f x ≤ d} ∩ space a ∈ subsets a) ∧
          (∀c d. {x | c < f x ∧ f x < d} ∩ space a ∈ subsets a) ∧
          (∀c. {x | f x = c} ∩ space a ∈ subsets a) ∧
          ∀c. {x | f x ≠ c} ∩ space a ∈ subsets a
   
   [IN_MEASURABLE_BOREL_ALL_ABS]  Theorem
      
      ⊢ ∀f a.
          sigma_algebra a ∧ f ∈ Borel_measurable a ⇒
          (∀c. {x | f x < c} ∩ space a ∈ subsets a) ∧
          (∀c. {x | c ≤ f x} ∩ space a ∈ subsets a) ∧
          (∀c. {x | f x ≤ c} ∩ space a ∈ subsets a) ∧
          (∀c. {x | c < f x} ∩ space a ∈ subsets a) ∧
          (∀c. {x | abs (f x) < c} ∩ space a ∈ subsets a) ∧
          (∀c. {x | c ≤ abs (f x)} ∩ space a ∈ subsets a) ∧
          (∀c. {x | abs (f x) ≤ c} ∩ space a ∈ subsets a) ∧
          (∀c. {x | c < abs (f x)} ∩ space a ∈ subsets a) ∧
          (∀c d. {x | c ≤ f x ∧ f x < d} ∩ space a ∈ subsets a) ∧
          (∀c d. {x | c < f x ∧ f x ≤ d} ∩ space a ∈ subsets a) ∧
          (∀c d. {x | c ≤ f x ∧ f x ≤ d} ∩ space a ∈ subsets a) ∧
          (∀c d. {x | c < f x ∧ f x < d} ∩ space a ∈ subsets a) ∧
          (∀c. {x | f x = c} ∩ space a ∈ subsets a) ∧
          (∀c. {x | f x ≠ c} ∩ space a ∈ subsets a) ∧
          (∀c. {x | abs (f x) = c} ∩ space a ∈ subsets a) ∧
          ∀c. {x | abs (f x) ≠ c} ∩ space a ∈ subsets a
   
   [IN_MEASURABLE_BOREL_ALL_MEASURE]  Theorem
      
      ⊢ ∀f m.
          sigma_algebra (measurable_space m) ∧
          f ∈ Borel_measurable (measurable_space m) ⇒
          (∀c. {x | f x < c} ∩ m_space m ∈ measurable_sets m) ∧
          (∀c. {x | c ≤ f x} ∩ m_space m ∈ measurable_sets m) ∧
          (∀c. {x | f x ≤ c} ∩ m_space m ∈ measurable_sets m) ∧
          (∀c. {x | c < f x} ∩ m_space m ∈ measurable_sets m) ∧
          (∀c d. {x | c ≤ f x ∧ f x < d} ∩ m_space m ∈ measurable_sets m) ∧
          (∀c d. {x | c < f x ∧ f x ≤ d} ∩ m_space m ∈ measurable_sets m) ∧
          (∀c d. {x | c ≤ f x ∧ f x ≤ d} ∩ m_space m ∈ measurable_sets m) ∧
          (∀c d. {x | c < f x ∧ f x < d} ∩ m_space m ∈ measurable_sets m) ∧
          (∀c. {x | f x = c} ∩ m_space m ∈ measurable_sets m) ∧
          ∀c. {x | f x ≠ c} ∩ m_space m ∈ measurable_sets m
   
   [IN_MEASURABLE_BOREL_ALL_MEASURE_ABS]  Theorem
      
      ⊢ ∀m f.
          measure_space m ∧ f ∈ Borel_measurable (measurable_space m) ⇒
          (∀c. {x | f x < c} ∩ m_space m ∈ measurable_sets m) ∧
          (∀c. {x | c ≤ f x} ∩ m_space m ∈ measurable_sets m) ∧
          (∀c. {x | f x ≤ c} ∩ m_space m ∈ measurable_sets m) ∧
          (∀c. {x | c < f x} ∩ m_space m ∈ measurable_sets m) ∧
          (∀c. {x | abs (f x) < c} ∩ m_space m ∈ measurable_sets m) ∧
          (∀c. {x | c ≤ abs (f x)} ∩ m_space m ∈ measurable_sets m) ∧
          (∀c. {x | abs (f x) ≤ c} ∩ m_space m ∈ measurable_sets m) ∧
          (∀c. {x | c < abs (f x)} ∩ m_space m ∈ measurable_sets m) ∧
          (∀c d. {x | c ≤ f x ∧ f x < d} ∩ m_space m ∈ measurable_sets m) ∧
          (∀c d. {x | c < f x ∧ f x ≤ d} ∩ m_space m ∈ measurable_sets m) ∧
          (∀c d. {x | c ≤ f x ∧ f x ≤ d} ∩ m_space m ∈ measurable_sets m) ∧
          (∀c d. {x | c < f x ∧ f x < d} ∩ m_space m ∈ measurable_sets m) ∧
          (∀c. {x | f x = c} ∩ m_space m ∈ measurable_sets m) ∧
          (∀c. {x | f x ≠ c} ∩ m_space m ∈ measurable_sets m) ∧
          (∀c. {x | abs (f x) = c} ∩ m_space m ∈ measurable_sets m) ∧
          ∀c. {x | abs (f x) ≠ c} ∩ m_space m ∈ measurable_sets m
   
   [IN_MEASURABLE_BOREL_ALL_MEASURE_ABS']  Theorem
      
      ⊢ ∀m f.
          measure_space m ∧ f ∈ Borel_measurable (measurable_space m) ⇒
          (∀c. {x | x ∈ m_space m ∧ f x < c} ∈ measurable_sets m) ∧
          (∀c. {x | x ∈ m_space m ∧ c ≤ f x} ∈ measurable_sets m) ∧
          (∀c. {x | x ∈ m_space m ∧ f x ≤ c} ∈ measurable_sets m) ∧
          (∀c. {x | x ∈ m_space m ∧ c < f x} ∈ measurable_sets m) ∧
          (∀c. {x | x ∈ m_space m ∧ abs (f x) < c} ∈ measurable_sets m) ∧
          (∀c. {x | x ∈ m_space m ∧ c ≤ abs (f x)} ∈ measurable_sets m) ∧
          (∀c. {x | x ∈ m_space m ∧ abs (f x) ≤ c} ∈ measurable_sets m) ∧
          (∀c. {x | x ∈ m_space m ∧ c < abs (f x)} ∈ measurable_sets m) ∧
          (∀c d.
             {x | x ∈ m_space m ∧ c ≤ f x ∧ f x < d} ∈ measurable_sets m) ∧
          (∀c d.
             {x | x ∈ m_space m ∧ c < f x ∧ f x ≤ d} ∈ measurable_sets m) ∧
          (∀c d.
             {x | x ∈ m_space m ∧ c ≤ f x ∧ f x ≤ d} ∈ measurable_sets m) ∧
          (∀c d.
             {x | x ∈ m_space m ∧ c < f x ∧ f x < d} ∈ measurable_sets m) ∧
          (∀c. {x | x ∈ m_space m ∧ f x = c} ∈ measurable_sets m) ∧
          (∀c. {x | x ∈ m_space m ∧ f x ≠ c} ∈ measurable_sets m) ∧
          (∀c. {x | x ∈ m_space m ∧ abs (f x) = c} ∈ measurable_sets m) ∧
          ∀c. {x | x ∈ m_space m ∧ abs (f x) ≠ c} ∈ measurable_sets m
   
   [IN_MEASURABLE_BOREL_ALT1]  Theorem
      
      ⊢ ∀f a.
          sigma_algebra a ⇒
          (f ∈ Borel_measurable a ⇔
           f ∈ (space a → 𝕌(:extreal)) ∧
           ∀c. {x | Normal c ≤ f x} ∩ space a ∈ subsets a)
   
   [IN_MEASURABLE_BOREL_ALT1_IMP]  Theorem
      
      ⊢ ∀f a.
          sigma_algebra a ∧ f ∈ Borel_measurable a ⇒
          ∀c. {x | c ≤ f x} ∩ space a ∈ subsets a
   
   [IN_MEASURABLE_BOREL_ALT2]  Theorem
      
      ⊢ ∀f a.
          sigma_algebra a ⇒
          (f ∈ Borel_measurable a ⇔
           f ∈ (space a → 𝕌(:extreal)) ∧
           ∀c. {x | f x ≤ Normal c} ∩ space a ∈ subsets a)
   
   [IN_MEASURABLE_BOREL_ALT2_IMP]  Theorem
      
      ⊢ ∀f a.
          sigma_algebra a ∧ f ∈ Borel_measurable a ⇒
          ∀c. {x | f x ≤ c} ∩ space a ∈ subsets a
   
   [IN_MEASURABLE_BOREL_ALT3]  Theorem
      
      ⊢ ∀f a.
          sigma_algebra a ⇒
          (f ∈ Borel_measurable a ⇔
           f ∈ (space a → 𝕌(:extreal)) ∧
           ∀c. {x | Normal c < f x} ∩ space a ∈ subsets a)
   
   [IN_MEASURABLE_BOREL_ALT3_IMP]  Theorem
      
      ⊢ ∀f a.
          sigma_algebra a ∧ f ∈ Borel_measurable a ⇒
          ∀c. {x | c < f x} ∩ space a ∈ subsets a
   
   [IN_MEASURABLE_BOREL_ALT4]  Theorem
      
      ⊢ ∀f a.
          sigma_algebra a ∧ (∀x. x ∈ space a ⇒ f x ≠ −∞) ⇒
          (f ∈ Borel_measurable a ⇔
           f ∈ (space a → 𝕌(:extreal)) ∧
           ∀c d.
             {x | Normal c ≤ f x ∧ f x < Normal d} ∩ space a ∈ subsets a)
   
   [IN_MEASURABLE_BOREL_ALT4_IMP]  Theorem
      
      ⊢ ∀f a.
          sigma_algebra a ∧ f ∈ Borel_measurable a ⇒
          ∀c d. {x | c ≤ f x ∧ f x < d} ∩ space a ∈ subsets a
   
   [IN_MEASURABLE_BOREL_ALT5]  Theorem
      
      ⊢ ∀f a.
          sigma_algebra a ∧ (∀x. x ∈ space a ⇒ f x ≠ −∞) ⇒
          (f ∈ Borel_measurable a ⇔
           f ∈ (space a → 𝕌(:extreal)) ∧
           ∀c d.
             {x | Normal c < f x ∧ f x ≤ Normal d} ∩ space a ∈ subsets a)
   
   [IN_MEASURABLE_BOREL_ALT5_IMP]  Theorem
      
      ⊢ ∀f a.
          sigma_algebra a ∧ f ∈ Borel_measurable a ⇒
          ∀c d. {x | c < f x ∧ f x ≤ d} ∩ space a ∈ subsets a
   
   [IN_MEASURABLE_BOREL_ALT6]  Theorem
      
      ⊢ ∀f a.
          sigma_algebra a ∧ (∀x. x ∈ space a ⇒ f x ≠ −∞) ⇒
          (f ∈ Borel_measurable a ⇔
           f ∈ (space a → 𝕌(:extreal)) ∧
           ∀c d.
             {x | Normal c ≤ f x ∧ f x ≤ Normal d} ∩ space a ∈ subsets a)
   
   [IN_MEASURABLE_BOREL_ALT6_IMP]  Theorem
      
      ⊢ ∀f a.
          sigma_algebra a ∧ f ∈ Borel_measurable a ⇒
          ∀c d. {x | c ≤ f x ∧ f x ≤ d} ∩ space a ∈ subsets a
   
   [IN_MEASURABLE_BOREL_ALT7]  Theorem
      
      ⊢ ∀f a.
          sigma_algebra a ∧ (∀x. x ∈ space a ⇒ f x ≠ −∞) ⇒
          (f ∈ Borel_measurable a ⇔
           f ∈ (space a → 𝕌(:extreal)) ∧
           ∀c d.
             {x | Normal c < f x ∧ f x < Normal d} ∩ space a ∈ subsets a)
   
   [IN_MEASURABLE_BOREL_ALT7_IMP]  Theorem
      
      ⊢ ∀f a.
          sigma_algebra a ∧ f ∈ Borel_measurable a ⇒
          ∀c d. {x | c < f x ∧ f x < d} ∩ space a ∈ subsets a
   
   [IN_MEASURABLE_BOREL_ALT8]  Theorem
      
      ⊢ ∀f a.
          sigma_algebra a ∧ f ∈ Borel_measurable a ⇒
          ∀c. {x | f x = c} ∩ space a ∈ subsets a
   
   [IN_MEASURABLE_BOREL_ALT9]  Theorem
      
      ⊢ ∀f a.
          sigma_algebra a ∧ f ∈ Borel_measurable a ⇒
          ∀c. {x | f x ≠ c} ∩ space a ∈ subsets a
   
   [IN_MEASURABLE_BOREL_BOREL_ABS]  Theorem
      
      ⊢ abs ∈ Borel_measurable Borel
   
   [IN_MEASURABLE_BOREL_BOREL_ABS_POWR]  Theorem
      
      ⊢ ∀p. 0 ≤ p ∧ p ≠ +∞ ⇒ (λx. abs x powr p) ∈ Borel_measurable Borel
   
   [IN_MEASURABLE_BOREL_BOREL_AINV]  Theorem
      
      ⊢ numeric_negate ∈ Borel_measurable Borel
   
   [IN_MEASURABLE_BOREL_BOREL_CONST]  Theorem
      
      ⊢ ∀c. (λx. c) ∈ Borel_measurable Borel
   
   [IN_MEASURABLE_BOREL_BOREL_I]  Theorem
      
      ⊢ (λx. x) ∈ Borel_measurable Borel
   
   [IN_MEASURABLE_BOREL_BOREL_MAX]  Theorem
      
      ⊢ ∀c. (λx. max x c) ∈ Borel_measurable Borel
   
   [IN_MEASURABLE_BOREL_BOREL_MIN]  Theorem
      
      ⊢ ∀c. (λx. min x c) ∈ Borel_measurable Borel
   
   [IN_MEASURABLE_BOREL_BOREL_MONO_DECREASING]  Theorem
      
      ⊢ ∀f. (∀x y. x ≤ y ⇒ f y ≤ f x) ⇒ f ∈ Borel_measurable Borel
   
   [IN_MEASURABLE_BOREL_BOREL_MONO_INCREASING]  Theorem
      
      ⊢ ∀f. (∀x y. x ≤ y ⇒ f x ≤ f y) ⇒ f ∈ Borel_measurable Borel
   
   [IN_MEASURABLE_BOREL_BOREL_POW]  Theorem
      
      ⊢ ∀n. (λx. x pow n) ∈ Borel_measurable Borel
   
   [IN_MEASURABLE_BOREL_CC]  Theorem
      
      ⊢ ∀f a.
          sigma_algebra a ∧ f ∈ Borel_measurable a ⇒
          ∀c d. {x | c ≤ f x ∧ f x ≤ d} ∩ space a ∈ subsets a
   
   [IN_MEASURABLE_BOREL_CMUL]  Theorem
      
      ⊢ ∀a f g z.
          sigma_algebra a ∧ f ∈ Borel_measurable a ∧
          (∀x. x ∈ space a ⇒ g x = Normal z * f x) ⇒
          g ∈ Borel_measurable a
   
   [IN_MEASURABLE_BOREL_CMUL_INDICATOR]  Theorem
      
      ⊢ ∀a z s.
          sigma_algebra a ∧ s ∈ subsets a ⇒
          (λx. Normal z * 𝟙 s x) ∈ Borel_measurable a
   
   [IN_MEASURABLE_BOREL_CMUL_INDICATOR']  Theorem
      
      ⊢ ∀a c s.
          sigma_algebra a ∧ s ∈ subsets a ⇒
          (λx. c * 𝟙 s x) ∈ Borel_measurable a
   
   [IN_MEASURABLE_BOREL_CO]  Theorem
      
      ⊢ ∀f a.
          sigma_algebra a ∧ f ∈ Borel_measurable a ⇒
          ∀c d. {x | c ≤ f x ∧ f x < d} ∩ space a ∈ subsets a
   
   [IN_MEASURABLE_BOREL_COMP]  Theorem
      
      ⊢ ∀a b f g h.
          f ∈ Borel_measurable b ∧ g ∈ measurable a b ∧
          (∀x. x ∈ space a ⇒ h x = f (g x)) ⇒
          h ∈ Borel_measurable a
   
   [IN_MEASURABLE_BOREL_COMP_BOREL]  Theorem
      
      ⊢ ∀a f g h.
          f ∈ Borel_measurable Borel ∧ g ∈ Borel_measurable a ∧
          (∀x. x ∈ space a ⇒ h x = f (g x)) ⇒
          h ∈ Borel_measurable a
   
   [IN_MEASURABLE_BOREL_CONG]  Theorem
      
      ⊢ ∀m f g.
          (∀x. x ∈ m_space m ⇒ f x = g x) ⇒
          (f ∈ Borel_measurable (measurable_space m) ⇔
           g ∈ Borel_measurable (measurable_space m))
   
   [IN_MEASURABLE_BOREL_CONG']  Theorem
      
      ⊢ ∀a f g.
          (∀x. x ∈ space a ⇒ f x = g x) ⇒
          (f ∈ Borel_measurable a ⇔ g ∈ Borel_measurable a)
   
   [IN_MEASURABLE_BOREL_CONST]  Theorem
      
      ⊢ ∀a k f.
          sigma_algebra a ∧ (∀x. x ∈ space a ⇒ f x = k) ⇒
          f ∈ Borel_measurable a
   
   [IN_MEASURABLE_BOREL_CONST']  Theorem
      
      ⊢ ∀a k. sigma_algebra a ⇒ (λx. k) ∈ Borel_measurable a
   
   [IN_MEASURABLE_BOREL_CR]  Theorem
      
      ⊢ ∀f a.
          sigma_algebra a ∧ f ∈ Borel_measurable a ⇒
          ∀c. {x | c ≤ f x} ∩ space a ∈ subsets a
   
   [IN_MEASURABLE_BOREL_EQ]  Theorem
      
      ⊢ ∀m f g.
          (∀x. x ∈ m_space m ⇒ f x = g x) ∧
          g ∈ Borel_measurable (measurable_space m) ⇒
          f ∈ Borel_measurable (measurable_space m)
   
   [IN_MEASURABLE_BOREL_EQ']  Theorem
      
      ⊢ ∀a f g.
          (∀x. x ∈ space a ⇒ f x = g x) ∧ g ∈ Borel_measurable a ⇒
          f ∈ Borel_measurable a
   
   [IN_MEASURABLE_BOREL_EXP]  Theorem
      
      ⊢ ∀a f g.
          sigma_algebra a ∧ f ∈ Borel_measurable a ∧
          (∀x. x ∈ space a ⇒ g x = exp (f x)) ⇒
          g ∈ Borel_measurable a
   
   [IN_MEASURABLE_BOREL_FN_MINUS]  Theorem
      
      ⊢ ∀a f.
          sigma_algebra a ∧ f ∈ Borel_measurable a ⇒
          f⁻ ∈ Borel_measurable a
   
   [IN_MEASURABLE_BOREL_FN_PLUS]  Theorem
      
      ⊢ ∀a f.
          sigma_algebra a ∧ f ∈ Borel_measurable a ⇒
          f⁺ ∈ Borel_measurable a
   
   [IN_MEASURABLE_BOREL_IMP]  Theorem
      
      ⊢ ∀f a.
          sigma_algebra a ∧ f ∈ Borel_measurable a ⇒
          ∀c. {x | f x < c} ∩ space a ∈ subsets a
   
   [IN_MEASURABLE_BOREL_IMP_BOREL]  Theorem
      
      ⊢ ∀f m.
          f ∈ borel_measurable (measurable_space m) ⇒
          Normal ∘ f ∈ Borel_measurable (measurable_space m)
   
   [IN_MEASURABLE_BOREL_IMP_BOREL']  Theorem
      
      ⊢ ∀a f.
          sigma_algebra a ∧ f ∈ borel_measurable a ⇒
          Normal ∘ f ∈ Borel_measurable a
   
   [IN_MEASURABLE_BOREL_INDICATOR]  Theorem
      
      ⊢ ∀a A f.
          sigma_algebra a ∧ A ∈ subsets a ∧ (∀x. x ∈ space a ⇒ f x = 𝟙 A x) ⇒
          f ∈ Borel_measurable a
   
   [IN_MEASURABLE_BOREL_INF]  Theorem
      
      ⊢ ∀a fi f X.
          sigma_algebra a ∧ X ≠ ∅ ∧
          (∀n. n ∈ X ⇒ fi n ∈ Borel_measurable a) ∧
          (∀x. x ∈ space a ⇒ f x = inf (IMAGE (λn. fi n x) X)) ⇒
          f ∈ Borel_measurable a
   
   [IN_MEASURABLE_BOREL_INV]  Theorem
      
      ⊢ ∀a f g.
          sigma_algebra a ∧ f ∈ Borel_measurable a ∧
          (∀x. x ∈ space a ⇒ g x = (f x)⁻¹ * 𝟙 {y | f y ≠ 0} x) ⇒
          g ∈ Borel_measurable a
   
   [IN_MEASURABLE_BOREL_LE]  Theorem
      
      ⊢ ∀a f g.
          sigma_algebra a ∧ f ∈ Borel_measurable a ∧ g ∈ Borel_measurable a ⇒
          {x | f x ≤ g x} ∩ space a ∈ subsets a
   
   [IN_MEASURABLE_BOREL_LT]  Theorem
      
      ⊢ ∀f g a.
          sigma_algebra a ∧ f ∈ Borel_measurable a ∧ g ∈ Borel_measurable a ⇒
          {x | f x < g x} ∩ space a ∈ subsets a
   
   [IN_MEASURABLE_BOREL_MAX]  Theorem
      
      ⊢ ∀a f g.
          sigma_algebra a ∧ f ∈ Borel_measurable a ∧ g ∈ Borel_measurable a ⇒
          (λx. max (f x) (g x)) ∈ Borel_measurable a
   
   [IN_MEASURABLE_BOREL_MAXIMAL]  Theorem
      
      ⊢ ∀N. FINITE N ⇒
            ∀g f a.
              sigma_algebra a ∧ (∀n. g n ∈ Borel_measurable a) ∧
              (∀x. f x = sup (IMAGE (λn. g n x) N)) ⇒
              f ∈ Borel_measurable a
   
   [IN_MEASURABLE_BOREL_MAX_FN_SEQ]  Theorem
      
      ⊢ ∀a f.
          sigma_algebra a ∧ (∀i. f i ∈ Borel_measurable a) ⇒
          ∀n. max_fn_seq f n ∈ Borel_measurable a
   
   [IN_MEASURABLE_BOREL_MIN]  Theorem
      
      ⊢ ∀a f g.
          sigma_algebra a ∧ f ∈ Borel_measurable a ∧ g ∈ Borel_measurable a ⇒
          (λx. min (f x) (g x)) ∈ Borel_measurable a
   
   [IN_MEASURABLE_BOREL_MINIMAL]  Theorem
      
      ⊢ ∀N. FINITE N ⇒
            ∀g f a.
              sigma_algebra a ∧ (∀n. g n ∈ Borel_measurable a) ∧
              (∀x. f x = inf (IMAGE (λn. g n x) N)) ⇒
              f ∈ Borel_measurable a
   
   [IN_MEASURABLE_BOREL_MINUS]  Theorem
      
      ⊢ ∀a f g.
          sigma_algebra a ∧ f ∈ Borel_measurable a ∧
          (∀x. x ∈ space a ⇒ g x = -f x) ⇒
          g ∈ Borel_measurable a
   
   [IN_MEASURABLE_BOREL_MONO_INF]  Theorem
      
      ⊢ ∀fi f a.
          sigma_algebra a ∧ (∀n. fi n ∈ Borel_measurable a) ∧
          (∀x. x ∈ space a ⇒ f x = inf (IMAGE (λn. fi n x) 𝕌(:num))) ⇒
          f ∈ Borel_measurable a
   
   [IN_MEASURABLE_BOREL_MONO_SUP]  Theorem
      
      ⊢ ∀fi f a.
          sigma_algebra a ∧ (∀n. fi n ∈ Borel_measurable a) ∧
          (∀n x. x ∈ space a ⇒ fi n x ≤ fi (SUC n) x) ∧
          (∀x. x ∈ space a ⇒ f x = sup (IMAGE (λn. fi n x) 𝕌(:num))) ⇒
          f ∈ Borel_measurable a
   
   [IN_MEASURABLE_BOREL_MUL]  Theorem
      
      ⊢ ∀a f g h.
          sigma_algebra a ∧ f ∈ Borel_measurable a ∧
          g ∈ Borel_measurable a ∧ (∀x. x ∈ space a ⇒ h x = f x * g x) ∧
          (∀x. x ∈ space a ⇒ f x ≠ −∞ ∧ f x ≠ +∞ ∧ g x ≠ −∞ ∧ g x ≠ +∞) ⇒
          h ∈ Borel_measurable a
   
   [IN_MEASURABLE_BOREL_MUL']  Theorem
      
      ⊢ ∀a f g h.
          sigma_algebra a ∧ f ∈ Borel_measurable a ∧
          g ∈ Borel_measurable a ∧ (∀x. x ∈ space a ⇒ h x = f x * g x) ⇒
          h ∈ Borel_measurable a
   
   [IN_MEASURABLE_BOREL_MUL_INDICATOR]  Theorem
      
      ⊢ ∀a f s.
          sigma_algebra a ∧ f ∈ Borel_measurable a ∧ s ∈ subsets a ⇒
          (λx. f x * 𝟙 s x) ∈ Borel_measurable a
   
   [IN_MEASURABLE_BOREL_MUL_INDICATOR_EQ]  Theorem
      
      ⊢ ∀a f.
          sigma_algebra a ⇒
          (f ∈ Borel_measurable a ⇔
           (λx. f x * 𝟙 (space a) x) ∈ Borel_measurable a)
   
   [IN_MEASURABLE_BOREL_MUL_INV]  Theorem
      
      ⊢ ∀a f g h.
          sigma_algebra a ∧ f ∈ Borel_measurable a ∧
          g ∈ Borel_measurable a ∧ (∀x. x ∈ space a ∧ g x = 0 ⇒ f x = 0) ∧
          (∀x. x ∈ space a ⇒ h x = f x * (g x)⁻¹) ⇒
          h ∈ Borel_measurable a
   
   [IN_MEASURABLE_BOREL_NEGINF]  Theorem
      
      ⊢ ∀f a.
          sigma_algebra a ∧ f ∈ Borel_measurable a ⇒
          {x | f x = −∞} ∩ space a ∈ subsets a
   
   [IN_MEASURABLE_BOREL_NORMAL_REAL]  Theorem
      
      ⊢ ∀a f.
          sigma_algebra a ∧ f ∈ Borel_measurable a ⇒
          Normal ∘ real ∘ f ∈ Borel_measurable a
   
   [IN_MEASURABLE_BOREL_NOT_NEGINF]  Theorem
      
      ⊢ ∀f a.
          sigma_algebra a ∧ f ∈ Borel_measurable a ⇒
          {x | f x ≠ −∞} ∩ space a ∈ subsets a
   
   [IN_MEASURABLE_BOREL_NOT_POSINF]  Theorem
      
      ⊢ ∀f a.
          sigma_algebra a ∧ f ∈ Borel_measurable a ⇒
          {x | f x ≠ +∞} ∩ space a ∈ subsets a
   
   [IN_MEASURABLE_BOREL_NOT_SING]  Theorem
      
      ⊢ ∀f a.
          sigma_algebra a ∧ f ∈ Borel_measurable a ⇒
          ∀c. {x | f x ≠ c} ∩ space a ∈ subsets a
   
   [IN_MEASURABLE_BOREL_OC]  Theorem
      
      ⊢ ∀f a.
          sigma_algebra a ∧ f ∈ Borel_measurable a ⇒
          ∀c d. {x | c < f x ∧ f x ≤ d} ∩ space a ∈ subsets a
   
   [IN_MEASURABLE_BOREL_OO]  Theorem
      
      ⊢ ∀f a.
          sigma_algebra a ∧ f ∈ Borel_measurable a ⇒
          ∀c d. {x | c < f x ∧ f x < d} ∩ space a ∈ subsets a
   
   [IN_MEASURABLE_BOREL_OR]  Theorem
      
      ⊢ ∀f a.
          sigma_algebra a ∧ f ∈ Borel_measurable a ⇒
          ∀c. {x | c < f x} ∩ space a ∈ subsets a
   
   [IN_MEASURABLE_BOREL_PLUS_MINUS]  Theorem
      
      ⊢ ∀a f.
          sigma_algebra a ⇒
          (f ∈ Borel_measurable a ⇔
           f⁺ ∈ Borel_measurable a ∧ f⁻ ∈ Borel_measurable a)
   
   [IN_MEASURABLE_BOREL_POSINF]  Theorem
      
      ⊢ ∀f a.
          sigma_algebra a ∧ f ∈ Borel_measurable a ⇒
          {x | f x = +∞} ∩ space a ∈ subsets a
   
   [IN_MEASURABLE_BOREL_POW]  Theorem
      
      ⊢ ∀n a f.
          f ∈ Borel_measurable a ⇒ (λx. f x pow n) ∈ Borel_measurable a
   
   [IN_MEASURABLE_BOREL_POW']  Theorem
      
      ⊢ ∀n a f g.
          sigma_algebra a ∧ f ∈ Borel_measurable a ∧
          (∀x. x ∈ space a ⇒ g x = f x pow n) ⇒
          g ∈ Borel_measurable a
   
   [IN_MEASURABLE_BOREL_POW_EXP]  Theorem
      
      ⊢ ∀a f g h.
          sigma_algebra a ∧ f ∈ Borel_measurable a ∧
          (∀n. {x | g x = n} ∩ space a ∈ subsets a) ∧
          (∀x. x ∈ space a ⇒ h x = f x pow g x) ⇒
          h ∈ Borel_measurable a
   
   [IN_MEASURABLE_BOREL_PROD]  Theorem
      
      ⊢ ∀a f g s.
          FINITE s ∧ sigma_algebra a ∧
          (∀i. i ∈ s ⇒ f i ∈ Borel_measurable a) ∧
          (∀i x. i ∈ s ∧ x ∈ space a ⇒ f i x ≠ −∞ ∧ f i x ≠ +∞) ∧
          (∀x. x ∈ space a ⇒ g x = ∏ (λi. f i x) s) ⇒
          g ∈ Borel_measurable a
   
   [IN_MEASURABLE_BOREL_PROD']  Theorem
      
      ⊢ ∀a f g s.
          FINITE s ∧ sigma_algebra a ∧
          (∀i. i ∈ s ⇒ f i ∈ Borel_measurable a) ∧
          (∀x. x ∈ space a ⇒ g x = ∏ (λi. f i x) s) ⇒
          g ∈ Borel_measurable a
   
   [IN_MEASURABLE_BOREL_RC]  Theorem
      
      ⊢ ∀f a.
          sigma_algebra a ∧ f ∈ Borel_measurable a ⇒
          ∀c. {x | f x ≤ c} ∩ space a ∈ subsets a
   
   [IN_MEASURABLE_BOREL_RO]  Theorem
      
      ⊢ ∀f a.
          sigma_algebra a ∧ f ∈ Borel_measurable a ⇒
          ∀c. {x | f x < c} ∩ space a ∈ subsets a
   
   [IN_MEASURABLE_BOREL_SING]  Theorem
      
      ⊢ ∀f a.
          sigma_algebra a ∧ f ∈ Borel_measurable a ⇒
          ∀c. {x | f x = c} ∩ space a ∈ subsets a
   
   [IN_MEASURABLE_BOREL_SQR]  Theorem
      
      ⊢ ∀a f g.
          sigma_algebra a ∧ f ∈ Borel_measurable a ∧
          (∀x. x ∈ space a ⇒ g x = (f x)²) ⇒
          g ∈ Borel_measurable a
   
   [IN_MEASURABLE_BOREL_SUB]  Theorem
      
      ⊢ ∀a f g h.
          sigma_algebra a ∧ f ∈ Borel_measurable a ∧
          g ∈ Borel_measurable a ∧
          (∀x. x ∈ space a ⇒ f x ≠ −∞ ∧ g x ≠ +∞ ∨ f x ≠ +∞ ∧ g x ≠ −∞) ∧
          (∀x. x ∈ space a ⇒ h x = f x − g x) ⇒
          h ∈ Borel_measurable a
   
   [IN_MEASURABLE_BOREL_SUB']  Theorem
      
      ⊢ ∀a f g h.
          sigma_algebra a ∧ f ∈ Borel_measurable a ∧
          g ∈ Borel_measurable a ∧ (∀x. x ∈ space a ⇒ h x = f x − g x) ⇒
          h ∈ Borel_measurable a
   
   [IN_MEASURABLE_BOREL_SUM]  Theorem
      
      ⊢ ∀a f g s.
          FINITE s ∧ sigma_algebra a ∧
          (∀i. i ∈ s ⇒ f i ∈ Borel_measurable a) ∧
          (∀i x. i ∈ s ∧ x ∈ space a ⇒ f i x ≠ −∞) ∧
          (∀x. x ∈ space a ⇒ g x = ∑ (λi. f i x) s) ⇒
          g ∈ Borel_measurable a
   
   [IN_MEASURABLE_BOREL_SUM']  Theorem
      
      ⊢ ∀a f g s.
          FINITE s ∧ sigma_algebra a ∧
          (∀i. i ∈ s ⇒ f i ∈ Borel_measurable a) ∧
          (∀x. x ∈ space a ⇒ g x = ∑ (λi. f i x) s) ⇒
          g ∈ Borel_measurable a
   
   [IN_MEASURABLE_BOREL_SUMINF]  Theorem
      
      ⊢ ∀fn f a.
          sigma_algebra a ∧ (∀n. fn n ∈ Borel_measurable a) ∧
          (∀i x. x ∈ space a ⇒ 0 ≤ fn i x) ∧
          (∀x. x ∈ space a ⇒ f x = suminf (λn. fn n x)) ⇒
          f ∈ Borel_measurable a
   
   [IN_MEASURABLE_BOREL_SUP]  Theorem
      
      ⊢ ∀a fi f X.
          sigma_algebra a ∧ X ≠ ∅ ∧
          (∀n. n ∈ X ⇒ fi n ∈ Borel_measurable a) ∧
          (∀x. x ∈ space a ⇒ f x = sup (IMAGE (λn. fi n x) X)) ⇒
          f ∈ Borel_measurable a
   
   [IN_MEASURABLE_BOREL_TIMES]  Theorem
      
      ⊢ ∀m f g h.
          measure_space m ∧ f ∈ Borel_measurable (measurable_space m) ∧
          g ∈ Borel_measurable (measurable_space m) ∧
          (∀x. x ∈ m_space m ⇒ h x = f x * g x) ⇒
          h ∈ Borel_measurable (measurable_space m)
   
   [IN_MEASURABLE_BOREL_TIMES']  Theorem
      
      ⊢ ∀a f g h.
          sigma_algebra a ∧ f ∈ Borel_measurable a ∧
          g ∈ Borel_measurable a ∧ (∀x. x ∈ space a ⇒ h x = f x * g x) ⇒
          h ∈ Borel_measurable a
   
   [MEASURABLE_BOREL]  Theorem
      
      ⊢ ∀f a.
          sigma_algebra a ⇒
          (f ∈ Borel_measurable a ⇔
           f ∈ (space a → 𝕌(:extreal)) ∧
           ∀c. PREIMAGE f {x | x < Normal c} ∩ space a ∈ subsets a)
   
   [MEASURE_SPACE_LBOREL]  Theorem
      
      ⊢ measure_space ext_lborel
   
   [RIGHT_IMP_AE_THM]  Theorem
      
      ⊢ ∀m P Q. measure_space m ⇒ (P ⇒ (AE x::m. Q x) ⇔ AE x::m. P ⇒ Q x)
   
   [RIGHT_IMP_AE_THM']  Theorem
      
      ⊢ ∀m P Q.
          measure_space m ⇒
          ((∀i. P i ⇒ AE x::m. Q i x) ⇔ ∀i. AE x::m. P i ⇒ Q i x)
   
   [SIGMA_ALGEBRA_BOREL]  Theorem
      
      ⊢ sigma_algebra Borel
   
   [SIGMA_ALGEBRA_BOREL_2D]  Theorem
      
      ⊢ sigma_algebra (Borel × Borel)
   
   [SIGMA_FINITE_LBOREL]  Theorem
      
      ⊢ sigma_finite ext_lborel
   
   [SPACE_BOREL]  Theorem
      
      ⊢ space Borel = 𝕌(:extreal)
   
   [SPACE_BOREL_2D]  Theorem
      
      ⊢ space (Borel × Borel) = 𝕌(:extreal # extreal)
   
   [borel_eq_real_set]  Theorem
      
      ⊢ borel = (𝕌(:real),IMAGE real_set (subsets Borel))
   
   [in_borel_measurable_from_Borel]  Theorem
      
      ⊢ ∀a f.
          sigma_algebra a ∧ f ∈ Borel_measurable a ⇒
          real ∘ f ∈ borel_measurable a
   
   [in_borel_measurable_imp]  Theorem
      
      ⊢ ∀m f.
          measure_space m ∧
          (∀s. open s ⇒ PREIMAGE f s ∩ m_space m ∈ measurable_sets m) ⇒
          f ∈ borel_measurable (measurable_space m)
   
   [in_measurable_sigma_pow]  Theorem
      
      ⊢ ∀m sp N f.
          measure_space m ∧ N ⊆ POW sp ∧ f ∈ (m_space m → sp) ∧
          (∀y. y ∈ N ⇒ PREIMAGE f y ∩ m_space m ∈ measurable_sets m) ⇒
          f ∈ measurable (measurable_space m) (sigma sp N)
   
   [lambda0_empty]  Theorem
      
      ⊢ lambda0 ∅ = 0
   
   [lambda0_not_infty]  Theorem
      
      ⊢ ∀a b.
          lambda0 (right_open_interval a b) ≠ +∞ ∧
          lambda0 (right_open_interval a b) ≠ −∞
   
   [lambda_closed_interval]  Theorem
      
      ⊢ ∀a b. a ≤ b ⇒ lambda (interval [(a,b)]) = Normal (b − a)
   
   [lambda_closed_interval_content]  Theorem
      
      ⊢ ∀a b.
          lambda (interval [(a,b)]) = Normal (content (interval [(a,b)]))
   
   [lambda_empty]  Theorem
      
      ⊢ lambda ∅ = 0
   
   [lambda_eq]  Theorem
      
      ⊢ ∀m. (∀a b.
               measure m (interval [(a,b)]) =
               Normal (content (interval [(a,b)]))) ∧ measure_space m ∧
            m_space m = space borel ∧ measurable_sets m = subsets borel ⇒
            ∀s. s ∈ subsets borel ⇒ lambda s = measure m s
   
   [lambda_not_infty]  Theorem
      
      ⊢ ∀a b.
          lambda (right_open_interval a b) ≠ +∞ ∧
          lambda (right_open_interval a b) ≠ −∞
   
   [lambda_open_interval]  Theorem
      
      ⊢ ∀a b. a ≤ b ⇒ lambda (interval (a,b)) = Normal (b − a)
   
   [lambda_prop]  Theorem
      
      ⊢ ∀a b. a ≤ b ⇒ lambda (right_open_interval a b) = Normal (b − a)
   
   [lambda_sing]  Theorem
      
      ⊢ ∀c. lambda {c} = 0
   
   [lborel0_additive]  Theorem
      
      ⊢ additive lborel0
   
   [lborel0_finite_additive]  Theorem
      
      ⊢ finite_additive lborel0
   
   [lborel0_positive]  Theorem
      
      ⊢ positive lborel0
   
   [lborel0_premeasure]  Theorem
      
      ⊢ premeasure lborel0
   
   [lborel0_subadditive]  Theorem
      
      ⊢ subadditive lborel0
   
   [m_space_lborel]  Theorem
      
      ⊢ m_space lborel = space borel
   
   [measure_space_lborel]  Theorem
      
      ⊢ measure_space lborel
   
   [seq_le_imp_lim_le]  Theorem
      
      ⊢ ∀x y f. (∀n. f n ≤ x) ∧ (f --> y) sequentially ⇒ y ≤ x
   
   [seq_mono_le]  Theorem
      
      ⊢ ∀f x n. (∀n. f n ≤ f (n + 1)) ∧ (f --> x) sequentially ⇒ f n ≤ x
   
   [sets_lborel]  Theorem
      
      ⊢ measurable_sets lborel = subsets borel
   
   [sigma_finite_lborel]  Theorem
      
      ⊢ sigma_finite lborel
   
   [space_lborel]  Theorem
      
      ⊢ m_space lborel = 𝕌(:real)
   
   [sup_seq']  Theorem
      
      ⊢ ∀f l.
          mono_increasing f ⇒
          ((f --> l) sequentially ⇔
           sup (IMAGE (λn. Normal (f n)) 𝕌(:num)) = Normal l)
   
   
*)
end


Source File Identifier index Theory binding index

HOL 4, Trindemossen-1