Structure extrealTheory


Source File Identifier index Theory binding index

signature extrealTheory =
sig
  type thm = Thm.thm
  
  (*  Definitions  *)
    val EXTREAL_SUM_IMAGE_DEF : thm
    val Q_set : thm
    val ceiling_def : thm
    val ext_liminf_def : thm
    val ext_limsup_def : thm
    val ext_mono_decreasing_def : thm
    val ext_mono_increasing_def : thm
    val ext_product_def : thm
    val ext_suminf_def : thm
    val ext_tendsto_def : thm
    val extreal_exp_def : thm
    val extreal_inf_def : thm
    val extreal_lg_def : thm
    val extreal_lim_def : thm
    val extreal_ln_def : thm
    val extreal_logr_def : thm
    val extreal_mr1_def : thm
    val extreal_powr_def : thm
    val extreal_sup_def : thm
    val fn_minus_def : thm
    val fn_plus_def : thm
    val indicator_fn : thm
    val max_fn_seq_def : thm
    val nonneg_def : thm
    val open_interval_def : thm
    val open_intervals_def : thm
    val rational_intervals_def : thm
    val real_set_def : thm
  
  (*  Theorems  *)
    val ADD_IN_Q : thm
    val CEILING_LBOUND : thm
    val CEILING_UBOUND : thm
    val CMUL_IN_Q : thm
    val COUNTABLE_ENUM_Q : thm
    val COUNTABLE_RATIONAL_INTERVALS : thm
    val CROSS_COUNTABLE_UNIV : thm
    val DIV_IN_Q : thm
    val DROP_INDICATOR_FN : thm
    val EXTREAL_ARCH : thm
    val EXTREAL_ARCH_INV : thm
    val EXTREAL_ARCH_INV' : thm
    val EXTREAL_ARCH_POW2 : thm
    val EXTREAL_ARCH_POW2_INV : thm
    val EXTREAL_EQ_LADD : thm
    val EXTREAL_EQ_RADD : thm
    val EXTREAL_LIM : thm
    val EXTREAL_LIM_EVENTUALLY : thm
    val EXTREAL_LIM_SEQUENTIALLY : thm
    val EXTREAL_PROD_IMAGE_0 : thm
    val EXTREAL_PROD_IMAGE_1 : thm
    val EXTREAL_PROD_IMAGE_COUNT_ONE : thm
    val EXTREAL_PROD_IMAGE_COUNT_SUC : thm
    val EXTREAL_PROD_IMAGE_COUNT_ZERO : thm
    val EXTREAL_PROD_IMAGE_DISJOINT_UNION : thm
    val EXTREAL_PROD_IMAGE_EMPTY : thm
    val EXTREAL_PROD_IMAGE_EQ : thm
    val EXTREAL_PROD_IMAGE_IMAGE : thm
    val EXTREAL_PROD_IMAGE_MONO : thm
    val EXTREAL_PROD_IMAGE_NORMAL : thm
    val EXTREAL_PROD_IMAGE_NOT_INFTY : thm
    val EXTREAL_PROD_IMAGE_ONE : thm
    val EXTREAL_PROD_IMAGE_PAIR : thm
    val EXTREAL_PROD_IMAGE_POS : thm
    val EXTREAL_PROD_IMAGE_PROPERTY : thm
    val EXTREAL_PROD_IMAGE_SING : thm
    val EXTREAL_PROD_IMAGE_THM : thm
    val EXTREAL_SUM_IMAGE_0 : thm
    val EXTREAL_SUM_IMAGE_ADD : thm
    val EXTREAL_SUM_IMAGE_ALT_FOLDR : thm
    val EXTREAL_SUM_IMAGE_CMUL : thm
    val EXTREAL_SUM_IMAGE_COUNT : thm
    val EXTREAL_SUM_IMAGE_COUNT_ONE : thm
    val EXTREAL_SUM_IMAGE_COUNT_SUC : thm
    val EXTREAL_SUM_IMAGE_COUNT_ZERO : thm
    val EXTREAL_SUM_IMAGE_CROSS_SYM : thm
    val EXTREAL_SUM_IMAGE_DISJOINT_UNION : thm
    val EXTREAL_SUM_IMAGE_EMPTY : thm
    val EXTREAL_SUM_IMAGE_EQ : thm
    val EXTREAL_SUM_IMAGE_EQ' : thm
    val EXTREAL_SUM_IMAGE_EQ_CARD : thm
    val EXTREAL_SUM_IMAGE_EQ_SHIFT : thm
    val EXTREAL_SUM_IMAGE_FINITE_CONST : thm
    val EXTREAL_SUM_IMAGE_FINITE_SAME : thm
    val EXTREAL_SUM_IMAGE_IF_ELIM : thm
    val EXTREAL_SUM_IMAGE_IMAGE : thm
    val EXTREAL_SUM_IMAGE_INSERT : thm
    val EXTREAL_SUM_IMAGE_INTER_ELIM : thm
    val EXTREAL_SUM_IMAGE_INTER_NONZERO : thm
    val EXTREAL_SUM_IMAGE_INV_CARD_EQ_1 : thm
    val EXTREAL_SUM_IMAGE_IN_IF : thm
    val EXTREAL_SUM_IMAGE_IN_IF_ALT : thm
    val EXTREAL_SUM_IMAGE_MONO : thm
    val EXTREAL_SUM_IMAGE_MONO' : thm
    val EXTREAL_SUM_IMAGE_MONO_SET : thm
    val EXTREAL_SUM_IMAGE_NEG : thm
    val EXTREAL_SUM_IMAGE_NORMAL : thm
    val EXTREAL_SUM_IMAGE_NOT_INFTY : thm
    val EXTREAL_SUM_IMAGE_NOT_NEGINF : thm
    val EXTREAL_SUM_IMAGE_NOT_POSINF : thm
    val EXTREAL_SUM_IMAGE_OFFSET : thm
    val EXTREAL_SUM_IMAGE_PERMUTES : thm
    val EXTREAL_SUM_IMAGE_POS : thm
    val EXTREAL_SUM_IMAGE_POS_MEM_LE : thm
    val EXTREAL_SUM_IMAGE_POW : thm
    val EXTREAL_SUM_IMAGE_PROPERTY : thm
    val EXTREAL_SUM_IMAGE_PROPERTY_NEG : thm
    val EXTREAL_SUM_IMAGE_PROPERTY_POS : thm
    val EXTREAL_SUM_IMAGE_SING : thm
    val EXTREAL_SUM_IMAGE_SNEG : thm
    val EXTREAL_SUM_IMAGE_SPOS : thm
    val EXTREAL_SUM_IMAGE_SUB : thm
    val EXTREAL_SUM_IMAGE_SUM_IMAGE : thm
    val EXTREAL_SUM_IMAGE_SUM_IMAGE_MONO : thm
    val EXTREAL_SUM_IMAGE_THM : thm
    val EXTREAL_SUM_IMAGE_ZERO : thm
    val EXTREAL_SUM_IMAGE_ZERO_DIFF : thm
    val EXTREAL_SUM_IMAGE_le_suminf : thm
    val FN_ABS : thm
    val FN_ABS' : thm
    val FN_DECOMP : thm
    val FN_DECOMP' : thm
    val FN_MINUS_ABS_ZERO : thm
    val FN_MINUS_ADD_LE : thm
    val FN_MINUS_ALT : thm
    val FN_MINUS_ALT' : thm
    val FN_MINUS_CMUL : thm
    val FN_MINUS_CMUL_full : thm
    val FN_MINUS_FMUL : thm
    val FN_MINUS_INFTY_IMP : thm
    val FN_MINUS_LE_ABS : thm
    val FN_MINUS_NOT_INFTY : thm
    val FN_MINUS_POS : thm
    val FN_MINUS_POS_ZERO : thm
    val FN_MINUS_REDUCE : thm
    val FN_MINUS_TO_PLUS : thm
    val FN_MINUS_ZERO : thm
    val FN_PLUS_ABS_SELF : thm
    val FN_PLUS_ADD_LE : thm
    val FN_PLUS_ALT : thm
    val FN_PLUS_ALT' : thm
    val FN_PLUS_CMUL : thm
    val FN_PLUS_CMUL_full : thm
    val FN_PLUS_FMUL : thm
    val FN_PLUS_INFTY_IMP : thm
    val FN_PLUS_LE_ABS : thm
    val FN_PLUS_NEG_ZERO : thm
    val FN_PLUS_NOT_INFTY : thm
    val FN_PLUS_POS : thm
    val FN_PLUS_POS_ID : thm
    val FN_PLUS_REDUCE : thm
    val FN_PLUS_REDUCE' : thm
    val FN_PLUS_TO_MINUS : thm
    val FN_PLUS_ZERO : thm
    val INDICATOR_FN_ABS : thm
    val INDICATOR_FN_ABS_MUL : thm
    val INDICATOR_FN_CROSS : thm
    val INDICATOR_FN_DIFF : thm
    val INDICATOR_FN_DIFF_SPACE : thm
    val INDICATOR_FN_EMPTY : thm
    val INDICATOR_FN_INTER : thm
    val INDICATOR_FN_INTER_MIN : thm
    val INDICATOR_FN_LE_1 : thm
    val INDICATOR_FN_MONO : thm
    val INDICATOR_FN_MUL_INTER : thm
    val INDICATOR_FN_NOT_INFTY : thm
    val INDICATOR_FN_POS : thm
    val INDICATOR_FN_SING_0 : thm
    val INDICATOR_FN_SING_1 : thm
    val INDICATOR_FN_UNION : thm
    val INDICATOR_FN_UNION_MAX : thm
    val INDICATOR_FN_UNION_MIN : thm
    val INV_IN_Q : thm
    val MUL_IN_Q : thm
    val NESTED_EXTREAL_SUM_IMAGE_REVERSE : thm
    val NUM_IN_Q : thm
    val OPP_IN_Q : thm
    val Q_COUNTABLE : thm
    val Q_DENSE_IN_R : thm
    val Q_DENSE_IN_R_LEMMA : thm
    val Q_INFINITE : thm
    val Q_not_infty : thm
    val Q_set_def : thm
    val SIMP_EXTREAL_ARCH : thm
    val SIMP_EXTREAL_ARCH_NEG : thm
    val SUB_IN_Q : thm
    val abs_0 : thm
    val abs_abs : thm
    val abs_bounds : thm
    val abs_bounds_lt : thm
    val abs_div : thm
    val abs_div_normal : thm
    val abs_eq_0 : thm
    val abs_gt_0 : thm
    val abs_le_0 : thm
    val abs_le_half_pow2 : thm
    val abs_le_square_plus1 : thm
    val abs_max : thm
    val abs_mul : thm
    val abs_neg : thm
    val abs_neg' : thm
    val abs_neg_eq : thm
    val abs_not_infty : thm
    val abs_not_zero : thm
    val abs_pos : thm
    val abs_pow2 : thm
    val abs_pow_le_mono : thm
    val abs_real : thm
    val abs_refl : thm
    val abs_sub : thm
    val abs_sub' : thm
    val abs_triangle : thm
    val abs_triangle_full : thm
    val abs_triangle_neg : thm
    val abs_triangle_neg_full : thm
    val abs_triangle_sub : thm
    val abs_triangle_sub' : thm
    val abs_triangle_sub_full : thm
    val abs_triangle_sub_full' : thm
    val abs_unbounds : thm
    val add2_sub2 : thm
    val add_assoc : thm
    val add_comm : thm
    val add_comm_normal : thm
    val add_infty : thm
    val add_ldistrib : thm
    val add_ldistrib_neg : thm
    val add_ldistrib_normal : thm
    val add_ldistrib_normal2 : thm
    val add_ldistrib_pos : thm
    val add_lzero : thm
    val add_not_infty : thm
    val add_pow2 : thm
    val add_pow2_pos : thm
    val add_rdistrib : thm
    val add_rdistrib_normal : thm
    val add_rdistrib_normal2 : thm
    val add_rzero : thm
    val add_sub : thm
    val add_sub2 : thm
    val add_sub_normal : thm
    val conjugate_properties : thm
    val div_add : thm
    val div_add2 : thm
    val div_eq_mul_linv : thm
    val div_eq_mul_rinv : thm
    val div_infty : thm
    val div_mul_refl : thm
    val div_not_infty : thm
    val div_one : thm
    val div_refl : thm
    val div_refl_pos : thm
    val div_sub : thm
    val entire : thm
    val eq_add_sub_switch : thm
    val eq_neg : thm
    val eq_sub_ladd : thm
    val eq_sub_ladd_normal : thm
    val eq_sub_radd : thm
    val eq_sub_switch : thm
    val eqle_trans : thm
    val exp_0 : thm
    val exp_add : thm
    val exp_le_x : thm
    val exp_le_x' : thm
    val exp_mono_le : thm
    val exp_neg : thm
    val exp_pos : thm
    val exp_pos_lt : thm
    val ext_liminf_alt_limsup : thm
    val ext_liminf_le_limsup : thm
    val ext_liminf_pos : thm
    val ext_limsup_alt_liminf : thm
    val ext_limsup_pos : thm
    val ext_mono_decreasing_suc : thm
    val ext_mono_increasing_suc : thm
    val ext_suminf_0 : thm
    val ext_suminf_2d : thm
    val ext_suminf_2d_full : thm
    val ext_suminf_add : thm
    val ext_suminf_add' : thm
    val ext_suminf_alt : thm
    val ext_suminf_alt' : thm
    val ext_suminf_cmul : thm
    val ext_suminf_cmul_alt : thm
    val ext_suminf_eq : thm
    val ext_suminf_eq_infty : thm
    val ext_suminf_eq_infty_imp : thm
    val ext_suminf_eq_shift : thm
    val ext_suminf_lt_infty : thm
    val ext_suminf_mono : thm
    val ext_suminf_nested : thm
    val ext_suminf_offset : thm
    val ext_suminf_pos : thm
    val ext_suminf_posinf : thm
    val ext_suminf_real_suminf : thm
    val ext_suminf_sigma : thm
    val ext_suminf_sigma' : thm
    val ext_suminf_sing : thm
    val ext_suminf_sing_general : thm
    val ext_suminf_sub : thm
    val ext_suminf_sum : thm
    val ext_suminf_suminf : thm
    val ext_suminf_suminf' : thm
    val ext_suminf_summable : thm
    val ext_suminf_sup_eq : thm
    val ext_suminf_zero : thm
    val extreal_0_simps : thm
    val extreal_11 : thm
    val extreal_1_simps : thm
    val extreal_abs_def : thm
    val extreal_add_def : thm
    val extreal_add_eq : thm
    val extreal_ainv_def : thm
    val extreal_cases : thm
    val extreal_dist_def : thm
    val extreal_dist_ind : thm
    val extreal_dist_ismet : thm
    val extreal_dist_normal : thm
    val extreal_distinct : thm
    val extreal_div_def : thm
    val extreal_div_eq : thm
    val extreal_double : thm
    val extreal_eq_zero : thm
    val extreal_inv_def : thm
    val extreal_inv_eq : thm
    val extreal_le_def : thm
    val extreal_le_eq : thm
    val extreal_le_simps : thm
    val extreal_lim_sequentially_eq : thm
    val extreal_lim_sequentially_eq' : thm
    val extreal_lt_def : thm
    val extreal_lt_eq : thm
    val extreal_lt_simps : thm
    val extreal_max_def : thm
    val extreal_mean : thm
    val extreal_min_def : thm
    val extreal_mr1_le_1 : thm
    val extreal_mr1_normal : thm
    val extreal_mr1_thm : thm
    val extreal_mul_def : thm
    val extreal_mul_eq : thm
    val extreal_not_infty : thm
    val extreal_not_lt : thm
    val extreal_of_num_def : thm
    val extreal_pow : thm
    val extreal_pow_alt : thm
    val extreal_pow_def : thm
    val extreal_sqrt_def : thm
    val extreal_sub : thm
    val extreal_sub_add : thm
    val extreal_sub_def : thm
    val extreal_sub_eq : thm
    val fn_minus : thm
    val fn_minus_abs : thm
    val fn_minus_mul_indicator : thm
    val fn_plus : thm
    val fn_plus_abs : thm
    val fn_plus_alt : thm
    val fn_plus_mul_indicator : thm
    val fourth_cancel : thm
    val fourths_between : thm
    val gen_powr : thm
    val geometric_series_pow : thm
    val half_between : thm
    val half_cancel : thm
    val half_double : thm
    val half_not_infty : thm
    val harmonic_series_pow_2 : thm
    val indicator_fn_def : thm
    val indicator_fn_normal : thm
    val indicator_fn_split : thm
    val indicator_fn_suminf : thm
    val ineq_imp : thm
    val inf_cminus : thm
    val inf_cmul : thm
    val inf_const : thm
    val inf_const_alt : thm
    val inf_const_over_set : thm
    val inf_empty : thm
    val inf_eq : thm
    val inf_eq' : thm
    val inf_le : thm
    val inf_le' : thm
    val inf_le_imp : thm
    val inf_le_imp' : thm
    val inf_lt : thm
    val inf_lt' : thm
    val inf_lt_infty : thm
    val inf_min : thm
    val inf_minimal : thm
    val inf_mono : thm
    val inf_mono_subset : thm
    val inf_num : thm
    val inf_seq : thm
    val inf_sing : thm
    val inf_suc : thm
    val inf_univ : thm
    val infty_div : thm
    val infty_pow2 : thm
    val infty_powr : thm
    val inv_1over : thm
    val inv_infty : thm
    val inv_inj : thm
    val inv_inv : thm
    val inv_le_antimono : thm
    val inv_le_antimono_imp : thm
    val inv_lt_antimono : thm
    val inv_mul : thm
    val inv_not_infty : thm
    val inv_one : thm
    val inv_pos : thm
    val inv_pos' : thm
    val inv_pos_eq : thm
    val inv_powr : thm
    val ldiv_eq : thm
    val ldiv_le_imp : thm
    val le_01 : thm
    val le_02 : thm
    val le_abs : thm
    val le_abs_bounds : thm
    val le_add : thm
    val le_add2 : thm
    val le_add_neg : thm
    val le_addl : thm
    val le_addl_imp : thm
    val le_addr : thm
    val le_addr_imp : thm
    val le_antisym : thm
    val le_div : thm
    val le_epsilon : thm
    val le_inf : thm
    val le_inf' : thm
    val le_inf_epsilon_set : thm
    val le_infty : thm
    val le_inv : thm
    val le_ladd : thm
    val le_ladd_imp : thm
    val le_ldiv : thm
    val le_lmul : thm
    val le_lmul_imp : thm
    val le_lneg : thm
    val le_lsub_imp : thm
    val le_lt : thm
    val le_max : thm
    val le_max1 : thm
    val le_max2 : thm
    val le_min : thm
    val le_mul : thm
    val le_mul2 : thm
    val le_mul_epsilon : thm
    val le_mul_neg : thm
    val le_neg : thm
    val le_negl : thm
    val le_negr : thm
    val le_not_infty : thm
    val le_num : thm
    val le_pow2 : thm
    val le_radd : thm
    val le_radd_imp : thm
    val le_rdiv : thm
    val le_refl : thm
    val le_rmul : thm
    val le_rmul_imp : thm
    val le_rsub_imp : thm
    val le_sub_eq : thm
    val le_sub_eq2 : thm
    val le_sub_imp : thm
    val le_sub_imp2 : thm
    val le_sup : thm
    val le_sup' : thm
    val le_sup_imp : thm
    val le_sup_imp' : thm
    val le_sup_imp2 : thm
    val le_total : thm
    val le_trans : thm
    val leeq_trans : thm
    val let_add : thm
    val let_add2 : thm
    val let_add2_alt : thm
    val let_antisym : thm
    val let_mul : thm
    val let_total : thm
    val let_trans : thm
    val lim_sequentially_imp_extreal_lim : thm
    val linv_uniq : thm
    val ln_1 : thm
    val ln_inv : thm
    val ln_mul : thm
    val ln_neg : thm
    val ln_neg_lt : thm
    val ln_not_neginf : thm
    val ln_pos : thm
    val ln_pos_lt : thm
    val logr_not_infty : thm
    val lt_01 : thm
    val lt_02 : thm
    val lt_10 : thm
    val lt_abs_bounds : thm
    val lt_add : thm
    val lt_add2 : thm
    val lt_add_neg : thm
    val lt_addl : thm
    val lt_addr : thm
    val lt_addr_imp : thm
    val lt_antisym : thm
    val lt_div : thm
    val lt_imp_le : thm
    val lt_imp_ne : thm
    val lt_inf_epsilon : thm
    val lt_inf_epsilon' : thm
    val lt_inf_epsilon_set : thm
    val lt_infty : thm
    val lt_ladd : thm
    val lt_ldiv : thm
    val lt_le : thm
    val lt_lmul : thm
    val lt_lmul_imp : thm
    val lt_lsub_imp : thm
    val lt_max : thm
    val lt_max_between : thm
    val lt_max_fn_seq : thm
    val lt_mul : thm
    val lt_mul2 : thm
    val lt_mul_neg : thm
    val lt_neg : thm
    val lt_radd : thm
    val lt_rdiv : thm
    val lt_rdiv_neg : thm
    val lt_refl : thm
    val lt_rmul : thm
    val lt_rmul_imp : thm
    val lt_rsub_imp : thm
    val lt_sub : thm
    val lt_sub' : thm
    val lt_sub_imp : thm
    val lt_sub_imp' : thm
    val lt_sub_imp2 : thm
    val lt_sup : thm
    val lt_total : thm
    val lt_trans : thm
    val lte_add : thm
    val lte_mul : thm
    val lte_total : thm
    val lte_trans : thm
    val max_comm : thm
    val max_fn_seq_0 : thm
    val max_fn_seq_alt_sup : thm
    val max_fn_seq_compute : thm
    val max_fn_seq_cong : thm
    val max_fn_seq_le : thm
    val max_fn_seq_mono : thm
    val max_infty : thm
    val max_le : thm
    val max_le2_imp : thm
    val max_reduce : thm
    val max_refl : thm
    val min_comm : thm
    val min_infty : thm
    val min_le : thm
    val min_le1 : thm
    val min_le2 : thm
    val min_le2_imp : thm
    val min_le_between : thm
    val min_reduce : thm
    val min_refl : thm
    val monoidal_mul : thm
    val mul_assoc : thm
    val mul_comm : thm
    val mul_div_refl : thm
    val mul_infty : thm
    val mul_infty' : thm
    val mul_lcancel : thm
    val mul_le : thm
    val mul_le2 : thm
    val mul_let : thm
    val mul_linv : thm
    val mul_linv_pos : thm
    val mul_lneg : thm
    val mul_lone : thm
    val mul_lposinf : thm
    val mul_lt : thm
    val mul_lt2 : thm
    val mul_lte : thm
    val mul_lzero : thm
    val mul_not_infty : thm
    val mul_not_infty2 : thm
    val mul_powr : thm
    val mul_rcancel : thm
    val mul_rneg : thm
    val mul_rone : thm
    val mul_rposinf : thm
    val mul_rzero : thm
    val ne_01 : thm
    val ne_02 : thm
    val neg_0 : thm
    val neg_add : thm
    val neg_eq0 : thm
    val neg_minus1 : thm
    val neg_mul2 : thm
    val neg_neg : thm
    val neg_not_posinf : thm
    val neg_sub : thm
    val neutral_mul : thm
    val nonneg_abs : thm
    val nonneg_fn_abs : thm
    val nonneg_fn_minus : thm
    val nonneg_fn_plus : thm
    val normal_0 : thm
    val normal_1 : thm
    val normal_exp : thm
    val normal_inv_eq : thm
    val normal_minus1 : thm
    val normal_powr : thm
    val normal_real : thm
    val normal_real_set : thm
    val num_lt_infty : thm
    val num_not_infty : thm
    val one_pow : thm
    val one_powr : thm
    val pos_not_neginf : thm
    val pos_summable : thm
    val pow2_le_eq : thm
    val pow2_sqrt : thm
    val pow_0 : thm
    val pow_1 : thm
    val pow_2 : thm
    val pow_2_abs : thm
    val pow_add : thm
    val pow_ainv_even : thm
    val pow_ainv_odd : thm
    val pow_div : thm
    val pow_eq : thm
    val pow_even_le : thm
    val pow_half_pos_le : thm
    val pow_half_pos_lt : thm
    val pow_half_ser : thm
    val pow_half_ser' : thm
    val pow_half_ser_by_e : thm
    val pow_inv : thm
    val pow_le : thm
    val pow_le_full : thm
    val pow_le_mono : thm
    val pow_lt : thm
    val pow_lt2 : thm
    val pow_minus1 : thm
    val pow_mul : thm
    val pow_neg_odd : thm
    val pow_not_infty : thm
    val pow_pos_even : thm
    val pow_pos_le : thm
    val pow_pos_lt : thm
    val pow_pow : thm
    val pow_zero : thm
    val pow_zero_imp : thm
    val powr_0 : thm
    val powr_1 : thm
    val powr_add : thm
    val powr_eq_0 : thm
    val powr_ge_1 : thm
    val powr_infty : thm
    val powr_le_eq : thm
    val powr_mono_eq : thm
    val powr_pos : thm
    val powr_pos_lt : thm
    val powr_powr : thm
    val quotient_normal : thm
    val rat_not_infty : thm
    val rdiv_eq : thm
    val real_0 : thm
    val real_def : thm
    val real_normal : thm
    val rinv_uniq : thm
    val sqrt_0 : thm
    val sqrt_1 : thm
    val sqrt_le_n : thm
    val sqrt_le_x : thm
    val sqrt_mono_le : thm
    val sqrt_mul : thm
    val sqrt_pos_le : thm
    val sqrt_pos_lt : thm
    val sqrt_pos_ne : thm
    val sqrt_pow2 : thm
    val sqrt_powr : thm
    val sub_0 : thm
    val sub_add : thm
    val sub_add2 : thm
    val sub_add_normal : thm
    val sub_eq_0 : thm
    val sub_infty : thm
    val sub_ldistrib : thm
    val sub_le_eq : thm
    val sub_le_eq2 : thm
    val sub_le_imp : thm
    val sub_le_imp2 : thm
    val sub_le_sub_imp : thm
    val sub_le_switch : thm
    val sub_le_switch2 : thm
    val sub_le_zero : thm
    val sub_lneg : thm
    val sub_lt_eq : thm
    val sub_lt_imp : thm
    val sub_lt_imp2 : thm
    val sub_lt_zero : thm
    val sub_lt_zero2 : thm
    val sub_lzero : thm
    val sub_not_infty : thm
    val sub_pow2 : thm
    val sub_rdistrib : thm
    val sub_refl : thm
    val sub_rneg : thm
    val sub_rzero : thm
    val sub_zero_le : thm
    val sub_zero_lt : thm
    val sub_zero_lt2 : thm
    val summable_ext_suminf : thm
    val summable_ext_suminf_suminf : thm
    val sup_add_mono : thm
    val sup_close : thm
    val sup_cmul : thm
    val sup_cmult : thm
    val sup_comm : thm
    val sup_const : thm
    val sup_const_alt : thm
    val sup_const_alt' : thm
    val sup_const_over_set : thm
    val sup_const_over_univ : thm
    val sup_countable_seq : thm
    val sup_empty : thm
    val sup_eq : thm
    val sup_eq' : thm
    val sup_insert : thm
    val sup_le : thm
    val sup_le' : thm
    val sup_le_mono : thm
    val sup_le_sup_imp : thm
    val sup_le_sup_imp' : thm
    val sup_lt : thm
    val sup_lt' : thm
    val sup_lt_epsilon : thm
    val sup_lt_epsilon' : thm
    val sup_lt_infty : thm
    val sup_max : thm
    val sup_maximal : thm
    val sup_mono : thm
    val sup_mono_ext : thm
    val sup_mono_subset : thm
    val sup_num : thm
    val sup_seq : thm
    val sup_seq_countable_seq : thm
    val sup_shift : thm
    val sup_sing : thm
    val sup_suc : thm
    val sup_sum_mono : thm
    val sup_univ : thm
    val third_cancel : thm
    val thirds_between : thm
    val x_half_half : thm
    val young_inequality : thm
    val zero_div : thm
    val zero_pow : thm
    val zero_rpow : thm
  
  val extreal_grammars : type_grammar.grammar * term_grammar.grammar
(*
   [extreal_base] Parent theory of "extreal"
   
   [real_of_rat] Parent theory of "extreal"
   
   [transc] Parent theory of "extreal"
   
   [EXTREAL_SUM_IMAGE_DEF]  Definition
      
      ⊢ ∀f s. ∑ f s = ITSET (λe acc. f e + acc) s 0
   
   [Q_set]  Definition
      
      ⊢ ℚ꙳ = IMAGE Normal ℚ
   
   [ceiling_def]  Definition
      
      ⊢ ∀x. ceiling (Normal x) = LEAST n. x ≤ &n
   
   [ext_liminf_def]  Definition
      
      ⊢ ∀a. liminf a = sup (IMAGE (λm. inf {a n | m ≤ n}) 𝕌(:num))
   
   [ext_limsup_def]  Definition
      
      ⊢ ∀a. limsup a = inf (IMAGE (λm. sup {a n | m ≤ n}) 𝕌(:num))
   
   [ext_mono_decreasing_def]  Definition
      
      ⊢ ∀f. mono_decreasing f ⇔ ∀m n. m ≤ n ⇒ f n ≤ f m
   
   [ext_mono_increasing_def]  Definition
      
      ⊢ ∀f. mono_increasing f ⇔ ∀m n. m ≤ n ⇒ f m ≤ f n
   
   [ext_product_def]  Definition
      
      ⊢ ext_product = iterate $*
   
   [ext_suminf_def]  Definition
      
      ⊢ ∀f. (∀n. 0 ≤ f n) ⇒
            suminf f = sup (IMAGE (λn. ∑ f (count n)) 𝕌(:num))
   
   [ext_tendsto_def]  Definition
      
      ⊢ ∀f l net.
          (f --> l) net ⇔
          ∀e. 0 < e ⇒ eventually (λx. dist extreal_mr1 (f x,l) < e) net
   
   [extreal_exp_def]  Definition
      
      ⊢ (∀x. exp (Normal x) = Normal (exp x)) ∧ exp +∞ = +∞ ∧
        exp −∞ = Normal 0
   
   [extreal_inf_def]  Definition
      
      ⊢ ∀p. inf p = -sup (IMAGE numeric_negate p)
   
   [extreal_lg_def]  Definition
      
      ⊢ ∀x. lg x = logr 2 x
   
   [extreal_lim_def]  Definition
      
      ⊢ ∀net f. lim net f = @l. (f --> l) net
   
   [extreal_ln_def]  Definition
      
      ⊢ (∀x. 0 < x ⇒ ln (Normal x) = Normal (ln x)) ∧ ln (Normal 0) = −∞ ∧
        ln +∞ = +∞
   
   [extreal_logr_def]  Definition
      
      ⊢ (∀b x. logr b (Normal x) = Normal (logr b x)) ∧ ∀b. logr b +∞ = +∞
   
   [extreal_mr1_def]  Definition
      
      ⊢ extreal_mr1 = metric (UNCURRY extreal_dist)
   
   [extreal_powr_def]  Definition
      
      ⊢ ∀x a. x powr a = exp (a * ln x)
   
   [extreal_sup_def]  Definition
      
      ⊢ ∀p. sup p =
            if ∀x. (∀y. p y ⇒ y ≤ x) ⇒ x = +∞ then +∞
            else if ∀x. p x ⇒ x = −∞ then −∞
            else Normal (sup (λr. p (Normal r)))
   
   [fn_minus_def]  Definition
      
      ⊢ ∀f. f⁻ = (λx. if f x < 0 then -f x else 0)
   
   [fn_plus_def]  Definition
      
      ⊢ ∀f. f⁺ = (λx. if 0 < f x then f x else 0)
   
   [indicator_fn]  Definition
      
      ⊢ ∀s. 𝟙 s = Normal ∘ indicator s
   
   [max_fn_seq_def]  Definition
      
      ⊢ (∀g x. max_fn_seq g 0 x = g 0 x) ∧
        ∀g n x.
          max_fn_seq g (SUC n) x = max (max_fn_seq g n x) (g (SUC n) x)
   
   [nonneg_def]  Definition
      
      ⊢ ∀f. nonneg f ⇔ ∀x. 0 ≤ f x
   
   [open_interval_def]  Definition
      
      ⊢ ∀a b. open_interval a b = {x | a < x ∧ x < b}
   
   [open_intervals_def]  Definition
      
      ⊢ open_intervals = {open_interval a b | T}
   
   [rational_intervals_def]  Definition
      
      ⊢ rational_intervals = {open_interval a b | a ∈ ℚ꙳ ∧ b ∈ ℚ꙳}
   
   [real_set_def]  Definition
      
      ⊢ ∀s. real_set s = {real x | x ≠ +∞ ∧ x ≠ −∞ ∧ x ∈ s}
   
   [ADD_IN_Q]  Theorem
      
      ⊢ ∀x y. x ∈ ℚ꙳ ∧ y ∈ ℚ꙳ ⇒ x + y ∈ ℚ꙳
   
   [CEILING_LBOUND]  Theorem
      
      ⊢ ∀x. Normal x ≤ &ceiling (Normal x)
   
   [CEILING_UBOUND]  Theorem
      
      ⊢ ∀x. 0 ≤ x ⇒ &ceiling (Normal x) < Normal x + 1
   
   [CMUL_IN_Q]  Theorem
      
      ⊢ ∀z x. x ∈ ℚ꙳ ⇒ &z * x ∈ ℚ꙳ ∧ -&z * x ∈ ℚ꙳
   
   [COUNTABLE_ENUM_Q]  Theorem
      
      ⊢ ∀c. countable c ⇔ c = ∅ ∨ ∃f. c = IMAGE f ℚ꙳
   
   [COUNTABLE_RATIONAL_INTERVALS]  Theorem
      
      ⊢ countable rational_intervals
   
   [CROSS_COUNTABLE_UNIV]  Theorem
      
      ⊢ countable (𝕌(:num) × 𝕌(:num))
   
   [DIV_IN_Q]  Theorem
      
      ⊢ ∀x y. x ∈ ℚ꙳ ∧ y ∈ ℚ꙳ ∧ y ≠ 0 ⇒ x / y ∈ ℚ꙳
   
   [DROP_INDICATOR_FN]  Theorem
      
      ⊢ ∀s x. 𝟙 s x = if x ∈ s then 1 else 0
   
   [EXTREAL_ARCH]  Theorem
      
      ⊢ ∀x. 0 < x ⇒ ∀y. y ≠ +∞ ⇒ ∃n. y < &n * x
   
   [EXTREAL_ARCH_INV]  Theorem
      
      ⊢ ∀x. 0 < x ⇒ ∃n. (&SUC n)⁻¹ < x
   
   [EXTREAL_ARCH_INV']  Theorem
      
      ⊢ ∀x. 0 < x ⇒ ∃n. (&SUC n)⁻¹ ≤ x
   
   [EXTREAL_ARCH_POW2]  Theorem
      
      ⊢ ∀x. x ≠ +∞ ⇒ ∃n. x < 2 pow n
   
   [EXTREAL_ARCH_POW2_INV]  Theorem
      
      ⊢ ∀e. 0 < e ⇒ ∃n. Normal ((1 / 2) pow n) < e
   
   [EXTREAL_EQ_LADD]  Theorem
      
      ⊢ ∀x y z. x ≠ −∞ ∧ x ≠ +∞ ⇒ (x + y = x + z ⇔ y = z)
   
   [EXTREAL_EQ_RADD]  Theorem
      
      ⊢ ∀x y z. z ≠ −∞ ∧ z ≠ +∞ ⇒ (x + z = y + z ⇔ x = y)
   
   [EXTREAL_LIM]  Theorem
      
      ⊢ ∀f l net.
          (f --> l) net ⇔
          trivial_limit net ∨
          ∀e. 0 < e ⇒
              ∃y. (∃x. netord net x y) ∧
                  ∀x. netord net x y ⇒ dist extreal_mr1 (f x,l) < e
   
   [EXTREAL_LIM_EVENTUALLY]  Theorem
      
      ⊢ ∀net f l. eventually (λx. f x = l) net ⇒ (f --> l) net
   
   [EXTREAL_LIM_SEQUENTIALLY]  Theorem
      
      ⊢ ∀f l.
          (f --> l) sequentially ⇔
          ∀e. 0 < e ⇒ ∃N. ∀n. N ≤ n ⇒ dist extreal_mr1 (f n,l) < e
   
   [EXTREAL_PROD_IMAGE_0]  Theorem
      
      ⊢ ∀f s. FINITE s ∧ (∃x. x ∈ s ∧ f x = 0) ⇒ ∏ f s = 0
   
   [EXTREAL_PROD_IMAGE_1]  Theorem
      
      ⊢ ∀f s. FINITE s ∧ (∀x. x ∈ s ⇒ f x = 1) ⇒ ∏ f s = 1
   
   [EXTREAL_PROD_IMAGE_COUNT_ONE]  Theorem
      
      ⊢ ∀f. ∏ f (count 1) = f 0
   
   [EXTREAL_PROD_IMAGE_COUNT_SUC]  Theorem
      
      ⊢ ∀f n. ∏ f (count (SUC n)) = ∏ f (count n) * f n
   
   [EXTREAL_PROD_IMAGE_COUNT_ZERO]  Theorem
      
      ⊢ ∀f. ∏ f (count 0) = 1
   
   [EXTREAL_PROD_IMAGE_DISJOINT_UNION]  Theorem
      
      ⊢ ∀s s'.
          FINITE s ∧ FINITE s' ∧ DISJOINT s s' ⇒
          ∀f. ∏ f (s ∪ s') = ∏ f s * ∏ f s'
   
   [EXTREAL_PROD_IMAGE_EMPTY]  Theorem
      
      ⊢ ∀f. ∏ f ∅ = 1
   
   [EXTREAL_PROD_IMAGE_EQ]  Theorem
      
      ⊢ ∀s f f'. (∀x. x ∈ s ⇒ f x = f' x) ⇒ ∏ f s = ∏ f' s
   
   [EXTREAL_PROD_IMAGE_IMAGE]  Theorem
      
      ⊢ ∀s f'. INJ f' s (IMAGE f' s) ⇒ ∀f. ∏ f (IMAGE f' s) = ∏ (f ∘ f') s
   
   [EXTREAL_PROD_IMAGE_MONO]  Theorem
      
      ⊢ ∀f g s.
          FINITE s ∧ (∀x. x ∈ s ⇒ 0 ≤ f x ∧ f x ≤ g x) ⇒ ∏ f s ≤ ∏ g s
   
   [EXTREAL_PROD_IMAGE_NORMAL]  Theorem
      
      ⊢ ∀f s. FINITE s ⇒ ∏ (λx. Normal (f x)) s = Normal (∏ f s)
   
   [EXTREAL_PROD_IMAGE_NOT_INFTY]  Theorem
      
      ⊢ ∀f s.
          FINITE s ∧ (∀x. x ∈ s ⇒ f x ≠ −∞ ∧ f x ≠ +∞) ⇒
          ∏ f s ≠ −∞ ∧ ∏ f s ≠ +∞
   
   [EXTREAL_PROD_IMAGE_ONE]  Theorem
      
      ⊢ ∀s. FINITE s ⇒ ∏ (λx. 1) s = 1
   
   [EXTREAL_PROD_IMAGE_PAIR]  Theorem
      
      ⊢ ∀f a b. a ≠ b ⇒ ∏ f {a; b} = f a * f b
   
   [EXTREAL_PROD_IMAGE_POS]  Theorem
      
      ⊢ ∀f s. FINITE s ∧ (∀x. x ∈ s ⇒ 0 ≤ f x) ⇒ 0 ≤ ∏ f s
   
   [EXTREAL_PROD_IMAGE_PROPERTY]  Theorem
      
      ⊢ ∀f e s. FINITE s ⇒ ∏ f (e INSERT s) = f e * ∏ f (s DELETE e)
   
   [EXTREAL_PROD_IMAGE_SING]  Theorem
      
      ⊢ ∀f e. ∏ f {e} = f e
   
   [EXTREAL_PROD_IMAGE_THM]  Theorem
      
      ⊢ ∀f. ∏ f ∅ = 1 ∧
            ∀e s. FINITE s ⇒ ∏ f (e INSERT s) = f e * ∏ f (s DELETE e)
   
   [EXTREAL_SUM_IMAGE_0]  Theorem
      
      ⊢ ∀f s. FINITE s ∧ (∀x. x ∈ s ⇒ f x = 0) ⇒ ∑ f s = 0
   
   [EXTREAL_SUM_IMAGE_ADD]  Theorem
      
      ⊢ ∀s. FINITE s ⇒
            ∀f f'.
              (∀x. x ∈ s ⇒ f x ≠ −∞ ∧ f' x ≠ −∞) ∨
              (∀x. x ∈ s ⇒ f x ≠ +∞ ∧ f' x ≠ +∞) ⇒
              ∑ (λx. f x + f' x) s = ∑ f s + ∑ f' s
   
   [EXTREAL_SUM_IMAGE_ALT_FOLDR]  Theorem
      
      ⊢ ∀f s.
          FINITE s ⇒
          ∑ f s = FOLDR (λe acc. f e + acc) 0 (REVERSE (SET_TO_LIST s))
   
   [EXTREAL_SUM_IMAGE_CMUL]  Theorem
      
      ⊢ ∀s. FINITE s ⇒
            ∀f c.
              (∀x. x ∈ s ⇒ f x ≠ −∞) ∨ (∀x. x ∈ s ⇒ f x ≠ +∞) ⇒
              ∑ (λx. Normal c * f x) s = Normal c * ∑ f s
   
   [EXTREAL_SUM_IMAGE_COUNT]  Theorem
      
      ⊢ ∀f. (∀x. f x ≠ +∞) ∨ (∀x. f x ≠ −∞) ⇒
            ∑ f (count 2) = f 0 + f 1 ∧ ∑ f (count 3) = f 0 + f 1 + f 2 ∧
            ∑ f (count 4) = f 0 + f 1 + f 2 + f 3 ∧
            ∑ f (count 5) = f 0 + f 1 + f 2 + f 3 + f 4
   
   [EXTREAL_SUM_IMAGE_COUNT_ONE]  Theorem
      
      ⊢ ∀f. ∑ f (count 1) = f 0
   
   [EXTREAL_SUM_IMAGE_COUNT_SUC]  Theorem
      
      ⊢ ∀f n.
          (∀m. m ≤ n ⇒ f m ≠ −∞) ∨ (∀m. m ≤ n ⇒ f m ≠ +∞) ⇒
          ∑ f (count (SUC n)) = ∑ f (count n) + f n
   
   [EXTREAL_SUM_IMAGE_COUNT_ZERO]  Theorem
      
      ⊢ ∀f. ∑ f (count 0) = 0
   
   [EXTREAL_SUM_IMAGE_CROSS_SYM]  Theorem
      
      ⊢ ∀f s1 s2.
          FINITE s1 ∧ FINITE s2 ∧
          ((∀s. s ∈ s1 × s2 ⇒ f s ≠ −∞) ∨ ∀s. s ∈ s1 × s2 ⇒ f s ≠ +∞) ⇒
          ∑ (λ(x,y). f (x,y)) (s1 × s2) = ∑ (λ(y,x). f (x,y)) (s2 × s1)
   
   [EXTREAL_SUM_IMAGE_DISJOINT_UNION]  Theorem
      
      ⊢ ∀s s'.
          FINITE s ∧ FINITE s' ∧ DISJOINT s s' ⇒
          ∀f. (∀x. x ∈ s ∪ s' ⇒ f x ≠ −∞) ∨ (∀x. x ∈ s ∪ s' ⇒ f x ≠ +∞) ⇒
              ∑ f (s ∪ s') = ∑ f s + ∑ f s'
   
   [EXTREAL_SUM_IMAGE_EMPTY]  Theorem
      
      ⊢ ∀f. ∑ f ∅ = 0
   
   [EXTREAL_SUM_IMAGE_EQ]  Theorem
      
      ⊢ ∀s. FINITE s ⇒
            ∀f f'.
              ((∀x. x ∈ s ⇒ f x ≠ −∞ ∧ f' x ≠ −∞) ∨
               ∀x. x ∈ s ⇒ f x ≠ +∞ ∧ f' x ≠ +∞) ∧ (∀x. x ∈ s ⇒ f x = f' x) ⇒
              ∑ f s = ∑ f' s
   
   [EXTREAL_SUM_IMAGE_EQ']  Theorem
      
      ⊢ ∀f g s. FINITE s ∧ (∀x. x ∈ s ⇒ f x = g x) ⇒ ∑ f s = ∑ g s
   
   [EXTREAL_SUM_IMAGE_EQ_CARD]  Theorem
      
      ⊢ ∀s. FINITE s ⇒ ∑ (λx. if x ∈ s then 1 else 0) s = &CARD s
   
   [EXTREAL_SUM_IMAGE_EQ_SHIFT]  Theorem
      
      ⊢ ∀f g N.
          (∀n. n < N ⇒ g n = 0) ∧ (∀n. 0 ≤ f n ∧ f n = g (n + N)) ⇒
          ∀n. ∑ f (count n) = ∑ g (count (n + N))
   
   [EXTREAL_SUM_IMAGE_FINITE_CONST]  Theorem
      
      ⊢ ∀P. FINITE P ⇒ ∀f x. (∀y. y ∈ P ⇒ f y = x) ⇒ ∑ f P = &CARD P * x
   
   [EXTREAL_SUM_IMAGE_FINITE_SAME]  Theorem
      
      ⊢ ∀s. FINITE s ⇒
            ∀f p. p ∈ s ∧ (∀q. q ∈ s ⇒ f p = f q) ⇒ ∑ f s = &CARD s * f p
   
   [EXTREAL_SUM_IMAGE_IF_ELIM]  Theorem
      
      ⊢ ∀s P f.
          FINITE s ∧ (∀x. x ∈ s ⇒ P x) ∧
          ((∀x. x ∈ s ⇒ f x ≠ −∞) ∨ ∀x. x ∈ s ⇒ f x ≠ +∞) ⇒
          ∑ (λx. if P x then f x else 0) s = ∑ f s
   
   [EXTREAL_SUM_IMAGE_IMAGE]  Theorem
      
      ⊢ ∀s. FINITE s ⇒
            ∀f'.
              INJ f' s (IMAGE f' s) ⇒
              ∀f. (∀x. x ∈ IMAGE f' s ⇒ f x ≠ −∞) ∨
                  (∀x. x ∈ IMAGE f' s ⇒ f x ≠ +∞) ⇒
                  ∑ f (IMAGE f' s) = ∑ (f ∘ f') s
   
   [EXTREAL_SUM_IMAGE_INSERT]  Theorem
      
      ⊢ ∀f. (∀x. f x ≠ +∞) ∨ (∀x. f x ≠ −∞) ⇒
            ∀e s. FINITE s ⇒ ∑ f (e INSERT s) = f e + ∑ f (s DELETE e)
   
   [EXTREAL_SUM_IMAGE_INTER_ELIM]  Theorem
      
      ⊢ ∀s. FINITE s ⇒
            ∀f s'.
              ((∀x. x ∈ s ⇒ f x ≠ −∞) ∨ ∀x. x ∈ s ⇒ f x ≠ +∞) ∧
              (∀x. x ∉ s' ⇒ f x = 0) ⇒
              ∑ f (s ∩ s') = ∑ f s
   
   [EXTREAL_SUM_IMAGE_INTER_NONZERO]  Theorem
      
      ⊢ ∀s. FINITE s ⇒
            ∀f. (∀x. x ∈ s ⇒ f x ≠ −∞) ∨ (∀x. x ∈ s ⇒ f x ≠ +∞) ⇒
                ∑ f (s ∩ (λp. f p ≠ 0)) = ∑ f s
   
   [EXTREAL_SUM_IMAGE_INV_CARD_EQ_1]  Theorem
      
      ⊢ ∀s. s ≠ ∅ ∧ FINITE s ⇒
            ∑ (λx. if x ∈ s then (&CARD s)⁻¹ else 0) s = 1
   
   [EXTREAL_SUM_IMAGE_IN_IF]  Theorem
      
      ⊢ ∀s. FINITE s ⇒
            ∀f. (∀x. x ∈ s ⇒ f x ≠ −∞) ∨ (∀x. x ∈ s ⇒ f x ≠ +∞) ⇒
                ∑ f s = ∑ (λx. if x ∈ s then f x else 0) s
   
   [EXTREAL_SUM_IMAGE_IN_IF_ALT]  Theorem
      
      ⊢ ∀s f z.
          FINITE s ∧ ((∀x. x ∈ s ⇒ f x ≠ −∞) ∨ ∀x. x ∈ s ⇒ f x ≠ +∞) ⇒
          ∑ f s = ∑ (λx. if x ∈ s then f x else z) s
   
   [EXTREAL_SUM_IMAGE_MONO]  Theorem
      
      ⊢ ∀s. FINITE s ⇒
            ∀f f'.
              ((∀x. x ∈ s ⇒ f x ≠ −∞ ∧ f' x ≠ −∞) ∨
               ∀x. x ∈ s ⇒ f x ≠ +∞ ∧ f' x ≠ +∞) ∧ (∀x. x ∈ s ⇒ f x ≤ f' x) ⇒
              ∑ f s ≤ ∑ f' s
   
   [EXTREAL_SUM_IMAGE_MONO']  Theorem
      
      ⊢ ∀f g s. FINITE s ∧ (∀x. x ∈ s ⇒ f x ≤ g x) ⇒ ∑ f s ≤ ∑ g s
   
   [EXTREAL_SUM_IMAGE_MONO_SET]  Theorem
      
      ⊢ ∀f s t.
          FINITE s ∧ FINITE t ∧ s ⊆ t ∧ (∀x. x ∈ t ⇒ 0 ≤ f x) ⇒
          ∑ f s ≤ ∑ f t
   
   [EXTREAL_SUM_IMAGE_NEG]  Theorem
      
      ⊢ ∀f s. FINITE s ∧ (∀x. x ∈ s ⇒ f x ≤ 0) ⇒ ∑ f s ≤ 0
   
   [EXTREAL_SUM_IMAGE_NORMAL]  Theorem
      
      ⊢ ∀f s. FINITE s ⇒ ∑ (λx. Normal (f x)) s = Normal (∑ f s)
   
   [EXTREAL_SUM_IMAGE_NOT_INFTY]  Theorem
      
      ⊢ ∀f s.
          (FINITE s ∧ (∀x. x ∈ s ⇒ f x ≠ −∞) ⇒ ∑ f s ≠ −∞) ∧
          (FINITE s ∧ (∀x. x ∈ s ⇒ f x ≠ +∞) ⇒ ∑ f s ≠ +∞)
   
   [EXTREAL_SUM_IMAGE_NOT_NEGINF]  Theorem
      
      ⊢ ∀f s. FINITE s ∧ (∀x. x ∈ s ⇒ f x ≠ −∞) ⇒ ∑ f s ≠ −∞
   
   [EXTREAL_SUM_IMAGE_NOT_POSINF]  Theorem
      
      ⊢ ∀f s. FINITE s ∧ (∀x. x ∈ s ⇒ f x ≠ +∞) ⇒ ∑ f s ≠ +∞
   
   [EXTREAL_SUM_IMAGE_OFFSET]  Theorem
      
      ⊢ ∀f m n.
          m ≤ n ∧ (∀n. 0 ≤ f n) ⇒
          ∑ f (count n) = ∑ f (count m) + ∑ (λi. f (i + m)) (count (n − m))
   
   [EXTREAL_SUM_IMAGE_PERMUTES]  Theorem
      
      ⊢ ∀s. FINITE s ⇒
            ∀g. g PERMUTES s ⇒
                ∀f. (∀x. x ∈ IMAGE g s ⇒ f x ≠ −∞) ∨
                    (∀x. x ∈ IMAGE g s ⇒ f x ≠ +∞) ⇒
                    ∑ (f ∘ g) s = ∑ f s
   
   [EXTREAL_SUM_IMAGE_POS]  Theorem
      
      ⊢ ∀f s. FINITE s ∧ (∀x. x ∈ s ⇒ 0 ≤ f x) ⇒ 0 ≤ ∑ f s
   
   [EXTREAL_SUM_IMAGE_POS_MEM_LE]  Theorem
      
      ⊢ ∀f s. FINITE s ∧ (∀x. x ∈ s ⇒ 0 ≤ f x) ⇒ ∀x. x ∈ s ⇒ f x ≤ ∑ f s
   
   [EXTREAL_SUM_IMAGE_POW]  Theorem
      
      ⊢ ∀f s.
          FINITE s ⇒
          (∀x. x ∈ s ⇒ f x ≠ −∞) ∧ (∀x. x ∈ s ⇒ f x ≠ +∞) ⇒
          (∑ f s)² = ∑ (λ(i,j). f i * f j) (s × s)
   
   [EXTREAL_SUM_IMAGE_PROPERTY]  Theorem
      
      ⊢ ∀f s.
          FINITE s ⇒
          ∀e. (∀x. x ∈ e INSERT s ⇒ f x ≠ −∞) ∨
              (∀x. x ∈ e INSERT s ⇒ f x ≠ +∞) ⇒
              ∑ f (e INSERT s) = f e + ∑ f (s DELETE e)
   
   [EXTREAL_SUM_IMAGE_PROPERTY_NEG]  Theorem
      
      ⊢ ∀f s.
          FINITE s ⇒
          ∀e. (∀x. x ∈ e INSERT s ⇒ f x ≠ −∞) ⇒
              ∑ f (e INSERT s) = f e + ∑ f (s DELETE e)
   
   [EXTREAL_SUM_IMAGE_PROPERTY_POS]  Theorem
      
      ⊢ ∀f s.
          FINITE s ⇒
          ∀e. (∀x. x ∈ e INSERT s ⇒ f x ≠ +∞) ⇒
              ∑ f (e INSERT s) = f e + ∑ f (s DELETE e)
   
   [EXTREAL_SUM_IMAGE_SING]  Theorem
      
      ⊢ ∀f e. ∑ f {e} = f e
   
   [EXTREAL_SUM_IMAGE_SNEG]  Theorem
      
      ⊢ ∀f s. FINITE s ∧ s ≠ ∅ ∧ (∀x. x ∈ s ⇒ f x < 0) ⇒ ∑ f s < 0
   
   [EXTREAL_SUM_IMAGE_SPOS]  Theorem
      
      ⊢ ∀f s. FINITE s ∧ s ≠ ∅ ∧ (∀x. x ∈ s ⇒ 0 < f x) ⇒ 0 < ∑ f s
   
   [EXTREAL_SUM_IMAGE_SUB]  Theorem
      
      ⊢ ∀s. FINITE s ⇒
            ∀f f'.
              (∀x. x ∈ s ⇒ f x ≠ −∞ ∧ f' x ≠ +∞) ∨
              (∀x. x ∈ s ⇒ f x ≠ +∞ ∧ f' x ≠ −∞) ⇒
              ∑ (λx. f x − f' x) s = ∑ f s − ∑ f' s
   
   [EXTREAL_SUM_IMAGE_SUM_IMAGE]  Theorem
      
      ⊢ ∀s s' f.
          FINITE s ∧ FINITE s' ∧
          ((∀x. x ∈ s × s' ⇒ f (FST x) (SND x) ≠ −∞) ∨
           ∀x. x ∈ s × s' ⇒ f (FST x) (SND x) ≠ +∞) ⇒
          ∑ (λx. ∑ (f x) s') s = ∑ (λx. f (FST x) (SND x)) (s × s')
   
   [EXTREAL_SUM_IMAGE_SUM_IMAGE_MONO]  Theorem
      
      ⊢ ∀f a b c d.
          (∀m n. 0 ≤ f m n) ∧ a ≤ c ∧ b ≤ d ⇒
          ∑ (λi. ∑ (f i) (count a)) (count b) ≤
          ∑ (λi. ∑ (f i) (count c)) (count d)
   
   [EXTREAL_SUM_IMAGE_THM]  Theorem
      
      ⊢ ∀f. ∑ f ∅ = 0 ∧ (∀e. ∑ f {e} = f e) ∧
            ∀e s.
              FINITE s ∧
              ((∀x. x ∈ e INSERT s ⇒ f x ≠ +∞) ∨
               ∀x. x ∈ e INSERT s ⇒ f x ≠ −∞) ⇒
              ∑ f (e INSERT s) = f e + ∑ f (s DELETE e)
   
   [EXTREAL_SUM_IMAGE_ZERO]  Theorem
      
      ⊢ ∀s. FINITE s ⇒ ∑ (λx. 0) s = 0
   
   [EXTREAL_SUM_IMAGE_ZERO_DIFF]  Theorem
      
      ⊢ ∀s. FINITE s ⇒
            ∀f t.
              ((∀x. x ∈ s ⇒ f x ≠ −∞) ∨ ∀x. x ∈ s ⇒ f x ≠ +∞) ∧
              (∀x. x ∈ t ⇒ f x = 0) ⇒
              ∑ f s = ∑ f (s DIFF t)
   
   [EXTREAL_SUM_IMAGE_le_suminf]  Theorem
      
      ⊢ ∀f n. (∀n. 0 ≤ f n) ⇒ ∑ f (count n) ≤ suminf f
   
   [FN_ABS]  Theorem
      
      ⊢ ∀f x. (abs ∘ f) x = f⁺ x + f⁻ x
   
   [FN_ABS']  Theorem
      
      ⊢ ∀f. abs ∘ f = (λx. f⁺ x + f⁻ x)
   
   [FN_DECOMP]  Theorem
      
      ⊢ ∀f x. f x = f⁺ x − f⁻ x
   
   [FN_DECOMP']  Theorem
      
      ⊢ ∀f. f = (λx. f⁺ x − f⁻ x)
   
   [FN_MINUS_ABS_ZERO]  Theorem
      
      ⊢ ∀f. (abs ∘ f)⁻ = (λx. 0)
   
   [FN_MINUS_ADD_LE]  Theorem
      
      ⊢ ∀f g x.
          f x ≠ −∞ ∧ g x ≠ −∞ ∨ f x ≠ +∞ ∧ g x ≠ +∞ ⇒
          (λx. f x + g x)⁻ x ≤ f⁻ x + g⁻ x
   
   [FN_MINUS_ALT]  Theorem
      
      ⊢ ∀f. f⁻ = (λx. -min (f x) 0)
   
   [FN_MINUS_ALT']  Theorem
      
      ⊢ ∀f. f⁻ = (λx. -min 0 (f x))
   
   [FN_MINUS_CMUL]  Theorem
      
      ⊢ ∀f c.
          (0 ≤ c ⇒ (λx. Normal c * f x)⁻ = (λx. Normal c * f⁻ x)) ∧
          (c ≤ 0 ⇒ (λx. Normal c * f x)⁻ = (λx. -Normal c * f⁺ x))
   
   [FN_MINUS_CMUL_full]  Theorem
      
      ⊢ ∀f c.
          (0 ≤ c ⇒ (λx. c * f x)⁻ = (λx. c * f⁻ x)) ∧
          (c ≤ 0 ⇒ (λx. c * f x)⁻ = (λx. -c * f⁺ x))
   
   [FN_MINUS_FMUL]  Theorem
      
      ⊢ ∀f c. (∀x. 0 ≤ c x) ⇒ (λx. c x * f x)⁻ = (λx. c x * f⁻ x)
   
   [FN_MINUS_INFTY_IMP]  Theorem
      
      ⊢ ∀f x. f⁻ x = +∞ ⇒ f⁺ x = 0
   
   [FN_MINUS_LE_ABS]  Theorem
      
      ⊢ ∀f x. f⁻ x ≤ abs (f x)
   
   [FN_MINUS_NOT_INFTY]  Theorem
      
      ⊢ ∀f x. f x ≠ −∞ ⇒ f⁻ x ≠ +∞
   
   [FN_MINUS_POS]  Theorem
      
      ⊢ ∀g x. 0 ≤ g⁻ x
   
   [FN_MINUS_POS_ZERO]  Theorem
      
      ⊢ ∀g. (∀x. 0 ≤ g x) ⇒ g⁻ = (λx. 0)
   
   [FN_MINUS_REDUCE]  Theorem
      
      ⊢ ∀f x. 0 ≤ f x ⇒ f⁻ x = 0
   
   [FN_MINUS_TO_PLUS]  Theorem
      
      ⊢ ∀f. (λx. -f x)⁻ = f⁺
   
   [FN_MINUS_ZERO]  Theorem
      
      ⊢ (λx. 0)⁻ = (λx. 0)
   
   [FN_PLUS_ABS_SELF]  Theorem
      
      ⊢ ∀f. (abs ∘ f)⁺ = abs ∘ f
   
   [FN_PLUS_ADD_LE]  Theorem
      
      ⊢ ∀f g x. (λx. f x + g x)⁺ x ≤ f⁺ x + g⁺ x
   
   [FN_PLUS_ALT]  Theorem
      
      ⊢ ∀f. f⁺ = (λx. max (f x) 0)
   
   [FN_PLUS_ALT']  Theorem
      
      ⊢ ∀f. f⁺ = (λx. max 0 (f x))
   
   [FN_PLUS_CMUL]  Theorem
      
      ⊢ ∀f c.
          (0 ≤ c ⇒ (λx. Normal c * f x)⁺ = (λx. Normal c * f⁺ x)) ∧
          (c ≤ 0 ⇒ (λx. Normal c * f x)⁺ = (λx. -Normal c * f⁻ x))
   
   [FN_PLUS_CMUL_full]  Theorem
      
      ⊢ ∀f c.
          (0 ≤ c ⇒ (λx. c * f x)⁺ = (λx. c * f⁺ x)) ∧
          (c ≤ 0 ⇒ (λx. c * f x)⁺ = (λx. -c * f⁻ x))
   
   [FN_PLUS_FMUL]  Theorem
      
      ⊢ ∀f c. (∀x. 0 ≤ c x) ⇒ (λx. c x * f x)⁺ = (λx. c x * f⁺ x)
   
   [FN_PLUS_INFTY_IMP]  Theorem
      
      ⊢ ∀f x. f⁺ x = +∞ ⇒ f⁻ x = 0
   
   [FN_PLUS_LE_ABS]  Theorem
      
      ⊢ ∀f x. f⁺ x ≤ abs (f x)
   
   [FN_PLUS_NEG_ZERO]  Theorem
      
      ⊢ ∀g. (∀x. g x ≤ 0) ⇒ g⁺ = (λx. 0)
   
   [FN_PLUS_NOT_INFTY]  Theorem
      
      ⊢ ∀f x. f x ≠ +∞ ⇒ f⁺ x ≠ +∞
   
   [FN_PLUS_POS]  Theorem
      
      ⊢ ∀g x. 0 ≤ g⁺ x
   
   [FN_PLUS_POS_ID]  Theorem
      
      ⊢ ∀g. (∀x. 0 ≤ g x) ⇒ g⁺ = g
   
   [FN_PLUS_REDUCE]  Theorem
      
      ⊢ ∀f x. 0 ≤ f x ⇒ f⁺ x = f x
   
   [FN_PLUS_REDUCE']  Theorem
      
      ⊢ ∀f x. f x ≤ 0 ⇒ f⁺ x = 0
   
   [FN_PLUS_TO_MINUS]  Theorem
      
      ⊢ ∀f. (λx. -f x)⁺ = f⁻
   
   [FN_PLUS_ZERO]  Theorem
      
      ⊢ (λx. 0)⁺ = (λx. 0)
   
   [INDICATOR_FN_ABS]  Theorem
      
      ⊢ ∀s. abs ∘ 𝟙 s = 𝟙 s
   
   [INDICATOR_FN_ABS_MUL]  Theorem
      
      ⊢ ∀f s. abs ∘ (λx. f x * 𝟙 s x) = (λx. (abs ∘ f) x * 𝟙 s x)
   
   [INDICATOR_FN_CROSS]  Theorem
      
      ⊢ ∀s t x y. 𝟙 (s × t) (x,y) = 𝟙 s x * 𝟙 t y
   
   [INDICATOR_FN_DIFF]  Theorem
      
      ⊢ ∀A B. 𝟙 (A DIFF B) = (λt. 𝟙 A t − 𝟙 (A ∩ B) t)
   
   [INDICATOR_FN_DIFF_SPACE]  Theorem
      
      ⊢ ∀A B sp.
          A ⊆ sp ∧ B ⊆ sp ⇒ 𝟙 (A ∩ (sp DIFF B)) = (λt. 𝟙 A t − 𝟙 (A ∩ B) t)
   
   [INDICATOR_FN_EMPTY]  Theorem
      
      ⊢ ∀x. 𝟙 ∅ x = 0
   
   [INDICATOR_FN_INTER]  Theorem
      
      ⊢ ∀A B. 𝟙 (A ∩ B) = (λt. 𝟙 A t * 𝟙 B t)
   
   [INDICATOR_FN_INTER_MIN]  Theorem
      
      ⊢ ∀A B. 𝟙 (A ∩ B) = (λt. min (𝟙 A t) (𝟙 B t))
   
   [INDICATOR_FN_LE_1]  Theorem
      
      ⊢ ∀s x. 𝟙 s x ≤ 1
   
   [INDICATOR_FN_MONO]  Theorem
      
      ⊢ ∀s t x. s ⊆ t ⇒ 𝟙 s x ≤ 𝟙 t x
   
   [INDICATOR_FN_MUL_INTER]  Theorem
      
      ⊢ ∀A B. (λt. 𝟙 A t * 𝟙 B t) = (λt. 𝟙 (A ∩ B) t)
   
   [INDICATOR_FN_NOT_INFTY]  Theorem
      
      ⊢ ∀s x. 𝟙 s x ≠ −∞ ∧ 𝟙 s x ≠ +∞
   
   [INDICATOR_FN_POS]  Theorem
      
      ⊢ ∀s x. 0 ≤ 𝟙 s x
   
   [INDICATOR_FN_SING_0]  Theorem
      
      ⊢ ∀x y. x ≠ y ⇒ 𝟙 {x} y = 0
   
   [INDICATOR_FN_SING_1]  Theorem
      
      ⊢ ∀x y. x = y ⇒ 𝟙 {x} y = 1
   
   [INDICATOR_FN_UNION]  Theorem
      
      ⊢ ∀A B. 𝟙 (A ∪ B) = (λt. 𝟙 A t + 𝟙 B t − 𝟙 (A ∩ B) t)
   
   [INDICATOR_FN_UNION_MAX]  Theorem
      
      ⊢ ∀A B. 𝟙 (A ∪ B) = (λt. max (𝟙 A t) (𝟙 B t))
   
   [INDICATOR_FN_UNION_MIN]  Theorem
      
      ⊢ ∀A B. 𝟙 (A ∪ B) = (λt. min (𝟙 A t + 𝟙 B t) 1)
   
   [INV_IN_Q]  Theorem
      
      ⊢ ∀x. x ∈ ℚ꙳ ∧ x ≠ 0 ⇒ 1 / x ∈ ℚ꙳
   
   [MUL_IN_Q]  Theorem
      
      ⊢ ∀x y. x ∈ ℚ꙳ ∧ y ∈ ℚ꙳ ⇒ x * y ∈ ℚ꙳
   
   [NESTED_EXTREAL_SUM_IMAGE_REVERSE]  Theorem
      
      ⊢ ∀f s s'.
          FINITE s ∧ FINITE s' ∧ (∀x y. x ∈ s ∧ y ∈ s' ⇒ f x y ≠ −∞) ⇒
          ∑ (λx. ∑ (f x) s') s = ∑ (λx. ∑ (λy. f y x) s) s'
   
   [NUM_IN_Q]  Theorem
      
      ⊢ ∀n. &n ∈ ℚ꙳ ∧ -&n ∈ ℚ꙳
   
   [OPP_IN_Q]  Theorem
      
      ⊢ ∀x. x ∈ ℚ꙳ ⇒ -x ∈ ℚ꙳
   
   [Q_COUNTABLE]  Theorem
      
      ⊢ countable ℚ꙳
   
   [Q_DENSE_IN_R]  Theorem
      
      ⊢ ∀x y. x < y ⇒ ∃r. r ∈ ℚ꙳ ∧ x < r ∧ r < y
   
   [Q_DENSE_IN_R_LEMMA]  Theorem
      
      ⊢ ∀x y. 0 ≤ x ∧ x < y ⇒ ∃r. r ∈ ℚ꙳ ∧ x < r ∧ r < y
   
   [Q_INFINITE]  Theorem
      
      ⊢ INFINITE ℚ꙳
   
   [Q_not_infty]  Theorem
      
      ⊢ ∀x. x ∈ ℚ꙳ ⇒ ∃y. x = Normal y
   
   [Q_set_def]  Theorem
      
      ⊢ ℚ꙳ =
        {x | ∃a b. x = &a / &b ∧ 0 < &b} ∪
        {x | ∃a b. x = -(&a / &b) ∧ 0 < &b}
   
   [SIMP_EXTREAL_ARCH]  Theorem
      
      ⊢ ∀x. x ≠ +∞ ⇒ ∃n. x ≤ &n
   
   [SIMP_EXTREAL_ARCH_NEG]  Theorem
      
      ⊢ ∀x. x ≠ −∞ ⇒ ∃n. -&n ≤ x
   
   [SUB_IN_Q]  Theorem
      
      ⊢ ∀x y. x ∈ ℚ꙳ ∧ y ∈ ℚ꙳ ⇒ x − y ∈ ℚ꙳
   
   [abs_0]  Theorem
      
      ⊢ abs 0 = 0
   
   [abs_abs]  Theorem
      
      ⊢ ∀x. abs (abs x) = abs x
   
   [abs_bounds]  Theorem
      
      ⊢ ∀x k. abs x ≤ k ⇔ -k ≤ x ∧ x ≤ k
   
   [abs_bounds_lt]  Theorem
      
      ⊢ ∀x k. abs x < k ⇔ -k < x ∧ x < k
   
   [abs_div]  Theorem
      
      ⊢ ∀x y. x ≠ +∞ ∧ x ≠ −∞ ∧ y ≠ 0 ⇒ abs (x / y) = abs x / abs y
   
   [abs_div_normal]  Theorem
      
      ⊢ ∀x y. y ≠ 0 ⇒ abs (x / Normal y) = abs x / Normal (abs y)
   
   [abs_eq_0]  Theorem
      
      ⊢ ∀x. abs x = 0 ⇔ x = 0
   
   [abs_gt_0]  Theorem
      
      ⊢ ∀x. 0 < abs x ⇔ x ≠ 0
   
   [abs_le_0]  Theorem
      
      ⊢ ∀x. abs x ≤ 0 ⇔ x = 0
   
   [abs_le_half_pow2]  Theorem
      
      ⊢ ∀x y. abs (x * y) ≤ Normal (1 / 2) * (x² + y²)
   
   [abs_le_square_plus1]  Theorem
      
      ⊢ ∀x. abs x ≤ x² + 1
   
   [abs_max]  Theorem
      
      ⊢ ∀x. abs x = max x (-x)
   
   [abs_mul]  Theorem
      
      ⊢ ∀x y. abs (x * y) = abs x * abs y
   
   [abs_neg]  Theorem
      
      ⊢ ∀x. x < 0 ⇒ abs x = -x
   
   [abs_neg']  Theorem
      
      ⊢ ∀x. x ≤ 0 ⇒ abs x = -x
   
   [abs_neg_eq]  Theorem
      
      ⊢ ∀x. abs (-x) = abs x
   
   [abs_not_infty]  Theorem
      
      ⊢ ∀x. x ≠ +∞ ∧ x ≠ −∞ ⇒ abs x ≠ +∞ ∧ abs x ≠ −∞
   
   [abs_not_zero]  Theorem
      
      ⊢ ∀x. abs x ≠ 0 ⇔ x ≠ 0
   
   [abs_pos]  Theorem
      
      ⊢ ∀x. 0 ≤ abs x
   
   [abs_pow2]  Theorem
      
      ⊢ ∀x. (abs x)² = x²
   
   [abs_pow_le_mono]  Theorem
      
      ⊢ ∀x n m. n ≤ m ⇒ abs x pow n ≤ 1 + abs x pow m
   
   [abs_real]  Theorem
      
      ⊢ ∀x. x ≠ +∞ ∧ x ≠ −∞ ⇒ abs (real x) = real (abs x)
   
   [abs_refl]  Theorem
      
      ⊢ ∀x. abs x = x ⇔ 0 ≤ x
   
   [abs_sub]  Theorem
      
      ⊢ ∀x y. x ≠ +∞ ∧ x ≠ −∞ ∧ y ≠ +∞ ∧ y ≠ −∞ ⇒ abs (x − y) = abs (y − x)
   
   [abs_sub']  Theorem
      
      ⊢ ∀x y. abs (x − y) = abs (y − x)
   
   [abs_triangle]  Theorem
      
      ⊢ ∀x y.
          x ≠ +∞ ∧ x ≠ −∞ ∧ y ≠ +∞ ∧ y ≠ −∞ ⇒ abs (x + y) ≤ abs x + abs y
   
   [abs_triangle_full]  Theorem
      
      ⊢ ∀x y. abs (x + y) ≤ abs x + abs y
   
   [abs_triangle_neg]  Theorem
      
      ⊢ ∀x y.
          x ≠ +∞ ∧ x ≠ −∞ ∧ y ≠ +∞ ∧ y ≠ −∞ ⇒ abs (x − y) ≤ abs x + abs y
   
   [abs_triangle_neg_full]  Theorem
      
      ⊢ ∀x y. abs (x − y) ≤ abs x + abs y
   
   [abs_triangle_sub]  Theorem
      
      ⊢ ∀x y.
          x ≠ +∞ ∧ x ≠ −∞ ∧ y ≠ +∞ ∧ y ≠ −∞ ⇒ abs x ≤ abs y + abs (x − y)
   
   [abs_triangle_sub']  Theorem
      
      ⊢ ∀x y.
          x ≠ +∞ ∧ x ≠ −∞ ∧ y ≠ +∞ ∧ y ≠ −∞ ⇒ abs x ≤ abs y + abs (y − x)
   
   [abs_triangle_sub_full]  Theorem
      
      ⊢ ∀x y. abs x ≤ abs y + abs (x − y)
   
   [abs_triangle_sub_full']  Theorem
      
      ⊢ ∀x y. abs x ≤ abs y + abs (y − x)
   
   [abs_unbounds]  Theorem
      
      ⊢ ∀x k. 0 ≤ k ⇒ (k ≤ abs x ⇔ x ≤ -k ∨ k ≤ x)
   
   [add2_sub2]  Theorem
      
      ⊢ ∀a b c d.
          a ≠ −∞ ∧ b ≠ +∞ ∧ c ≠ −∞ ∧ d ≠ +∞ ⇒
          a − b + (c − d) = a + c − (b + d)
   
   [add_assoc]  Theorem
      
      ⊢ ∀x y z.
          x ≠ −∞ ∧ y ≠ −∞ ∧ z ≠ −∞ ∨ x ≠ +∞ ∧ y ≠ +∞ ∧ z ≠ +∞ ⇒
          x + (y + z) = x + y + z
   
   [add_comm]  Theorem
      
      ⊢ ∀x y. x ≠ −∞ ∧ y ≠ −∞ ∨ x ≠ +∞ ∧ y ≠ +∞ ⇒ x + y = y + x
   
   [add_comm_normal]  Theorem
      
      ⊢ ∀x y. Normal x + y = y + Normal x
   
   [add_infty]  Theorem
      
      ⊢ (∀x. x ≠ −∞ ⇒ x + +∞ = +∞ ∧ +∞ + x = +∞) ∧
        ∀x. x ≠ +∞ ⇒ x + −∞ = −∞ ∧ −∞ + x = −∞
   
   [add_ldistrib]  Theorem
      
      ⊢ ∀x y z. 0 ≤ y ∧ 0 ≤ z ∨ y ≤ 0 ∧ z ≤ 0 ⇒ x * (y + z) = x * y + x * z
   
   [add_ldistrib_neg]  Theorem
      
      ⊢ ∀x y z. y ≤ 0 ∧ z ≤ 0 ⇒ x * (y + z) = x * y + x * z
   
   [add_ldistrib_normal]  Theorem
      
      ⊢ ∀r y z.
          y ≠ +∞ ∧ z ≠ +∞ ∨ y ≠ −∞ ∧ z ≠ −∞ ⇒
          Normal r * (y + z) = Normal r * y + Normal r * z
   
   [add_ldistrib_normal2]  Theorem
      
      ⊢ ∀r y z.
          y ≠ +∞ ∧ z ≠ +∞ ∨ y ≠ −∞ ∧ z ≠ −∞ ⇒
          Normal r * (y + z) = Normal r * y + Normal r * z
   
   [add_ldistrib_pos]  Theorem
      
      ⊢ ∀x y z. 0 ≤ y ∧ 0 ≤ z ⇒ x * (y + z) = x * y + x * z
   
   [add_lzero]  Theorem
      
      ⊢ ∀x. 0 + x = x
   
   [add_not_infty]  Theorem
      
      ⊢ ∀x y.
          (x ≠ −∞ ∧ y ≠ −∞ ⇒ x + y ≠ −∞) ∧ (x ≠ +∞ ∧ y ≠ +∞ ⇒ x + y ≠ +∞)
   
   [add_pow2]  Theorem
      
      ⊢ ∀x y.
          x ≠ −∞ ∧ x ≠ +∞ ∧ y ≠ −∞ ∧ y ≠ +∞ ⇒
          (x + y)² = x² + y² + 2 * x * y
   
   [add_pow2_pos]  Theorem
      
      ⊢ ∀x y. 0 < x ∧ x ≠ +∞ ∧ 0 ≤ y ⇒ (x + y)² = x² + y² + 2 * x * y
   
   [add_rdistrib]  Theorem
      
      ⊢ ∀x y z. 0 ≤ y ∧ 0 ≤ z ∨ y ≤ 0 ∧ z ≤ 0 ⇒ (y + z) * x = y * x + z * x
   
   [add_rdistrib_normal]  Theorem
      
      ⊢ ∀x y z.
          y ≠ +∞ ∧ z ≠ +∞ ∨ y ≠ −∞ ∧ z ≠ −∞ ⇒
          (y + z) * Normal x = y * Normal x + z * Normal x
   
   [add_rdistrib_normal2]  Theorem
      
      ⊢ ∀x y z.
          y ≠ +∞ ∧ z ≠ +∞ ∨ y ≠ −∞ ∧ z ≠ −∞ ⇒
          (y + z) * Normal x = y * Normal x + z * Normal x
   
   [add_rzero]  Theorem
      
      ⊢ ∀x. x + 0 = x
   
   [add_sub]  Theorem
      
      ⊢ ∀x y. y ≠ −∞ ∧ y ≠ +∞ ⇒ x + y − y = x
   
   [add_sub2]  Theorem
      
      ⊢ ∀x y. y ≠ −∞ ∧ y ≠ +∞ ⇒ y + x − y = x
   
   [add_sub_normal]  Theorem
      
      ⊢ ∀x r. x + Normal r − Normal r = x
   
   [conjugate_properties]  Theorem
      
      ⊢ ∀p q.
          0 < p ∧ 0 < q ∧ p⁻¹ + q⁻¹ = 1 ⇒
          1 ≤ p ∧ 1 ≤ q ∧ (p = 1 ⇔ q = +∞) ∧ (q = 1 ⇔ p = +∞)
   
   [div_add]  Theorem
      
      ⊢ ∀x y z.
          x ≠ +∞ ∧ x ≠ −∞ ∧ y ≠ +∞ ∧ y ≠ −∞ ∧ z ≠ 0 ⇒
          x / z + y / z = (x + y) / z
   
   [div_add2]  Theorem
      
      ⊢ ∀x y z.
          (x ≠ +∞ ∧ y ≠ +∞ ∨ x ≠ −∞ ∧ y ≠ −∞) ∧ z ≠ 0 ∧ z ≠ +∞ ∧ z ≠ −∞ ⇒
          x / z + y / z = (x + y) / z
   
   [div_eq_mul_linv]  Theorem
      
      ⊢ ∀x y. x ≠ +∞ ∧ x ≠ −∞ ∧ 0 < y ⇒ x / y = y⁻¹ * x
   
   [div_eq_mul_rinv]  Theorem
      
      ⊢ ∀x y. x ≠ +∞ ∧ x ≠ −∞ ∧ 0 < y ⇒ x / y = x * y⁻¹
   
   [div_infty]  Theorem
      
      ⊢ ∀x. x ≠ +∞ ∧ x ≠ −∞ ⇒ x / +∞ = 0 ∧ x / −∞ = 0
   
   [div_mul_refl]  Theorem
      
      ⊢ ∀x r. r ≠ 0 ⇒ x = x / Normal r * Normal r
   
   [div_not_infty]  Theorem
      
      ⊢ ∀x y. y ≠ 0 ⇒ Normal x / y ≠ +∞ ∧ Normal x / y ≠ −∞
   
   [div_one]  Theorem
      
      ⊢ ∀x. x / 1 = x
   
   [div_refl]  Theorem
      
      ⊢ ∀x. x ≠ 0 ∧ x ≠ +∞ ∧ x ≠ −∞ ⇒ x / x = 1
   
   [div_refl_pos]  Theorem
      
      ⊢ ∀x. 0 < x ∧ x ≠ +∞ ⇒ x / x = 1
   
   [div_sub]  Theorem
      
      ⊢ ∀x y z.
          x ≠ +∞ ∧ x ≠ −∞ ∧ y ≠ +∞ ∧ y ≠ −∞ ∧ z ≠ 0 ⇒
          x / z − y / z = (x − y) / z
   
   [entire]  Theorem
      
      ⊢ ∀x y. x * y = 0 ⇔ x = 0 ∨ y = 0
   
   [eq_add_sub_switch]  Theorem
      
      ⊢ ∀a b c d.
          b ≠ −∞ ∧ b ≠ +∞ ∧ c ≠ −∞ ∧ c ≠ +∞ ⇒
          (a + b = c + d ⇔ a − c = d − b)
   
   [eq_neg]  Theorem
      
      ⊢ ∀x y. -x = -y ⇔ x = y
   
   [eq_sub_ladd]  Theorem
      
      ⊢ ∀x y z. z ≠ −∞ ∧ z ≠ +∞ ⇒ (x = y − z ⇔ x + z = y)
   
   [eq_sub_ladd_normal]  Theorem
      
      ⊢ ∀x y z. x = y − Normal z ⇔ x + Normal z = y
   
   [eq_sub_radd]  Theorem
      
      ⊢ ∀x y z. y ≠ −∞ ∧ y ≠ +∞ ⇒ (x − y = z ⇔ x = z + y)
   
   [eq_sub_switch]  Theorem
      
      ⊢ ∀x y z. x = Normal z − y ⇔ y = Normal z − x
   
   [eqle_trans]  Theorem
      
      ⊢ ∀x y z. x = y ∧ y ≤ z ⇒ x ≤ z
   
   [exp_0]  Theorem
      
      ⊢ exp 0 = 1
   
   [exp_add]  Theorem
      
      ⊢ ∀x y.
          x ≠ −∞ ∧ y ≠ −∞ ∨ x ≠ +∞ ∧ y ≠ +∞ ⇒ exp (x + y) = exp x * exp y
   
   [exp_le_x]  Theorem
      
      ⊢ ∀x. 1 + x ≤ exp x
   
   [exp_le_x']  Theorem
      
      ⊢ ∀x. 1 − x ≤ exp (-x)
   
   [exp_mono_le]  Theorem
      
      ⊢ ∀x y. exp x ≤ exp y ⇔ x ≤ y
   
   [exp_neg]  Theorem
      
      ⊢ ∀x. x ≠ −∞ ⇒ exp (-x) = (exp x)⁻¹
   
   [exp_pos]  Theorem
      
      ⊢ ∀x. 0 ≤ exp x
   
   [exp_pos_lt]  Theorem
      
      ⊢ ∀x. x ≠ −∞ ⇒ 0 < exp x
   
   [ext_liminf_alt_limsup]  Theorem
      
      ⊢ ∀a. liminf a = -limsup (numeric_negate ∘ a)
   
   [ext_liminf_le_limsup]  Theorem
      
      ⊢ ∀a. liminf a ≤ limsup a
   
   [ext_liminf_pos]  Theorem
      
      ⊢ ∀a. (∀n. 0 ≤ a n) ⇒ 0 ≤ liminf a
   
   [ext_limsup_alt_liminf]  Theorem
      
      ⊢ ∀a. limsup a = -liminf (numeric_negate ∘ a)
   
   [ext_limsup_pos]  Theorem
      
      ⊢ ∀a. (∀n. 0 ≤ a n) ⇒ 0 ≤ limsup a
   
   [ext_mono_decreasing_suc]  Theorem
      
      ⊢ ∀f. mono_decreasing f ⇔ ∀n. f (SUC n) ≤ f n
   
   [ext_mono_increasing_suc]  Theorem
      
      ⊢ ∀f. mono_increasing f ⇔ ∀n. f n ≤ f (SUC n)
   
   [ext_suminf_0]  Theorem
      
      ⊢ suminf (λn. 0) = 0
   
   [ext_suminf_2d]  Theorem
      
      ⊢ ∀f g h.
          (∀m n. 0 ≤ f m n) ∧ (∀n. suminf (f n) = g n) ∧ suminf g < +∞ ∧
          BIJ h 𝕌(:num) (𝕌(:num) × 𝕌(:num)) ⇒
          suminf (UNCURRY f ∘ h) = suminf g
   
   [ext_suminf_2d_full]  Theorem
      
      ⊢ ∀f g h.
          (∀m n. 0 ≤ f m n) ∧ (∀n. suminf (f n) = g n) ∧
          BIJ h 𝕌(:num) (𝕌(:num) × 𝕌(:num)) ⇒
          suminf (UNCURRY f ∘ h) = suminf g
   
   [ext_suminf_add]  Theorem
      
      ⊢ ∀f g.
          (∀n. 0 ≤ f n ∧ 0 ≤ g n) ⇒
          suminf (λn. f n + g n) = suminf f + suminf g
   
   [ext_suminf_add']  Theorem
      
      ⊢ ∀f g h.
          (∀n. 0 ≤ f n) ∧ (∀n. 0 ≤ g n) ∧ (∀n. h n = f n + g n) ⇒
          suminf h = suminf f + suminf g
   
   [ext_suminf_alt]  Theorem
      
      ⊢ ∀f. (∀n. 0 ≤ f n) ⇒
            suminf (λx. f x) = sup {∑ (λi. f i) (count n) | n ∈ 𝕌(:num)}
   
   [ext_suminf_alt']  Theorem
      
      ⊢ ∀f. (∀n. 0 ≤ f n) ⇒ suminf (λx. f x) = sup {∑ f (count n) | n | T}
   
   [ext_suminf_cmul]  Theorem
      
      ⊢ ∀f c. 0 ≤ c ∧ (∀n. 0 ≤ f n) ⇒ suminf (λn. c * f n) = c * suminf f
   
   [ext_suminf_cmul_alt]  Theorem
      
      ⊢ ∀f c.
          0 ≤ c ∧ (∀n. 0 ≤ f n) ∧ (∀n. f n < +∞) ⇒
          suminf (λn. Normal c * f n) = Normal c * suminf f
   
   [ext_suminf_eq]  Theorem
      
      ⊢ ∀f g. (∀n. f n = g n) ⇒ suminf f = suminf g
   
   [ext_suminf_eq_infty]  Theorem
      
      ⊢ ∀f. (∀n. 0 ≤ f n) ∧ (∀e. e < +∞ ⇒ ∃n. e ≤ ∑ f (count n)) ⇒
            suminf f = +∞
   
   [ext_suminf_eq_infty_imp]  Theorem
      
      ⊢ ∀f. (∀n. 0 ≤ f n) ∧ suminf f = +∞ ⇒
            ∀e. e < +∞ ⇒ ∃n. e ≤ ∑ f (count n)
   
   [ext_suminf_eq_shift]  Theorem
      
      ⊢ ∀f g N.
          (∀n. n < N ⇒ g n = 0) ∧ (∀n. 0 ≤ f n ∧ f n = g (n + N)) ⇒
          suminf f = suminf g
   
   [ext_suminf_lt_infty]  Theorem
      
      ⊢ ∀f. (∀n. 0 ≤ f n) ∧ suminf f < +∞ ⇒ ∀n. f n < +∞
   
   [ext_suminf_mono]  Theorem
      
      ⊢ ∀f g. (∀n. 0 ≤ g n) ∧ (∀n. g n ≤ f n) ⇒ suminf g ≤ suminf f
   
   [ext_suminf_nested]  Theorem
      
      ⊢ ∀f. (∀m n. 0 ≤ f m n) ⇒
            suminf (λn. suminf (λm. f m n)) =
            suminf (λm. suminf (λn. f m n))
   
   [ext_suminf_offset]  Theorem
      
      ⊢ ∀f m.
          (∀n. 0 ≤ f n) ⇒ suminf f = ∑ f (count m) + suminf (λi. f (i + m))
   
   [ext_suminf_pos]  Theorem
      
      ⊢ ∀f. (∀n. 0 ≤ f n) ⇒ 0 ≤ suminf f
   
   [ext_suminf_posinf]  Theorem
      
      ⊢ ∀f. (∀n. 0 ≤ f n) ∧ (∃n. f n = +∞) ⇒ suminf f = +∞
   
   [ext_suminf_real_suminf]  Theorem
      
      ⊢ ∀g. (∀n. 0 ≤ g n) ∧ suminf g < +∞ ⇒
            suminf (real ∘ g) = real (suminf g)
   
   [ext_suminf_sigma]  Theorem
      
      ⊢ ∀f n.
          (∀i x. i < n ⇒ 0 ≤ f i x) ⇒
          ∑ (suminf ∘ f) (count n) = suminf (λx. ∑ (λi. f i x) (count n))
   
   [ext_suminf_sigma']  Theorem
      
      ⊢ ∀f n.
          (∀i x. i < n ⇒ 0 ≤ f i x) ⇒
          ∑ (λx. suminf (f x)) (count n) =
          suminf (λx. ∑ (λi. f i x) (count n))
   
   [ext_suminf_sing]  Theorem
      
      ⊢ ∀r. 0 ≤ r ⇒ suminf (λn. if n = 0 then r else 0) = r
   
   [ext_suminf_sing_general]  Theorem
      
      ⊢ ∀m r. 0 ≤ r ⇒ suminf (λn. if n = m then r else 0) = r
   
   [ext_suminf_sub]  Theorem
      
      ⊢ ∀f g.
          (∀n. 0 ≤ g n ∧ g n ≤ f n) ∧ suminf f ≠ +∞ ⇒
          suminf (λi. f i − g i) = suminf f − suminf g
   
   [ext_suminf_sum]  Theorem
      
      ⊢ ∀f n.
          (∀n. 0 ≤ f n) ∧ (∀m. n ≤ m ⇒ f m = 0) ⇒ suminf f = ∑ f (count n)
   
   [ext_suminf_suminf]  Theorem
      
      ⊢ ∀r. (∀n. 0 ≤ r n) ∧ suminf (λn. Normal (r n)) ≠ +∞ ⇒
            suminf (λn. Normal (r n)) = Normal (suminf r)
   
   [ext_suminf_suminf']  Theorem
      
      ⊢ ∀r. (∀n. 0 ≤ r n) ∧ suminf (Normal ∘ r) < +∞ ⇒
            suminf (Normal ∘ r) = Normal (suminf r)
   
   [ext_suminf_summable]  Theorem
      
      ⊢ ∀g. (∀n. 0 ≤ g n) ∧ suminf g < +∞ ⇒ summable (real ∘ g)
   
   [ext_suminf_sup_eq]  Theorem
      
      ⊢ ∀f. (∀i m n. m ≤ n ⇒ f m i ≤ f n i) ∧ (∀n i. 0 ≤ f n i) ⇒
            suminf (λi. sup {f n i | n ∈ 𝕌(:num)}) =
            sup {suminf (λi. f n i) | n ∈ 𝕌(:num)}
   
   [ext_suminf_zero]  Theorem
      
      ⊢ ∀f. (∀n. f n = 0) ⇒ suminf f = 0
   
   [extreal_0_simps]  Theorem
      
      ⊢ (0 ≤ +∞ ⇔ T) ∧ (0 < +∞ ⇔ T) ∧ (+∞ ≤ 0 ⇔ F) ∧ (+∞ < 0 ⇔ F) ∧
        (0 = +∞ ⇔ F) ∧ (+∞ = 0 ⇔ F) ∧ (0 ≤ −∞ ⇔ F) ∧ (0 < −∞ ⇔ F) ∧
        (−∞ ≤ 0 ⇔ T) ∧ (−∞ < 0 ⇔ T) ∧ (0 = −∞ ⇔ F) ∧ (−∞ = 0 ⇔ F) ∧
        (∀r. 0 ≤ Normal r ⇔ 0 ≤ r) ∧ (∀r. 0 < Normal r ⇔ 0 < r) ∧
        (∀r. 0 = Normal r ⇔ r = 0) ∧ (∀r. Normal r ≤ 0 ⇔ r ≤ 0) ∧
        (∀r. Normal r < 0 ⇔ r < 0) ∧ ∀r. Normal r = 0 ⇔ r = 0
   
   [extreal_11]  Theorem
      
      ⊢ ∀a a'. Normal a = Normal a' ⇔ a = a'
   
   [extreal_1_simps]  Theorem
      
      ⊢ (1 ≤ +∞ ⇔ T) ∧ (1 < +∞ ⇔ T) ∧ (+∞ ≤ 1 ⇔ F) ∧ (+∞ < 1 ⇔ F) ∧
        (1 = +∞ ⇔ F) ∧ (+∞ = 1 ⇔ F) ∧ (1 ≤ −∞ ⇔ F) ∧ (1 < −∞ ⇔ F) ∧
        (−∞ ≤ 1 ⇔ T) ∧ (−∞ < 1 ⇔ T) ∧ (1 = −∞ ⇔ F) ∧ (−∞ = 1 ⇔ F) ∧
        (∀r. 1 ≤ Normal r ⇔ 1 ≤ r) ∧ (∀r. 1 < Normal r ⇔ 1 < r) ∧
        (∀r. 1 = Normal r ⇔ r = 1) ∧ (∀r. Normal r ≤ 1 ⇔ r ≤ 1) ∧
        (∀r. Normal r < 1 ⇔ r < 1) ∧ ∀r. Normal r = 1 ⇔ r = 1
   
   [extreal_abs_def]  Theorem
      
      ⊢ abs (Normal x) = Normal (abs x) ∧ abs −∞ = +∞ ∧ abs +∞ = +∞
   
   [extreal_add_def]  Theorem
      
      ⊢ Normal x + Normal y = Normal (x + y) ∧ Normal v0 + −∞ = −∞ ∧
        Normal v0 + +∞ = +∞ ∧ −∞ + Normal v1 = −∞ ∧ +∞ + Normal v1 = +∞ ∧
        −∞ + −∞ = −∞ ∧ +∞ + +∞ = +∞
   
   [extreal_add_eq]  Theorem
      
      ⊢ ∀x y. Normal x + Normal y = Normal (x + y)
   
   [extreal_ainv_def]  Theorem
      
      ⊢ -−∞ = +∞ ∧ -+∞ = −∞ ∧ ∀x. -Normal x = Normal (-x)
   
   [extreal_cases]  Theorem
      
      ⊢ ∀x. x = −∞ ∨ x = +∞ ∨ ∃r. x = Normal r
   
   [extreal_dist_def]  Theorem
      
      ⊢ extreal_dist (Normal x) (Normal y) =
        dist (bounded_metric mr1) (x,y) ∧ extreal_dist +∞ +∞ = 0 ∧
        extreal_dist −∞ −∞ = 0 ∧ extreal_dist −∞ +∞ = 1 ∧
        extreal_dist −∞ (Normal v5) = 1 ∧ extreal_dist +∞ −∞ = 1 ∧
        extreal_dist +∞ (Normal v7) = 1 ∧ extreal_dist (Normal v3) −∞ = 1 ∧
        extreal_dist (Normal v3) +∞ = 1
   
   [extreal_dist_ind]  Theorem
      
      ⊢ ∀P. (∀x y. P (Normal x) (Normal y)) ∧ P +∞ +∞ ∧ P −∞ −∞ ∧ P −∞ +∞ ∧
            (∀v5. P −∞ (Normal v5)) ∧ P +∞ −∞ ∧ (∀v7. P +∞ (Normal v7)) ∧
            (∀v3. P (Normal v3) −∞) ∧ (∀v3. P (Normal v3) +∞) ⇒
            ∀v v1. P v v1
   
   [extreal_dist_ismet]  Theorem
      
      ⊢ ismet (UNCURRY extreal_dist)
   
   [extreal_dist_normal]  Theorem
      
      ⊢ ∀x y.
          extreal_dist (Normal x) (Normal y) =
          abs (x − y) / (1 + abs (x − y))
   
   [extreal_distinct]  Theorem
      
      ⊢ −∞ ≠ +∞ ∧ (∀a. −∞ ≠ Normal a) ∧ ∀a. +∞ ≠ Normal a
   
   [extreal_div_def]  Theorem
      
      ⊢ (∀r. Normal r / +∞ = Normal 0) ∧ (∀r. Normal r / −∞ = Normal 0) ∧
        ∀x r. r ≠ 0 ⇒ x / Normal r = x * (Normal r)⁻¹
   
   [extreal_div_eq]  Theorem
      
      ⊢ ∀x y. y ≠ 0 ⇒ Normal x / Normal y = Normal (x / y)
   
   [extreal_double]  Theorem
      
      ⊢ ∀x. x + x = 2 * x
   
   [extreal_eq_zero]  Theorem
      
      ⊢ ∀x. Normal x = 0 ⇔ x = 0
   
   [extreal_inv_def]  Theorem
      
      ⊢ −∞ ⁻¹ = Normal 0 ∧ +∞ ⁻¹ = Normal 0 ∧
        ∀r. r ≠ 0 ⇒ (Normal r)⁻¹ = Normal r⁻¹
   
   [extreal_inv_eq]  Theorem
      
      ⊢ ∀x. x ≠ 0 ⇒ (Normal x)⁻¹ = Normal x⁻¹
   
   [extreal_le_def]  Theorem
      
      ⊢ (Normal x ≤ Normal y ⇔ x ≤ y) ∧ (−∞ ≤ v0 ⇔ T) ∧ (+∞ ≤ +∞ ⇔ T) ∧
        (Normal v5 ≤ +∞ ⇔ T) ∧ (+∞ ≤ −∞ ⇔ F) ∧ (Normal v6 ≤ −∞ ⇔ F) ∧
        (+∞ ≤ Normal v8 ⇔ F)
   
   [extreal_le_eq]  Theorem
      
      ⊢ ∀x y. Normal x ≤ Normal y ⇔ x ≤ y
   
   [extreal_le_simps]  Theorem
      
      ⊢ (∀x y. Normal x ≤ Normal y ⇔ x ≤ y) ∧ (∀x. −∞ ≤ x ⇔ T) ∧
        (∀x. x ≤ +∞ ⇔ T) ∧ (∀x. Normal x ≤ −∞ ⇔ F) ∧
        (∀x. +∞ ≤ Normal x ⇔ F) ∧ (+∞ ≤ −∞ ⇔ F)
   
   [extreal_lim_sequentially_eq]  Theorem
      
      ⊢ ∀f l.
          (∃N. ∀n. N ≤ n ⇒ f n ≠ +∞ ∧ f n ≠ −∞) ∧ l ≠ +∞ ∧ l ≠ −∞ ⇒
          ((f --> l) sequentially ⇔ (real ∘ f --> real l) sequentially)
   
   [extreal_lim_sequentially_eq']  Theorem
      
      ⊢ ∀f r.
          (∃N. ∀n. N ≤ n ⇒ f n ≠ +∞ ∧ f n ≠ −∞) ⇒
          ((f --> Normal r) sequentially ⇔ (real ∘ f --> r) sequentially)
   
   [extreal_lt_def]  Theorem
      
      ⊢ ∀x y. x < y ⇔ ¬(y ≤ x)
   
   [extreal_lt_eq]  Theorem
      
      ⊢ ∀x y. Normal x < Normal y ⇔ x < y
   
   [extreal_lt_simps]  Theorem
      
      ⊢ (∀x y. Normal x < Normal y ⇔ x < y) ∧ (∀x. x < −∞ ⇔ F) ∧
        (∀x. +∞ < x ⇔ F) ∧ (∀x. Normal x < +∞ ⇔ T) ∧
        (∀x. −∞ < Normal x ⇔ T) ∧ (−∞ < +∞ ⇔ T)
   
   [extreal_max_def]  Theorem
      
      ⊢ ∀x y. max x y = if x ≤ y then y else x
   
   [extreal_mean]  Theorem
      
      ⊢ ∀x y. x < y ⇒ ∃z. x < z ∧ z < y
   
   [extreal_min_def]  Theorem
      
      ⊢ ∀x y. min x y = if x ≤ y then x else y
   
   [extreal_mr1_le_1]  Theorem
      
      ⊢ ∀x y. dist extreal_mr1 (x,y) ≤ 1
   
   [extreal_mr1_normal]  Theorem
      
      ⊢ ∀x y.
          dist extreal_mr1 (Normal x,Normal y) =
          abs (x − y) / (1 + abs (x − y))
   
   [extreal_mr1_thm]  Theorem
      
      ⊢ dist extreal_mr1 = UNCURRY extreal_dist
   
   [extreal_mul_def]  Theorem
      
      ⊢ −∞ * −∞ = +∞ ∧ −∞ * +∞ = −∞ ∧ +∞ * −∞ = −∞ ∧ +∞ * +∞ = +∞ ∧
        Normal x * −∞ =
        (if x = 0 then Normal 0 else if 0 < x then −∞ else +∞) ∧
        −∞ * Normal y =
        (if y = 0 then Normal 0 else if 0 < y then −∞ else +∞) ∧
        Normal x * +∞ =
        (if x = 0 then Normal 0 else if 0 < x then +∞ else −∞) ∧
        +∞ * Normal y =
        (if y = 0 then Normal 0 else if 0 < y then +∞ else −∞) ∧
        Normal x * Normal y = Normal (x * y)
   
   [extreal_mul_eq]  Theorem
      
      ⊢ ∀x y. Normal x * Normal y = Normal (x * y)
   
   [extreal_not_infty]  Theorem
      
      ⊢ ∀x. Normal x ≠ −∞ ∧ Normal x ≠ +∞
   
   [extreal_not_lt]  Theorem
      
      ⊢ ∀x y. ¬(x < y) ⇔ y ≤ x
   
   [extreal_of_num_def]  Theorem
      
      ⊢ ∀n. &n = Normal (&n)
   
   [extreal_pow]  Theorem
      
      ⊢ (∀x. x pow 0 = 1) ∧ ∀x n. x pow SUC n = x * x pow n
   
   [extreal_pow_alt]  Theorem
      
      ⊢ (∀x. x pow 0 = 1) ∧ ∀n x. x pow SUC n = x pow n * x
   
   [extreal_pow_def]  Theorem
      
      ⊢ (∀a n. Normal a pow n = Normal (a pow n)) ∧
        (∀n. +∞ pow n = if n = 0 then Normal 1 else +∞) ∧
        ∀n. −∞ pow n =
            if n = 0 then Normal 1 else if EVEN n then +∞ else −∞
   
   [extreal_sqrt_def]  Theorem
      
      ⊢ (∀x. sqrt (Normal x) = Normal (sqrt x)) ∧ sqrt +∞ = +∞
   
   [extreal_sub]  Theorem
      
      ⊢ ∀x y. x − y = x + -y
   
   [extreal_sub_add]  Theorem
      
      ⊢ ∀x y. x ≠ −∞ ∧ y ≠ +∞ ∨ x ≠ +∞ ∧ y ≠ −∞ ⇒ x − y = x + -y
   
   [extreal_sub_def]  Theorem
      
      ⊢ Normal x − Normal y = Normal (x − y) ∧ +∞ − Normal x = +∞ ∧
        −∞ − Normal x = −∞ ∧ Normal x − −∞ = +∞ ∧ Normal x − +∞ = −∞ ∧
        −∞ − +∞ = −∞ ∧ +∞ − −∞ = +∞
   
   [extreal_sub_eq]  Theorem
      
      ⊢ ∀x y. Normal x − Normal y = Normal (x − y)
   
   [fn_minus]  Theorem
      
      ⊢ ∀f x. f⁻ x = -min 0 (f x)
   
   [fn_minus_abs]  Theorem
      
      ⊢ ∀f. (abs ∘ f)⁻ = (λx. 0)
   
   [fn_minus_mul_indicator]  Theorem
      
      ⊢ ∀f s. (λx. f x * 𝟙 s x)⁻ = (λx. f⁻ x * 𝟙 s x)
   
   [fn_plus]  Theorem
      
      ⊢ ∀f x. f⁺ x = max 0 (f x)
   
   [fn_plus_abs]  Theorem
      
      ⊢ ∀f. (abs ∘ f)⁺ = abs ∘ f
   
   [fn_plus_alt]  Theorem
      
      ⊢ ∀f. f⁺ = (λx. if 0 ≤ f x then f x else 0)
   
   [fn_plus_mul_indicator]  Theorem
      
      ⊢ ∀f s. (λx. f x * 𝟙 s x)⁺ = (λx. f⁺ x * 𝟙 s x)
   
   [fourth_cancel]  Theorem
      
      ⊢ 4 * (1 / 4) = 1
   
   [fourths_between]  Theorem
      
      ⊢ ((0 < 1 / 4 ∧ 1 / 4 < 1) ∧ 0 < 3 / 4 ∧ 3 / 4 < 1) ∧
        (0 ≤ 1 / 4 ∧ 1 / 4 ≤ 1) ∧ 0 ≤ 3 / 4 ∧ 3 / 4 ≤ 1
   
   [gen_powr]  Theorem
      
      ⊢ ∀a n. 0 ≤ a ⇒ a pow n = a powr &n
   
   [geometric_series_pow]  Theorem
      
      ⊢ ∀x. 0 < x ∧ x < 1 ⇒ suminf (λn. x pow n) = (1 − x)⁻¹
   
   [half_between]  Theorem
      
      ⊢ (0 < 1 / 2 ∧ 1 / 2 < 1) ∧ 0 ≤ 1 / 2 ∧ 1 / 2 ≤ 1
   
   [half_cancel]  Theorem
      
      ⊢ 2 * (1 / 2) = 1
   
   [half_double]  Theorem
      
      ⊢ ∀x. x / 2 + x / 2 = x
   
   [half_not_infty]  Theorem
      
      ⊢ 1 / 2 ≠ +∞ ∧ 1 / 2 ≠ −∞
   
   [harmonic_series_pow_2]  Theorem
      
      ⊢ suminf (λn. (&SUC n)² ⁻¹) < +∞
   
   [indicator_fn_def]  Theorem
      
      ⊢ ∀s. 𝟙 s = (λx. if x ∈ s then 1 else 0)
   
   [indicator_fn_normal]  Theorem
      
      ⊢ ∀s x. ∃r. 𝟙 s x = Normal r ∧ 0 ≤ r ∧ r ≤ 1
   
   [indicator_fn_split]  Theorem
      
      ⊢ ∀r s b.
          FINITE r ∧ BIGUNION (IMAGE b r) = s ∧
          (∀i j. i ∈ r ∧ j ∈ r ∧ i ≠ j ⇒ DISJOINT (b i) (b j)) ⇒
          ∀a. a ⊆ s ⇒ 𝟙 a = (λx. ∑ (λi. 𝟙 (a ∩ b i) x) r)
   
   [indicator_fn_suminf]  Theorem
      
      ⊢ ∀a x.
          (∀m n. m ≠ n ⇒ DISJOINT (a m) (a n)) ⇒
          suminf (λi. 𝟙 (a i) x) = 𝟙 (BIGUNION (IMAGE a 𝕌(:num))) x
   
   [ineq_imp]  Theorem
      
      ⊢ (∀x y. x < y ⇒ ¬(y < x)) ∧ (∀x y. x < y ⇒ x ≠ y) ∧
        (∀x y. x < y ⇒ ¬(y ≤ x)) ∧ (∀x y. x < y ⇒ x ≤ y) ∧
        ∀x y. x ≤ y ⇒ ¬(y < x)
   
   [inf_cminus]  Theorem
      
      ⊢ ∀f c.
          Normal c − inf (IMAGE f 𝕌(:α)) =
          sup (IMAGE (λn. Normal c − f n) 𝕌(:α))
   
   [inf_cmul]  Theorem
      
      ⊢ ∀P r.
          0 < r ⇒
          inf {x * Normal r | 0 < x ∧ P x} =
          Normal r * inf {x | 0 < x ∧ P x}
   
   [inf_const]  Theorem
      
      ⊢ ∀x. inf (λy. y = x) = x
   
   [inf_const_alt]  Theorem
      
      ⊢ ∀p z. (∃x. p x) ∧ (∀x. p x ⇒ x = z) ⇒ inf p = z
   
   [inf_const_over_set]  Theorem
      
      ⊢ ∀s k. s ≠ ∅ ⇒ inf (IMAGE (λx. k) s) = k
   
   [inf_empty]  Theorem
      
      ⊢ inf ∅ = +∞
   
   [inf_eq]  Theorem
      
      ⊢ ∀p x. inf p = x ⇔ (∀y. p y ⇒ x ≤ y) ∧ ∀y. (∀z. p z ⇒ y ≤ z) ⇒ y ≤ x
   
   [inf_eq']  Theorem
      
      ⊢ ∀p x.
          inf p = x ⇔ (∀y. y ∈ p ⇒ x ≤ y) ∧ ∀y. (∀z. z ∈ p ⇒ y ≤ z) ⇒ y ≤ x
   
   [inf_le]  Theorem
      
      ⊢ ∀p x. inf p ≤ x ⇔ ∀y. (∀z. p z ⇒ y ≤ z) ⇒ y ≤ x
   
   [inf_le']  Theorem
      
      ⊢ ∀p x. inf p ≤ x ⇔ ∀y. (∀z. z ∈ p ⇒ y ≤ z) ⇒ y ≤ x
   
   [inf_le_imp]  Theorem
      
      ⊢ ∀p x. p x ⇒ inf p ≤ x
   
   [inf_le_imp']  Theorem
      
      ⊢ ∀p x. x ∈ p ⇒ inf p ≤ x
   
   [inf_lt]  Theorem
      
      ⊢ ∀P y. (∃x. P x ∧ x < y) ⇔ inf P < y
   
   [inf_lt']  Theorem
      
      ⊢ ∀P y. (∃x. x ∈ P ∧ x < y) ⇔ inf P < y
   
   [inf_lt_infty]  Theorem
      
      ⊢ ∀p. −∞ < inf p ⇒ ∀x. p x ⇒ −∞ < x
   
   [inf_min]  Theorem
      
      ⊢ ∀p z. p z ∧ (∀x. p x ⇒ z ≤ x) ⇒ inf p = z
   
   [inf_minimal]  Theorem
      
      ⊢ ∀p. FINITE p ∧ p ≠ ∅ ⇒ inf p ∈ p
   
   [inf_mono]  Theorem
      
      ⊢ ∀p q.
          (∀n. p n ≤ q n) ⇒ inf (IMAGE p 𝕌(:num)) ≤ inf (IMAGE q 𝕌(:num))
   
   [inf_mono_subset]  Theorem
      
      ⊢ ∀p q. p ⊆ q ⇒ inf q ≤ inf p
   
   [inf_num]  Theorem
      
      ⊢ inf (λx. ∃n. x = -&n) = −∞
   
   [inf_seq]  Theorem
      
      ⊢ ∀f l.
          mono_decreasing f ⇒
          (f --> l ⇔ inf (IMAGE (λn. Normal (f n)) 𝕌(:num)) = Normal l)
   
   [inf_sing]  Theorem
      
      ⊢ ∀a. inf {a} = a
   
   [inf_suc]  Theorem
      
      ⊢ ∀f. (∀m n. m ≤ n ⇒ f n ≤ f m) ⇒
            inf (IMAGE (λn. f (SUC n)) 𝕌(:num)) = inf (IMAGE f 𝕌(:num))
   
   [inf_univ]  Theorem
      
      ⊢ inf 𝕌(:extreal) = −∞
   
   [infty_div]  Theorem
      
      ⊢ ∀r. 0 < r ⇒ +∞ / Normal r = +∞ ∧ −∞ / Normal r = −∞
   
   [infty_pow2]  Theorem
      
      ⊢ +∞ ² = +∞ ∧ −∞ ² = +∞
   
   [infty_powr]  Theorem
      
      ⊢ ∀a. 0 < a ⇒ +∞ powr a = +∞
   
   [inv_1over]  Theorem
      
      ⊢ ∀x. x ≠ 0 ⇒ x⁻¹ = 1 / x
   
   [inv_infty]  Theorem
      
      ⊢ +∞ ⁻¹ = 0 ∧ −∞ ⁻¹ = 0
   
   [inv_inj]  Theorem
      
      ⊢ ∀x y. 0 < x ∧ 0 < y ⇒ (x⁻¹ = y⁻¹ ⇔ x = y)
   
   [inv_inv]  Theorem
      
      ⊢ ∀x. x ≠ 0 ∧ x ≠ +∞ ∧ x ≠ −∞ ⇒ x⁻¹ ⁻¹ = x
   
   [inv_le_antimono]  Theorem
      
      ⊢ ∀x y. 0 < x ∧ 0 < y ⇒ (x⁻¹ ≤ y⁻¹ ⇔ y ≤ x)
   
   [inv_le_antimono_imp]  Theorem
      
      ⊢ ∀x y. 0 < y ∧ y ≤ x ⇒ x⁻¹ ≤ y⁻¹
   
   [inv_lt_antimono]  Theorem
      
      ⊢ ∀x y. 0 < x ∧ 0 < y ⇒ (x⁻¹ < y⁻¹ ⇔ y < x)
   
   [inv_mul]  Theorem
      
      ⊢ ∀x y. x ≠ 0 ∧ y ≠ 0 ⇒ (x * y)⁻¹ = x⁻¹ * y⁻¹
   
   [inv_not_infty]  Theorem
      
      ⊢ ∀x. x ≠ 0 ⇒ x⁻¹ ≠ +∞ ∧ x⁻¹ ≠ −∞
   
   [inv_one]  Theorem
      
      ⊢ 1⁻¹ = 1
   
   [inv_pos]  Theorem
      
      ⊢ ∀x. 0 < x ∧ x ≠ +∞ ⇒ 0 < 1 / x
   
   [inv_pos']  Theorem
      
      ⊢ ∀x. 0 < x ∧ x ≠ +∞ ⇒ 0 < x⁻¹
   
   [inv_pos_eq]  Theorem
      
      ⊢ ∀x. x ≠ 0 ⇒ (0 < x⁻¹ ⇔ x ≠ +∞ ∧ 0 ≤ x)
   
   [inv_powr]  Theorem
      
      ⊢ ∀x p. 0 < x ∧ 0 < p ∧ p ≠ +∞ ⇒ x⁻¹ powr p = (x powr p)⁻¹
   
   [ldiv_eq]  Theorem
      
      ⊢ ∀x y z. 0 < z ∧ z < +∞ ⇒ (x / z = y ⇔ x = y * z)
   
   [ldiv_le_imp]  Theorem
      
      ⊢ ∀x y z. 0 < z ∧ z ≠ +∞ ∧ x ≤ y ⇒ x / z ≤ y / z
   
   [le_01]  Theorem
      
      ⊢ 0 ≤ 1
   
   [le_02]  Theorem
      
      ⊢ 0 ≤ 2
   
   [le_abs]  Theorem
      
      ⊢ ∀x. x ≤ abs x ∧ -x ≤ abs x
   
   [le_abs_bounds]  Theorem
      
      ⊢ ∀k x. k ≤ abs x ⇔ x ≤ -k ∨ k ≤ x
   
   [le_add]  Theorem
      
      ⊢ ∀x y. 0 ≤ x ∧ 0 ≤ y ⇒ 0 ≤ x + y
   
   [le_add2]  Theorem
      
      ⊢ ∀w x y z. w ≤ x ∧ y ≤ z ⇒ w + y ≤ x + z
   
   [le_add_neg]  Theorem
      
      ⊢ ∀x y. x ≤ 0 ∧ y ≤ 0 ⇒ x + y ≤ 0
   
   [le_addl]  Theorem
      
      ⊢ ∀x y. y ≠ −∞ ∧ y ≠ +∞ ⇒ (y ≤ x + y ⇔ 0 ≤ x)
   
   [le_addl_imp]  Theorem
      
      ⊢ ∀x y. 0 ≤ x ⇒ y ≤ x + y
   
   [le_addr]  Theorem
      
      ⊢ ∀x y. x ≠ −∞ ∧ x ≠ +∞ ⇒ (x ≤ x + y ⇔ 0 ≤ y)
   
   [le_addr_imp]  Theorem
      
      ⊢ ∀x y. 0 ≤ y ⇒ x ≤ x + y
   
   [le_antisym]  Theorem
      
      ⊢ ∀x y. x ≤ y ∧ y ≤ x ⇔ x = y
   
   [le_div]  Theorem
      
      ⊢ ∀y z. 0 ≤ y ∧ 0 < z ⇒ 0 ≤ y / Normal z
   
   [le_epsilon]  Theorem
      
      ⊢ ∀x y. (∀e. 0 < e ∧ e ≠ +∞ ⇒ x ≤ y + e) ⇒ x ≤ y
   
   [le_inf]  Theorem
      
      ⊢ ∀p x. x ≤ inf p ⇔ ∀y. p y ⇒ x ≤ y
   
   [le_inf']  Theorem
      
      ⊢ ∀p x. x ≤ inf p ⇔ ∀y. y ∈ p ⇒ x ≤ y
   
   [le_inf_epsilon_set]  Theorem
      
      ⊢ ∀P e.
          0 < e ∧ (∃x. x ∈ P ∧ x ≠ +∞) ∧ inf P ≠ −∞ ⇒
          ∃x. x ∈ P ∧ x ≤ inf P + e
   
   [le_infty]  Theorem
      
      ⊢ (∀x. −∞ ≤ x ∧ x ≤ +∞) ∧ (∀x. x ≤ −∞ ⇔ x = −∞) ∧ ∀x. +∞ ≤ x ⇔ x = +∞
   
   [le_inv]  Theorem
      
      ⊢ ∀x. 0 < x ⇒ 0 ≤ x⁻¹
   
   [le_ladd]  Theorem
      
      ⊢ ∀x y z. x ≠ −∞ ∧ x ≠ +∞ ⇒ (x + y ≤ x + z ⇔ y ≤ z)
   
   [le_ladd_imp]  Theorem
      
      ⊢ ∀x y z. y ≤ z ⇒ x + y ≤ x + z
   
   [le_ldiv]  Theorem
      
      ⊢ ∀x y z. 0 < x ⇒ (y ≤ z * Normal x ⇔ y / Normal x ≤ z)
   
   [le_lmul]  Theorem
      
      ⊢ ∀x y z. 0 < x ∧ x ≠ +∞ ⇒ (x * y ≤ x * z ⇔ y ≤ z)
   
   [le_lmul_imp]  Theorem
      
      ⊢ ∀x y z. 0 ≤ z ∧ x ≤ y ⇒ z * x ≤ z * y
   
   [le_lneg]  Theorem
      
      ⊢ ∀x y. x ≠ −∞ ∧ y ≠ −∞ ∨ x ≠ +∞ ∧ y ≠ +∞ ⇒ (-x ≤ y ⇔ 0 ≤ x + y)
   
   [le_lsub_imp]  Theorem
      
      ⊢ ∀x y z. y ≤ z ⇒ x − z ≤ x − y
   
   [le_lt]  Theorem
      
      ⊢ ∀x y. x ≤ y ⇔ x < y ∨ x = y
   
   [le_max]  Theorem
      
      ⊢ ∀z x y. z ≤ max x y ⇔ z ≤ x ∨ z ≤ y
   
   [le_max1]  Theorem
      
      ⊢ ∀x y. x ≤ max x y
   
   [le_max2]  Theorem
      
      ⊢ ∀x y. y ≤ max x y
   
   [le_min]  Theorem
      
      ⊢ ∀z x y. z ≤ min x y ⇔ z ≤ x ∧ z ≤ y
   
   [le_mul]  Theorem
      
      ⊢ ∀x y. 0 ≤ x ∧ 0 ≤ y ⇒ 0 ≤ x * y
   
   [le_mul2]  Theorem
      
      ⊢ ∀x1 x2 y1 y2.
          0 ≤ x1 ∧ 0 ≤ y1 ∧ x1 ≤ x2 ∧ y1 ≤ y2 ⇒ x1 * y1 ≤ x2 * y2
   
   [le_mul_epsilon]  Theorem
      
      ⊢ ∀x y. (∀z. 0 ≤ z ∧ z < 1 ⇒ z * x ≤ y) ⇒ x ≤ y
   
   [le_mul_neg]  Theorem
      
      ⊢ ∀x y. x ≤ 0 ∧ y ≤ 0 ⇒ 0 ≤ x * y
   
   [le_neg]  Theorem
      
      ⊢ ∀x y. -x ≤ -y ⇔ y ≤ x
   
   [le_negl]  Theorem
      
      ⊢ ∀x y. -x ≤ y ⇔ -y ≤ x
   
   [le_negr]  Theorem
      
      ⊢ ∀x y. x ≤ -y ⇔ y ≤ -x
   
   [le_not_infty]  Theorem
      
      ⊢ (∀x. 0 ≤ x ⇒ x ≠ −∞) ∧ ∀x. x ≤ 0 ⇒ x ≠ +∞
   
   [le_num]  Theorem
      
      ⊢ ∀n. 0 ≤ &n
   
   [le_pow2]  Theorem
      
      ⊢ ∀x. 0 ≤ x²
   
   [le_radd]  Theorem
      
      ⊢ ∀x y z. x ≠ −∞ ∧ x ≠ +∞ ⇒ (y + x ≤ z + x ⇔ y ≤ z)
   
   [le_radd_imp]  Theorem
      
      ⊢ ∀x y z. y ≤ z ⇒ y + x ≤ z + x
   
   [le_rdiv]  Theorem
      
      ⊢ ∀x y z. 0 < x ⇒ (y * Normal x ≤ z ⇔ y ≤ z / Normal x)
   
   [le_refl]  Theorem
      
      ⊢ ∀x. x ≤ x
   
   [le_rmul]  Theorem
      
      ⊢ ∀x y z. 0 < z ∧ z ≠ +∞ ⇒ (x * z ≤ y * z ⇔ x ≤ y)
   
   [le_rmul_imp]  Theorem
      
      ⊢ ∀x y z. 0 ≤ z ∧ x ≤ y ⇒ x * z ≤ y * z
   
   [le_rsub_imp]  Theorem
      
      ⊢ ∀x y z. x ≤ y ⇒ x − z ≤ y − z
   
   [le_sub_eq]  Theorem
      
      ⊢ ∀x y z. x ≠ −∞ ∧ x ≠ +∞ ⇒ (y ≤ z − x ⇔ y + x ≤ z)
   
   [le_sub_eq2]  Theorem
      
      ⊢ ∀x y z. z ≠ −∞ ∧ z ≠ +∞ ∧ x ≠ −∞ ∧ y ≠ −∞ ⇒ (y ≤ z − x ⇔ y + x ≤ z)
   
   [le_sub_imp]  Theorem
      
      ⊢ ∀x y z. x ≠ −∞ ∧ x ≠ +∞ ∧ y + x ≤ z ⇒ y ≤ z − x
   
   [le_sub_imp2]  Theorem
      
      ⊢ ∀x y z. z ≠ −∞ ∧ z ≠ +∞ ∧ y + x ≤ z ⇒ y ≤ z − x
   
   [le_sup]  Theorem
      
      ⊢ ∀p x. x ≤ sup p ⇔ ∀y. (∀z. p z ⇒ z ≤ y) ⇒ x ≤ y
   
   [le_sup']  Theorem
      
      ⊢ ∀p x. x ≤ sup p ⇔ ∀y. (∀z. z ∈ p ⇒ z ≤ y) ⇒ x ≤ y
   
   [le_sup_imp]  Theorem
      
      ⊢ ∀p x. p x ⇒ x ≤ sup p
   
   [le_sup_imp']  Theorem
      
      ⊢ ∀p x. x ∈ p ⇒ x ≤ sup p
   
   [le_sup_imp2]  Theorem
      
      ⊢ ∀p z. (∃x. x ∈ p) ∧ (∀x. x ∈ p ⇒ z ≤ x) ⇒ z ≤ sup p
   
   [le_total]  Theorem
      
      ⊢ ∀x y. x ≤ y ∨ y ≤ x
   
   [le_trans]  Theorem
      
      ⊢ ∀x y z. x ≤ y ∧ y ≤ z ⇒ x ≤ z
   
   [leeq_trans]  Theorem
      
      ⊢ ∀x y z. x ≤ y ∧ y = z ⇒ x ≤ z
   
   [let_add]  Theorem
      
      ⊢ ∀x y. 0 ≤ x ∧ 0 < y ⇒ 0 < x + y
   
   [let_add2]  Theorem
      
      ⊢ ∀w x y z. w ≠ −∞ ∧ w ≠ +∞ ∧ w ≤ x ∧ y < z ⇒ w + y < x + z
   
   [let_add2_alt]  Theorem
      
      ⊢ ∀w x y z. x ≠ −∞ ∧ x ≠ +∞ ∧ w ≤ x ∧ y < z ⇒ w + y < x + z
   
   [let_antisym]  Theorem
      
      ⊢ ∀x y. ¬(x < y ∧ y ≤ x)
   
   [let_mul]  Theorem
      
      ⊢ ∀x y. 0 ≤ x ∧ 0 < y ⇒ 0 ≤ x * y
   
   [let_total]  Theorem
      
      ⊢ ∀x y. x ≤ y ∨ y < x
   
   [let_trans]  Theorem
      
      ⊢ ∀x y z. x ≤ y ∧ y < z ⇒ x < z
   
   [lim_sequentially_imp_extreal_lim]  Theorem
      
      ⊢ ∀f l.
          (f --> l) sequentially ⇒ (Normal ∘ f --> Normal l) sequentially
   
   [linv_uniq]  Theorem
      
      ⊢ ∀x y. x * y = 1 ⇒ x = y⁻¹
   
   [ln_1]  Theorem
      
      ⊢ ln 1 = 0
   
   [ln_inv]  Theorem
      
      ⊢ ∀x. 0 < x ⇒ ln x⁻¹ = -ln x
   
   [ln_mul]  Theorem
      
      ⊢ ∀x y. 0 < x ∧ 0 < y ⇒ ln (x * y) = ln x + ln y
   
   [ln_neg]  Theorem
      
      ⊢ ∀x. 0 ≤ x ∧ x ≤ 1 ⇒ ln x ≤ 0
   
   [ln_neg_lt]  Theorem
      
      ⊢ ∀x. 0 ≤ x ∧ x < 1 ⇒ ln x < 0
   
   [ln_not_neginf]  Theorem
      
      ⊢ ∀x. 0 < x ⇒ ln x ≠ −∞
   
   [ln_pos]  Theorem
      
      ⊢ ∀x. 1 ≤ x ⇒ 0 ≤ ln x
   
   [ln_pos_lt]  Theorem
      
      ⊢ ∀x. 1 < x ⇒ 0 < ln x
   
   [logr_not_infty]  Theorem
      
      ⊢ ∀x b. x ≠ −∞ ∧ x ≠ +∞ ⇒ logr b x ≠ −∞ ∧ logr b x ≠ +∞
   
   [lt_01]  Theorem
      
      ⊢ 0 < 1
   
   [lt_02]  Theorem
      
      ⊢ 0 < 2
   
   [lt_10]  Theorem
      
      ⊢ -1 < 0
   
   [lt_abs_bounds]  Theorem
      
      ⊢ ∀k x. k < abs x ⇔ x < -k ∨ k < x
   
   [lt_add]  Theorem
      
      ⊢ ∀x y. 0 < x ∧ 0 < y ⇒ 0 < x + y
   
   [lt_add2]  Theorem
      
      ⊢ ∀w x y z. w < x ∧ y < z ⇒ w + y < x + z
   
   [lt_add_neg]  Theorem
      
      ⊢ ∀x y. x < 0 ∧ y < 0 ⇒ x + y < 0
   
   [lt_addl]  Theorem
      
      ⊢ ∀x y. y ≠ −∞ ∧ y ≠ +∞ ⇒ (y < x + y ⇔ 0 < x)
   
   [lt_addr]  Theorem
      
      ⊢ ∀x y. x ≠ −∞ ∧ x ≠ +∞ ⇒ (x < x + y ⇔ 0 < y)
   
   [lt_addr_imp]  Theorem
      
      ⊢ ∀x y. x ≠ −∞ ∧ x ≠ +∞ ∧ 0 < y ⇒ x < x + y
   
   [lt_antisym]  Theorem
      
      ⊢ ∀x y. ¬(x < y ∧ y < x)
   
   [lt_div]  Theorem
      
      ⊢ ∀y z. 0 < y ∧ 0 < z ⇒ 0 < y / Normal z
   
   [lt_imp_le]  Theorem
      
      ⊢ ∀x y. x < y ⇒ x ≤ y
   
   [lt_imp_ne]  Theorem
      
      ⊢ ∀x y. x < y ⇒ x ≠ y
   
   [lt_inf_epsilon]  Theorem
      
      ⊢ ∀P e.
          0 < e ∧ (∃x. P x ∧ x ≠ +∞) ∧ inf P ≠ −∞ ⇒ ∃x. P x ∧ x < inf P + e
   
   [lt_inf_epsilon']  Theorem
      
      ⊢ ∀P e.
          0 < e ∧ (∃x. x ∈ P ∧ x ≠ +∞) ∧ inf P ≠ −∞ ⇒
          ∃x. x ∈ P ∧ x < inf P + e
   
   [lt_inf_epsilon_set]  Theorem
      
      ⊢ ∀P e.
          0 < e ∧ (∃x. x ∈ P ∧ x ≠ +∞) ∧ inf P ≠ −∞ ⇒
          ∃x. x ∈ P ∧ x < inf P + e
   
   [lt_infty]  Theorem
      
      ⊢ −∞ < +∞ ∧ (∀x. −∞ < Normal x ∧ Normal x < +∞) ∧
        (∀x. ¬(x < −∞) ∧ ¬(+∞ < x)) ∧ (∀x. x ≠ +∞ ⇔ x < +∞) ∧
        ∀x. x ≠ −∞ ⇔ −∞ < x
   
   [lt_ladd]  Theorem
      
      ⊢ ∀x y z. x ≠ −∞ ∧ x ≠ +∞ ⇒ (x + y < x + z ⇔ y < z)
   
   [lt_ldiv]  Theorem
      
      ⊢ ∀x y z. 0 < z ⇒ (x / Normal z < y ⇔ x < y * Normal z)
   
   [lt_le]  Theorem
      
      ⊢ ∀x y. x < y ⇔ x ≤ y ∧ x ≠ y
   
   [lt_lmul]  Theorem
      
      ⊢ ∀x y z. 0 < x ∧ x ≠ +∞ ⇒ (x * y < x * z ⇔ y < z)
   
   [lt_lmul_imp]  Theorem
      
      ⊢ ∀x y z. 0 < x ∧ x ≠ +∞ ∧ y < z ⇒ x * y < x * z
   
   [lt_lsub_imp]  Theorem
      
      ⊢ ∀x y z. x ≠ +∞ ∧ x ≠ −∞ ∧ y < z ⇒ x − z < x − y
   
   [lt_max]  Theorem
      
      ⊢ ∀x y z. x < max y z ⇔ x < y ∨ x < z
   
   [lt_max_between]  Theorem
      
      ⊢ ∀x b d. x < max b d ∧ b ≤ x ⇒ x < d
   
   [lt_max_fn_seq]  Theorem
      
      ⊢ ∀f x y n. x < max_fn_seq f n y ⇔ ∃i. i ≤ n ∧ x < f i y
   
   [lt_mul]  Theorem
      
      ⊢ ∀x y. 0 < x ∧ 0 < y ⇒ 0 < x * y
   
   [lt_mul2]  Theorem
      
      ⊢ ∀x1 x2 y1 y2.
          0 ≤ x1 ∧ 0 ≤ y1 ∧ x1 ≠ +∞ ∧ y1 ≠ +∞ ∧ x1 < x2 ∧ y1 < y2 ⇒
          x1 * y1 < x2 * y2
   
   [lt_mul_neg]  Theorem
      
      ⊢ ∀x y. x < 0 ∧ y < 0 ⇒ 0 < x * y
   
   [lt_neg]  Theorem
      
      ⊢ ∀x y. -x < -y ⇔ y < x
   
   [lt_radd]  Theorem
      
      ⊢ ∀x y z. x ≠ −∞ ∧ x ≠ +∞ ⇒ (y + x < z + x ⇔ y < z)
   
   [lt_rdiv]  Theorem
      
      ⊢ ∀x y z. 0 < z ⇒ (x < y / Normal z ⇔ x * Normal z < y)
   
   [lt_rdiv_neg]  Theorem
      
      ⊢ ∀x y z. z < 0 ⇒ (y / Normal z < x ⇔ x * Normal z < y)
   
   [lt_refl]  Theorem
      
      ⊢ ∀x. ¬(x < x)
   
   [lt_rmul]  Theorem
      
      ⊢ ∀x y z. 0 < z ∧ z ≠ +∞ ⇒ (x * z < y * z ⇔ x < y)
   
   [lt_rmul_imp]  Theorem
      
      ⊢ ∀x y z. x < y ∧ 0 < z ∧ z ≠ +∞ ⇒ x * z < y * z
   
   [lt_rsub_imp]  Theorem
      
      ⊢ ∀x y z. z ≠ +∞ ∧ z ≠ −∞ ∧ x < y ⇒ x − z < y − z
   
   [lt_sub]  Theorem
      
      ⊢ ∀x y z. x ≠ −∞ ∧ y ≠ −∞ ∧ z ≠ −∞ ∧ z ≠ +∞ ⇒ (y + x < z ⇔ y < z − x)
   
   [lt_sub']  Theorem
      
      ⊢ ∀x y z. x ≠ +∞ ∧ y ≠ +∞ ∧ z ≠ −∞ ∧ z ≠ +∞ ⇒ (y + x < z ⇔ y < z − x)
   
   [lt_sub_imp]  Theorem
      
      ⊢ ∀x y z. x ≠ −∞ ∧ y ≠ −∞ ∧ y + x < z ⇒ y < z − x
   
   [lt_sub_imp']  Theorem
      
      ⊢ ∀x y z. x ≠ +∞ ∧ y ≠ +∞ ∧ y + x < z ⇒ y < z − x
   
   [lt_sub_imp2]  Theorem
      
      ⊢ ∀x y z. x ≠ −∞ ∧ x ≠ +∞ ∧ y + x < z ⇒ y < z − x
   
   [lt_sup]  Theorem
      
      ⊢ ∀a s. a < sup s ⇔ ∃x. x ∈ s ∧ a < x
   
   [lt_total]  Theorem
      
      ⊢ ∀x y. x = y ∨ x < y ∨ y < x
   
   [lt_trans]  Theorem
      
      ⊢ ∀x y z. x < y ∧ y < z ⇒ x < z
   
   [lte_add]  Theorem
      
      ⊢ ∀x y. 0 < x ∧ 0 ≤ y ⇒ 0 < x + y
   
   [lte_mul]  Theorem
      
      ⊢ ∀x y. 0 < x ∧ 0 ≤ y ⇒ 0 ≤ x * y
   
   [lte_total]  Theorem
      
      ⊢ ∀x y. x < y ∨ y ≤ x
   
   [lte_trans]  Theorem
      
      ⊢ ∀x y z. x < y ∧ y ≤ z ⇒ x < z
   
   [max_comm]  Theorem
      
      ⊢ ∀x y. max x y = max y x
   
   [max_fn_seq_0]  Theorem
      
      ⊢ ∀g. max_fn_seq g 0 = g 0
   
   [max_fn_seq_alt_sup]  Theorem
      
      ⊢ ∀f x n. max_fn_seq f n x = sup (IMAGE (λi. f i x) (count (SUC n)))
   
   [max_fn_seq_compute]  Theorem
      
      ⊢ (∀g x. max_fn_seq g 0 x = g 0 x) ∧
        (∀g n x.
           max_fn_seq g (NUMERAL (BIT1 n)) x =
           max (max_fn_seq g (NUMERAL (BIT1 n) − 1) x)
             (g (NUMERAL (BIT1 n)) x)) ∧
        ∀g n x.
          max_fn_seq g (NUMERAL (BIT2 n)) x =
          max (max_fn_seq g (NUMERAL (BIT1 n)) x) (g (NUMERAL (BIT2 n)) x)
   
   [max_fn_seq_cong]  Theorem
      
      ⊢ ∀f g x.
          (∀n. f n x = g n x) ⇒ ∀n. max_fn_seq f n x = max_fn_seq g n x
   
   [max_fn_seq_le]  Theorem
      
      ⊢ ∀f x y n. max_fn_seq f n x ≤ y ⇔ ∀i. i ≤ n ⇒ f i x ≤ y
   
   [max_fn_seq_mono]  Theorem
      
      ⊢ ∀g n x. max_fn_seq g n x ≤ max_fn_seq g (SUC n) x
   
   [max_infty]  Theorem
      
      ⊢ ∀x. max x +∞ = +∞ ∧ max +∞ x = +∞ ∧ max −∞ x = x ∧ max x −∞ = x
   
   [max_le]  Theorem
      
      ⊢ ∀z x y. max x y ≤ z ⇔ x ≤ z ∧ y ≤ z
   
   [max_le2_imp]  Theorem
      
      ⊢ ∀x1 x2 y1 y2. x1 ≤ y1 ∧ x2 ≤ y2 ⇒ max x1 x2 ≤ max y1 y2
   
   [max_reduce]  Theorem
      
      ⊢ ∀x y. x ≤ y ∨ x < y ⇒ max x y = y ∧ max y x = y
   
   [max_refl]  Theorem
      
      ⊢ ∀x. max x x = x
   
   [min_comm]  Theorem
      
      ⊢ ∀x y. min x y = min y x
   
   [min_infty]  Theorem
      
      ⊢ ∀x. min x +∞ = x ∧ min +∞ x = x ∧ min −∞ x = −∞ ∧ min x −∞ = −∞
   
   [min_le]  Theorem
      
      ⊢ ∀z x y. min x y ≤ z ⇔ x ≤ z ∨ y ≤ z
   
   [min_le1]  Theorem
      
      ⊢ ∀x y. min x y ≤ x
   
   [min_le2]  Theorem
      
      ⊢ ∀x y. min x y ≤ y
   
   [min_le2_imp]  Theorem
      
      ⊢ ∀x1 x2 y1 y2. x1 ≤ y1 ∧ x2 ≤ y2 ⇒ min x1 x2 ≤ min y1 y2
   
   [min_le_between]  Theorem
      
      ⊢ ∀x a c. min a c ≤ x ∧ x < a ⇒ c ≤ x
   
   [min_reduce]  Theorem
      
      ⊢ ∀x y. x ≤ y ∨ x < y ⇒ min x y = x ∧ min y x = x
   
   [min_refl]  Theorem
      
      ⊢ ∀x. min x x = x
   
   [monoidal_mul]  Theorem
      
      ⊢ monoidal $*
   
   [mul_assoc]  Theorem
      
      ⊢ ∀x y z. x * (y * z) = x * y * z
   
   [mul_comm]  Theorem
      
      ⊢ ∀x y. x * y = y * x
   
   [mul_div_refl]  Theorem
      
      ⊢ ∀x r. r ≠ 0 ⇒ x = x * Normal r / Normal r
   
   [mul_infty]  Theorem
      
      ⊢ ∀x. 0 < x ⇒ +∞ * x = +∞ ∧ x * +∞ = +∞ ∧ −∞ * x = −∞ ∧ x * −∞ = −∞
   
   [mul_infty']  Theorem
      
      ⊢ ∀x. x < 0 ⇒ +∞ * x = −∞ ∧ x * +∞ = −∞ ∧ −∞ * x = +∞ ∧ x * −∞ = +∞
   
   [mul_lcancel]  Theorem
      
      ⊢ ∀x y z. x ≠ +∞ ∧ x ≠ −∞ ⇒ (x * y = x * z ⇔ x = 0 ∨ y = z)
   
   [mul_le]  Theorem
      
      ⊢ ∀x y. 0 ≤ x ∧ y ≤ 0 ⇒ x * y ≤ 0
   
   [mul_le2]  Theorem
      
      ⊢ ∀x y. x ≤ 0 ∧ 0 ≤ y ⇒ x * y ≤ 0
   
   [mul_let]  Theorem
      
      ⊢ ∀x y. 0 ≤ x ∧ y < 0 ⇒ x * y ≤ 0
   
   [mul_linv]  Theorem
      
      ⊢ ∀x. x ≠ 0 ∧ x ≠ +∞ ∧ x ≠ −∞ ⇒ x⁻¹ * x = 1
   
   [mul_linv_pos]  Theorem
      
      ⊢ ∀x. 0 < x ∧ x ≠ +∞ ⇒ x⁻¹ * x = 1
   
   [mul_lneg]  Theorem
      
      ⊢ ∀x y. -x * y = -(x * y)
   
   [mul_lone]  Theorem
      
      ⊢ ∀x. 1 * x = x
   
   [mul_lposinf]  Theorem
      
      ⊢ ∀x. 0 < x ⇒ +∞ * x = +∞
   
   [mul_lt]  Theorem
      
      ⊢ ∀x y. 0 < x ∧ y < 0 ⇒ x * y < 0
   
   [mul_lt2]  Theorem
      
      ⊢ ∀x y. x < 0 ∧ 0 < y ⇒ x * y < 0
   
   [mul_lte]  Theorem
      
      ⊢ ∀x y. 0 < x ∧ y ≤ 0 ⇒ x * y ≤ 0
   
   [mul_lzero]  Theorem
      
      ⊢ ∀x. 0 * x = 0
   
   [mul_not_infty]  Theorem
      
      ⊢ (∀c y. 0 ≤ c ∧ y ≠ −∞ ⇒ Normal c * y ≠ −∞) ∧
        (∀c y. 0 ≤ c ∧ y ≠ +∞ ⇒ Normal c * y ≠ +∞) ∧
        (∀c y. c ≤ 0 ∧ y ≠ −∞ ⇒ Normal c * y ≠ +∞) ∧
        ∀c y. c ≤ 0 ∧ y ≠ +∞ ⇒ Normal c * y ≠ −∞
   
   [mul_not_infty2]  Theorem
      
      ⊢ ∀x y. x ≠ −∞ ∧ x ≠ +∞ ∧ y ≠ −∞ ∧ y ≠ +∞ ⇒ x * y ≠ −∞ ∧ x * y ≠ +∞
   
   [mul_powr]  Theorem
      
      ⊢ ∀x y a.
          0 ≤ x ∧ 0 ≤ y ∧ 0 < a ∧ a ≠ +∞ ⇒
          (x * y) powr a = x powr a * y powr a
   
   [mul_rcancel]  Theorem
      
      ⊢ ∀x y z. x ≠ +∞ ∧ x ≠ −∞ ⇒ (y * x = z * x ⇔ x = 0 ∨ y = z)
   
   [mul_rneg]  Theorem
      
      ⊢ ∀x y. x * -y = -(x * y)
   
   [mul_rone]  Theorem
      
      ⊢ ∀x. x * 1 = x
   
   [mul_rposinf]  Theorem
      
      ⊢ ∀x. 0 < x ⇒ x * +∞ = +∞
   
   [mul_rzero]  Theorem
      
      ⊢ ∀x. x * 0 = 0
   
   [ne_01]  Theorem
      
      ⊢ 0 ≠ 1
   
   [ne_02]  Theorem
      
      ⊢ 0 ≠ 2
   
   [neg_0]  Theorem
      
      ⊢ -0 = 0
   
   [neg_add]  Theorem
      
      ⊢ ∀x y. x ≠ −∞ ∧ y ≠ −∞ ∨ x ≠ +∞ ∧ y ≠ +∞ ⇒ -(x + y) = -x + -y
   
   [neg_eq0]  Theorem
      
      ⊢ ∀x. -x = 0 ⇔ x = 0
   
   [neg_minus1]  Theorem
      
      ⊢ ∀x. -x = -1 * x
   
   [neg_mul2]  Theorem
      
      ⊢ ∀x y. -x * -y = x * y
   
   [neg_neg]  Theorem
      
      ⊢ ∀x. --x = x
   
   [neg_not_posinf]  Theorem
      
      ⊢ ∀x. x ≤ 0 ⇒ x ≠ +∞
   
   [neg_sub]  Theorem
      
      ⊢ ∀x y. x ≠ −∞ ∧ x ≠ +∞ ∨ y ≠ −∞ ∧ y ≠ +∞ ⇒ -(x − y) = y − x
   
   [neutral_mul]  Theorem
      
      ⊢ neutral $* = 1
   
   [nonneg_abs]  Theorem
      
      ⊢ ∀f. nonneg (abs ∘ f)
   
   [nonneg_fn_abs]  Theorem
      
      ⊢ ∀f. nonneg f ⇒ abs ∘ f = f
   
   [nonneg_fn_minus]  Theorem
      
      ⊢ ∀f. nonneg f ⇒ f⁻ = (λx. 0)
   
   [nonneg_fn_plus]  Theorem
      
      ⊢ ∀f. nonneg f ⇒ f⁺ = f
   
   [normal_0]  Theorem
      
      ⊢ Normal 0 = 0
   
   [normal_1]  Theorem
      
      ⊢ Normal 1 = 1
   
   [normal_exp]  Theorem
      
      ⊢ ∀r. exp (Normal r) = Normal (exp r)
   
   [normal_inv_eq]  Theorem
      
      ⊢ ∀x. x ≠ 0 ⇒ Normal x⁻¹ = (Normal x)⁻¹
   
   [normal_minus1]  Theorem
      
      ⊢ Normal (-1) = -1
   
   [normal_powr]  Theorem
      
      ⊢ ∀r a. 0 < r ∧ 0 < a ⇒ Normal r powr Normal a = Normal (r powr a)
   
   [normal_real]  Theorem
      
      ⊢ ∀x. x ≠ −∞ ∧ x ≠ +∞ ⇒ Normal (real x) = x
   
   [normal_real_set]  Theorem
      
      ⊢ ∀s. s ∩ IMAGE Normal 𝕌(:real) = IMAGE Normal (real_set s)
   
   [num_lt_infty]  Theorem
      
      ⊢ ∀n. &n < +∞
   
   [num_not_infty]  Theorem
      
      ⊢ ∀n. &n ≠ −∞ ∧ &n ≠ +∞
   
   [one_pow]  Theorem
      
      ⊢ ∀n. 1 pow n = 1
   
   [one_powr]  Theorem
      
      ⊢ ∀a. 0 ≤ a ⇒ 1 powr a = 1
   
   [pos_not_neginf]  Theorem
      
      ⊢ ∀x. 0 ≤ x ⇒ x ≠ −∞
   
   [pos_summable]  Theorem
      
      ⊢ ∀f. (∀n. 0 ≤ f n) ∧ (∃r. ∀n. ∑ f (count n) ≤ Normal r) ⇒
            suminf f < +∞
   
   [pow2_le_eq]  Theorem
      
      ⊢ ∀x y. 0 ≤ x ∧ 0 ≤ y ⇒ (x ≤ y ⇔ x² ≤ y²)
   
   [pow2_sqrt]  Theorem
      
      ⊢ ∀x. 0 ≤ x ⇒ sqrt x² = x
   
   [pow_0]  Theorem
      
      ⊢ ∀x. x pow 0 = 1
   
   [pow_1]  Theorem
      
      ⊢ ∀x. x pow 1 = x
   
   [pow_2]  Theorem
      
      ⊢ ∀x. x² = x * x
   
   [pow_2_abs]  Theorem
      
      ⊢ ∀x. x² = abs x * abs x
   
   [pow_add]  Theorem
      
      ⊢ ∀x n m. x pow (n + m) = x pow n * x pow m
   
   [pow_ainv_even]  Theorem
      
      ⊢ ∀n. EVEN n ⇒ ∀x. -x pow n = x pow n
   
   [pow_ainv_odd]  Theorem
      
      ⊢ ∀n. ODD n ⇒ ∀x. -x pow n = -(x pow n)
   
   [pow_div]  Theorem
      
      ⊢ ∀n x y. x ≠ +∞ ∧ x ≠ −∞ ∧ 0 < y ⇒ (x / y) pow n = x pow n / y pow n
   
   [pow_eq]  Theorem
      
      ⊢ ∀n x y. n ≠ 0 ∧ 0 ≤ x ∧ 0 ≤ y ⇒ (x = y ⇔ x pow n = y pow n)
   
   [pow_even_le]  Theorem
      
      ⊢ ∀n. EVEN n ⇒ ∀x. 0 ≤ x pow n
   
   [pow_half_pos_le]  Theorem
      
      ⊢ ∀n. 0 ≤ (1 / 2) pow n
   
   [pow_half_pos_lt]  Theorem
      
      ⊢ ∀n. 0 < (1 / 2) pow (n + 1)
   
   [pow_half_ser]  Theorem
      
      ⊢ suminf (λn. (1 / 2) pow (n + 1)) = 1
   
   [pow_half_ser']  Theorem
      
      ⊢ suminf (λn. (1 / 2) pow SUC n) = 1
   
   [pow_half_ser_by_e]  Theorem
      
      ⊢ ∀e. 0 < e ∧ e ≠ +∞ ⇒ e = suminf (λn. e * (1 / 2) pow (n + 1))
   
   [pow_inv]  Theorem
      
      ⊢ ∀n y. y ≠ 0 ⇒ (y pow n)⁻¹ = y⁻¹ pow n
   
   [pow_le]  Theorem
      
      ⊢ ∀n x y. 0 ≤ x ∧ x ≤ y ⇒ x pow n ≤ y pow n
   
   [pow_le_full]  Theorem
      
      ⊢ ∀n x y. n ≠ 0 ∧ 0 ≤ x ∧ 0 ≤ y ⇒ (x ≤ y ⇔ x pow n ≤ y pow n)
   
   [pow_le_mono]  Theorem
      
      ⊢ ∀x n m. 1 ≤ x ∧ n ≤ m ⇒ x pow n ≤ x pow m
   
   [pow_lt]  Theorem
      
      ⊢ ∀n x y. 0 ≤ x ∧ x < y ⇒ x pow SUC n < y pow SUC n
   
   [pow_lt2]  Theorem
      
      ⊢ ∀n x y. n ≠ 0 ∧ 0 ≤ x ∧ x < y ⇒ x pow n < y pow n
   
   [pow_minus1]  Theorem
      
      ⊢ ∀n. -1 pow (2 * n) = 1
   
   [pow_mul]  Theorem
      
      ⊢ ∀n x y. (x * y) pow n = x pow n * y pow n
   
   [pow_neg_odd]  Theorem
      
      ⊢ ∀x. x < 0 ⇒ (x pow n < 0 ⇔ ODD n)
   
   [pow_not_infty]  Theorem
      
      ⊢ ∀n x. x ≠ −∞ ∧ x ≠ +∞ ⇒ x pow n ≠ −∞ ∧ x pow n ≠ +∞
   
   [pow_pos_even]  Theorem
      
      ⊢ ∀x. x < 0 ⇒ (0 < x pow n ⇔ EVEN n)
   
   [pow_pos_le]  Theorem
      
      ⊢ ∀n x. 0 ≤ x ⇒ 0 ≤ x pow n
   
   [pow_pos_lt]  Theorem
      
      ⊢ ∀n x. 0 < x ⇒ 0 < x pow n
   
   [pow_pow]  Theorem
      
      ⊢ ∀x m n. (x pow m) pow n = x pow (m * n)
   
   [pow_zero]  Theorem
      
      ⊢ ∀n x. x pow SUC n = 0 ⇔ x = 0
   
   [pow_zero_imp]  Theorem
      
      ⊢ ∀n x. x pow n = 0 ⇒ x = 0
   
   [powr_0]  Theorem
      
      ⊢ ∀x. x powr 0 = 1
   
   [powr_1]  Theorem
      
      ⊢ ∀x. 0 ≤ x ⇒ x powr 1 = x
   
   [powr_add]  Theorem
      
      ⊢ ∀a b c.
          0 ≤ a ∧ 0 ≤ b ∧ b ≠ +∞ ∧ 0 ≤ c ∧ c ≠ +∞ ⇒
          a powr (b + c) = a powr b * a powr c
   
   [powr_eq_0]  Theorem
      
      ⊢ ∀x a. 0 ≤ x ∧ 0 < a ∧ a ≠ +∞ ⇒ (x powr a = 0 ⇔ x = 0)
   
   [powr_ge_1]  Theorem
      
      ⊢ ∀a p. 1 ≤ a ∧ 0 ≤ p ⇒ 1 ≤ a powr p
   
   [powr_infty]  Theorem
      
      ⊢ ∀x. (1 < x ⇒ x powr +∞ = +∞) ∧ (x = 1 ⇒ x powr +∞ = 1) ∧
            (0 ≤ x ∧ x < 1 ⇒ x powr +∞ = 0)
   
   [powr_le_eq]  Theorem
      
      ⊢ ∀a b c.
          1 < a ∧ a ≠ +∞ ∧ 0 ≤ b ∧ 0 ≤ c ⇒ (a powr b ≤ a powr c ⇔ b ≤ c)
   
   [powr_mono_eq]  Theorem
      
      ⊢ ∀a b c.
          0 ≤ a ∧ 0 ≤ c ∧ 0 < b ∧ b ≠ +∞ ⇒ (a powr b ≤ c powr b ⇔ a ≤ c)
   
   [powr_pos]  Theorem
      
      ⊢ ∀x a. 0 ≤ x powr a
   
   [powr_pos_lt]  Theorem
      
      ⊢ ∀x a. 0 < x ∧ 0 ≤ a ∧ a ≠ +∞ ⇒ 0 < x powr a
   
   [powr_powr]  Theorem
      
      ⊢ ∀a b c.
          0 ≤ a ∧ 0 < b ∧ 0 < c ∧ b ≠ +∞ ∧ c ≠ +∞ ⇒
          (a powr b) powr c = a powr (b * c)
   
   [quotient_normal]  Theorem
      
      ⊢ ∀n m. m ≠ 0 ⇒ &n / &m = Normal (&n / &m)
   
   [rat_not_infty]  Theorem
      
      ⊢ ∀r. r ∈ ℚ꙳ ⇒ r ≠ −∞ ∧ r ≠ +∞
   
   [rdiv_eq]  Theorem
      
      ⊢ ∀x y z. 0 < z ∧ z < +∞ ⇒ (x = y / z ⇔ x * z = y)
   
   [real_0]  Theorem
      
      ⊢ real 0 = 0
   
   [real_def]  Theorem
      
      ⊢ ∀x. real x = if x = −∞ ∨ x = +∞ then 0 else @r. x = Normal r
   
   [real_normal]  Theorem
      
      ⊢ ∀x. real (Normal x) = x
   
   [rinv_uniq]  Theorem
      
      ⊢ ∀x y. x * y = 1 ⇒ y = x⁻¹
   
   [sqrt_0]  Theorem
      
      ⊢ sqrt 0 = 0
   
   [sqrt_1]  Theorem
      
      ⊢ sqrt 1 = 1
   
   [sqrt_le_n]  Theorem
      
      ⊢ ∀n. sqrt (&n) ≤ &n
   
   [sqrt_le_x]  Theorem
      
      ⊢ ∀x. 1 ≤ x ⇒ sqrt x ≤ x
   
   [sqrt_mono_le]  Theorem
      
      ⊢ ∀x y. 0 ≤ x ∧ x ≤ y ⇒ sqrt x ≤ sqrt y
   
   [sqrt_mul]  Theorem
      
      ⊢ ∀x y. 0 ≤ x ∧ 0 ≤ y ⇒ sqrt (x * y) = sqrt x * sqrt y
   
   [sqrt_pos_le]  Theorem
      
      ⊢ ∀x. 0 ≤ x ⇒ 0 ≤ sqrt x
   
   [sqrt_pos_lt]  Theorem
      
      ⊢ ∀x. 0 < x ⇒ 0 < sqrt x
   
   [sqrt_pos_ne]  Theorem
      
      ⊢ ∀x. 0 < x ⇒ sqrt x ≠ 0
   
   [sqrt_pow2]  Theorem
      
      ⊢ ∀x. (sqrt x)² = x ⇔ 0 ≤ x
   
   [sqrt_powr]  Theorem
      
      ⊢ ∀x. 0 ≤ x ⇒ sqrt x = x powr 2⁻¹
   
   [sub_0]  Theorem
      
      ⊢ ∀x y. x − y = 0 ⇒ x = y
   
   [sub_add]  Theorem
      
      ⊢ ∀x y. y ≠ −∞ ∧ y ≠ +∞ ⇒ x − y + y = x
   
   [sub_add2]  Theorem
      
      ⊢ ∀x y. x ≠ −∞ ∧ x ≠ +∞ ⇒ x + (y − x) = y
   
   [sub_add_normal]  Theorem
      
      ⊢ ∀x r. x − Normal r + Normal r = x
   
   [sub_eq_0]  Theorem
      
      ⊢ ∀x y. x ≠ +∞ ∧ x ≠ −∞ ∧ x = y ⇒ x − y = 0
   
   [sub_infty]  Theorem
      
      ⊢ (∀x. x ≠ −∞ ⇒ x − −∞ = +∞) ∧ (∀x. x ≠ +∞ ⇒ x − +∞ = −∞) ∧
        (∀x. x ≠ +∞ ⇒ +∞ − x = +∞) ∧ ∀x. x ≠ −∞ ⇒ −∞ − x = −∞
   
   [sub_ldistrib]  Theorem
      
      ⊢ ∀x y z.
          x ≠ −∞ ∧ x ≠ +∞ ∧ y ≠ −∞ ∧ y ≠ +∞ ∧ z ≠ −∞ ∧ z ≠ +∞ ⇒
          x * (y − z) = x * y − x * z
   
   [sub_le_eq]  Theorem
      
      ⊢ ∀x y z. x ≠ −∞ ∧ x ≠ +∞ ⇒ (y − x ≤ z ⇔ y ≤ z + x)
   
   [sub_le_eq2]  Theorem
      
      ⊢ ∀x y z. y ≠ −∞ ∧ y ≠ +∞ ∧ x ≠ −∞ ∧ z ≠ −∞ ⇒ (y − x ≤ z ⇔ y ≤ z + x)
   
   [sub_le_imp]  Theorem
      
      ⊢ ∀x y z. x ≠ −∞ ∧ x ≠ +∞ ∧ y ≤ z + x ⇒ y − x ≤ z
   
   [sub_le_imp2]  Theorem
      
      ⊢ ∀x y z. y ≠ −∞ ∧ y ≠ +∞ ∧ y ≤ z + x ⇒ y − x ≤ z
   
   [sub_le_sub_imp]  Theorem
      
      ⊢ ∀w x y z. w ≤ x ∧ z ≤ y ⇒ w − y ≤ x − z
   
   [sub_le_switch]  Theorem
      
      ⊢ ∀x y z. x ≠ −∞ ∧ x ≠ +∞ ∧ z ≠ −∞ ∧ z ≠ +∞ ⇒ (y − x ≤ z ⇔ y − z ≤ x)
   
   [sub_le_switch2]  Theorem
      
      ⊢ ∀x y z. x ≠ −∞ ∧ x ≠ +∞ ∧ y ≠ −∞ ∧ y ≠ +∞ ⇒ (y − x ≤ z ⇔ y − z ≤ x)
   
   [sub_le_zero]  Theorem
      
      ⊢ ∀x y. y ≠ −∞ ∧ y ≠ +∞ ⇒ (x ≤ y ⇔ x − y ≤ 0)
   
   [sub_lneg]  Theorem
      
      ⊢ ∀x y. x ≠ −∞ ∧ y ≠ −∞ ∨ x ≠ +∞ ∧ y ≠ +∞ ⇒ -x − y = -(x + y)
   
   [sub_lt_eq]  Theorem
      
      ⊢ ∀x y z. x ≠ −∞ ∧ x ≠ +∞ ⇒ (y − x < z ⇔ y < z + x)
   
   [sub_lt_imp]  Theorem
      
      ⊢ ∀x y z. x ≠ −∞ ∧ x ≠ +∞ ∧ y < z + x ⇒ y − x < z
   
   [sub_lt_imp2]  Theorem
      
      ⊢ ∀x y z. z ≠ −∞ ∧ z ≠ +∞ ∧ y < z + x ⇒ y − x < z
   
   [sub_lt_zero]  Theorem
      
      ⊢ ∀x y. x < y ⇒ x − y < 0
   
   [sub_lt_zero2]  Theorem
      
      ⊢ ∀x y. y ≠ −∞ ∧ y ≠ +∞ ∧ x − y < 0 ⇒ x < y
   
   [sub_lzero]  Theorem
      
      ⊢ ∀x. 0 − x = -x
   
   [sub_not_infty]  Theorem
      
      ⊢ ∀x y.
          (x ≠ −∞ ∧ y ≠ +∞ ⇒ x − y ≠ −∞) ∧ (x ≠ +∞ ∧ y ≠ −∞ ⇒ x − y ≠ +∞)
   
   [sub_pow2]  Theorem
      
      ⊢ ∀x y.
          x ≠ −∞ ∧ x ≠ +∞ ∧ y ≠ −∞ ∧ y ≠ +∞ ⇒
          (x − y)² = x² + y² − 2 * x * y
   
   [sub_rdistrib]  Theorem
      
      ⊢ ∀x y z.
          x ≠ −∞ ∧ x ≠ +∞ ∧ y ≠ −∞ ∧ y ≠ +∞ ∧ z ≠ −∞ ∧ z ≠ +∞ ⇒
          (x − y) * z = x * z − y * z
   
   [sub_refl]  Theorem
      
      ⊢ ∀x. x ≠ −∞ ∧ x ≠ +∞ ⇒ x − x = 0
   
   [sub_rneg]  Theorem
      
      ⊢ ∀x y. x − -y = x + y
   
   [sub_rzero]  Theorem
      
      ⊢ ∀x. x − 0 = x
   
   [sub_zero_le]  Theorem
      
      ⊢ ∀x y. x ≠ −∞ ∧ x ≠ +∞ ⇒ (x ≤ y ⇔ 0 ≤ y − x)
   
   [sub_zero_lt]  Theorem
      
      ⊢ ∀x y. x < y ⇒ 0 < y − x
   
   [sub_zero_lt2]  Theorem
      
      ⊢ ∀x y. x ≠ −∞ ∧ x ≠ +∞ ∧ 0 < y − x ⇒ x < y
   
   [summable_ext_suminf]  Theorem
      
      ⊢ ∀f. (∀n. 0 ≤ f n) ∧ summable f ⇒ suminf (Normal ∘ f) < +∞
   
   [summable_ext_suminf_suminf]  Theorem
      
      ⊢ ∀f. (∀n. 0 ≤ f n) ∧ summable f ⇒
            suminf (Normal ∘ f) = Normal (suminf f)
   
   [sup_add_mono]  Theorem
      
      ⊢ ∀f g.
          (∀n. 0 ≤ f n) ∧ (∀n. f n ≤ f (SUC n)) ∧ (∀n. 0 ≤ g n) ∧
          (∀n. g n ≤ g (SUC n)) ⇒
          sup (IMAGE (λn. f n + g n) 𝕌(:num)) =
          sup (IMAGE f 𝕌(:num)) + sup (IMAGE g 𝕌(:num))
   
   [sup_close]  Theorem
      
      ⊢ ∀e s. 0 < e ∧ abs (sup s) ≠ +∞ ∧ s ≠ ∅ ⇒ ∃x. x ∈ s ∧ sup s − e < x
   
   [sup_cmul]  Theorem
      
      ⊢ ∀f c.
          0 ≤ c ⇒
          sup (IMAGE (λn. Normal c * f n) 𝕌(:α)) =
          Normal c * sup (IMAGE f 𝕌(:α))
   
   [sup_cmult]  Theorem
      
      ⊢ ∀f c.
          0 ≤ c ∧ (∀n. 0 ≤ f n) ⇒
          sup (IMAGE (λn. c * f n) 𝕌(:α)) = c * sup (IMAGE f 𝕌(:α))
   
   [sup_comm]  Theorem
      
      ⊢ ∀f. sup {sup {f i j | j ∈ 𝕌(:num)} | i ∈ 𝕌(:num)} =
            sup {sup {f i j | i ∈ 𝕌(:num)} | j ∈ 𝕌(:num)}
   
   [sup_const]  Theorem
      
      ⊢ ∀x. sup (λy. y = x) = x
   
   [sup_const_alt]  Theorem
      
      ⊢ ∀p z. (∃x. p x) ∧ (∀x. p x ⇒ x = z) ⇒ sup p = z
   
   [sup_const_alt']  Theorem
      
      ⊢ ∀p z. (∃x. x ∈ p) ∧ (∀x. x ∈ p ⇒ x = z) ⇒ sup p = z
   
   [sup_const_over_set]  Theorem
      
      ⊢ ∀s k. s ≠ ∅ ⇒ sup (IMAGE (λx. k) s) = k
   
   [sup_const_over_univ]  Theorem
      
      ⊢ ∀k. sup (IMAGE (λx. k) 𝕌(:α)) = k
   
   [sup_countable_seq]  Theorem
      
      ⊢ ∀A. A ≠ ∅ ⇒
            ∃f. IMAGE f 𝕌(:num) ⊆ A ∧ sup A = sup {f n | n ∈ 𝕌(:num)}
   
   [sup_empty]  Theorem
      
      ⊢ sup ∅ = −∞
   
   [sup_eq]  Theorem
      
      ⊢ ∀p x. sup p = x ⇔ (∀y. p y ⇒ y ≤ x) ∧ ∀y. (∀z. p z ⇒ z ≤ y) ⇒ x ≤ y
   
   [sup_eq']  Theorem
      
      ⊢ ∀p x.
          sup p = x ⇔ (∀y. y ∈ p ⇒ y ≤ x) ∧ ∀y. (∀z. z ∈ p ⇒ z ≤ y) ⇒ x ≤ y
   
   [sup_insert]  Theorem
      
      ⊢ ∀x s. sup (x INSERT s) = if s = ∅ then x else max x (sup s)
   
   [sup_le]  Theorem
      
      ⊢ ∀p x. sup p ≤ x ⇔ ∀y. p y ⇒ y ≤ x
   
   [sup_le']  Theorem
      
      ⊢ ∀p x. sup p ≤ x ⇔ ∀y. y ∈ p ⇒ y ≤ x
   
   [sup_le_mono]  Theorem
      
      ⊢ ∀f z.
          (∀n. f n ≤ f (SUC n)) ∧ z < sup (IMAGE f 𝕌(:num)) ⇒ ∃n. z ≤ f n
   
   [sup_le_sup_imp]  Theorem
      
      ⊢ ∀p q. (∀x. p x ⇒ ∃y. q y ∧ x ≤ y) ⇒ sup p ≤ sup q
   
   [sup_le_sup_imp']  Theorem
      
      ⊢ ∀p q. (∀x. x ∈ p ⇒ ∃y. y ∈ q ∧ x ≤ y) ⇒ sup p ≤ sup q
   
   [sup_lt]  Theorem
      
      ⊢ ∀P y. (∃x. P x ∧ y < x) ⇔ y < sup P
   
   [sup_lt']  Theorem
      
      ⊢ ∀P y. (∃x. x ∈ P ∧ y < x) ⇔ y < sup P
   
   [sup_lt_epsilon]  Theorem
      
      ⊢ ∀P e.
          0 < e ∧ (∃x. P x ∧ x ≠ −∞) ∧ sup P ≠ +∞ ⇒ ∃x. P x ∧ sup P < x + e
   
   [sup_lt_epsilon']  Theorem
      
      ⊢ ∀P e.
          0 < e ∧ (∃x. x ∈ P ∧ x ≠ −∞) ∧ sup P ≠ +∞ ⇒
          ∃x. x ∈ P ∧ sup P < x + e
   
   [sup_lt_infty]  Theorem
      
      ⊢ ∀p. sup p < +∞ ⇒ ∀x. p x ⇒ x < +∞
   
   [sup_max]  Theorem
      
      ⊢ ∀p z. p z ∧ (∀x. p x ⇒ x ≤ z) ⇒ sup p = z
   
   [sup_maximal]  Theorem
      
      ⊢ ∀p. FINITE p ∧ p ≠ ∅ ⇒ sup p ∈ p
   
   [sup_mono]  Theorem
      
      ⊢ ∀p q.
          (∀n. p n ≤ q n) ⇒ sup (IMAGE p 𝕌(:num)) ≤ sup (IMAGE q 𝕌(:num))
   
   [sup_mono_ext]  Theorem
      
      ⊢ ∀f g A B.
          (∀n. n ∈ A ⇒ ∃m. m ∈ B ∧ f n ≤ g m) ⇒
          sup {f n | n ∈ A} ≤ sup {g n | n ∈ B}
   
   [sup_mono_subset]  Theorem
      
      ⊢ ∀p q. p ⊆ q ⇒ sup p ≤ sup q
   
   [sup_num]  Theorem
      
      ⊢ sup (λx. ∃n. x = &n) = +∞
   
   [sup_seq]  Theorem
      
      ⊢ ∀f l.
          mono_increasing f ⇒
          (f --> l ⇔ sup (IMAGE (λn. Normal (f n)) 𝕌(:num)) = Normal l)
   
   [sup_seq_countable_seq]  Theorem
      
      ⊢ ∀A g.
          A ≠ ∅ ⇒
          ∃f. IMAGE f 𝕌(:num) ⊆ IMAGE g A ∧
              sup {g n | n ∈ A} = sup {f n | n ∈ 𝕌(:num)}
   
   [sup_shift]  Theorem
      
      ⊢ ∀f. (∀m n. m ≤ n ⇒ f m ≤ f n) ⇒
            ∀N. sup (IMAGE (λn. f (n + N)) 𝕌(:num)) = sup (IMAGE f 𝕌(:num))
   
   [sup_sing]  Theorem
      
      ⊢ ∀a. sup {a} = a
   
   [sup_suc]  Theorem
      
      ⊢ ∀f. (∀m n. m ≤ n ⇒ f m ≤ f n) ⇒
            sup (IMAGE (λn. f (SUC n)) 𝕌(:num)) = sup (IMAGE f 𝕌(:num))
   
   [sup_sum_mono]  Theorem
      
      ⊢ ∀f s.
          FINITE s ∧ (∀i. i ∈ s ⇒ ∀n. 0 ≤ f i n) ∧
          (∀i. i ∈ s ⇒ ∀n. f i n ≤ f i (SUC n)) ⇒
          sup (IMAGE (λn. ∑ (λi. f i n) s) 𝕌(:num)) =
          ∑ (λi. sup (IMAGE (f i) 𝕌(:num))) s
   
   [sup_univ]  Theorem
      
      ⊢ sup 𝕌(:extreal) = +∞
   
   [third_cancel]  Theorem
      
      ⊢ 3 * (1 / 3) = 1
   
   [thirds_between]  Theorem
      
      ⊢ ((0 < 1 / 3 ∧ 1 / 3 < 1) ∧ 0 < 2 / 3 ∧ 2 / 3 < 1) ∧
        (0 ≤ 1 / 3 ∧ 1 / 3 ≤ 1) ∧ 0 ≤ 2 / 3 ∧ 2 / 3 ≤ 1
   
   [x_half_half]  Theorem
      
      ⊢ ∀x. 1 / 2 * x + 1 / 2 * x = x
   
   [young_inequality]  Theorem
      
      ⊢ ∀a b p q.
          0 ≤ a ∧ 0 ≤ b ∧ 0 < p ∧ 0 < q ∧ p ≠ +∞ ∧ q ≠ +∞ ∧ p⁻¹ + q⁻¹ = 1 ⇒
          a * b ≤ a powr p / p + b powr q / q
   
   [zero_div]  Theorem
      
      ⊢ ∀x. x ≠ 0 ⇒ 0 / x = 0
   
   [zero_pow]  Theorem
      
      ⊢ ∀n. 0 < n ⇒ 0 pow n = 0
   
   [zero_rpow]  Theorem
      
      ⊢ ∀x. 0 < x ⇒ 0 powr x = 0
   
   
*)
end


Source File Identifier index Theory binding index

HOL 4, Trindemossen-1