Structure topologyTheory


Source File Identifier index Theory binding index

signature topologyTheory =
sig
  type thm = Thm.thm
  
  (*  Definitions  *)
    val ARBITRARY : thm
    val INTERSECTION_OF : thm
    val UNION_OF : thm
    val closed_DEF : thm
    val closed_in : thm
    val hull : thm
    val istopology : thm
    val limpt : thm
    val neigh : thm
    val open_DEF : thm
    val pairwise : thm
    val relative_to : thm
    val subtopology : thm
    val topology_TY_DEF : thm
    val topology_tybij : thm
    val topspace : thm
  
  (*  Theorems  *)
    val ARBITRARY_INTERSECTION_OF_COMPLEMENT : thm
    val ARBITRARY_INTERSECTION_OF_EMPTY : thm
    val ARBITRARY_INTERSECTION_OF_IDEMPOT : thm
    val ARBITRARY_INTERSECTION_OF_INC : thm
    val ARBITRARY_INTERSECTION_OF_INTER : thm
    val ARBITRARY_INTERSECTION_OF_INTERS : thm
    val ARBITRARY_INTERSECTION_OF_RELATIVE_TO : thm
    val ARBITRARY_INTERSECTION_OF_UNION : thm
    val ARBITRARY_INTERSECTION_OF_UNION_EQ : thm
    val ARBITRARY_UNION_OF_ALT : thm
    val ARBITRARY_UNION_OF_COMPLEMENT : thm
    val ARBITRARY_UNION_OF_EMPTY : thm
    val ARBITRARY_UNION_OF_IDEMPOT : thm
    val ARBITRARY_UNION_OF_INC : thm
    val ARBITRARY_UNION_OF_INTER : thm
    val ARBITRARY_UNION_OF_INTER_EQ : thm
    val ARBITRARY_UNION_OF_NONEMPTY_FINITE_INTERSECTION : thm
    val ARBITRARY_UNION_OF_RELATIVE_TO : thm
    val ARBITRARY_UNION_OF_UNION : thm
    val ARBITRARY_UNION_OF_UNIONS : thm
    val BIGUNION_2 : thm
    val CLOSED_IN_BIGINTER : thm
    val CLOSED_IN_BIGUNION : thm
    val CLOSED_IN_DIFF : thm
    val CLOSED_IN_EMPTY : thm
    val CLOSED_IN_IMP_SUBSET : thm
    val CLOSED_IN_INTER : thm
    val CLOSED_IN_OPEN_IN_COMPL : thm
    val CLOSED_IN_RELATIVE_TO : thm
    val CLOSED_IN_SUBSET : thm
    val CLOSED_IN_SUBTOPOLOGY : thm
    val CLOSED_IN_SUBTOPOLOGY_EMPTY : thm
    val CLOSED_IN_SUBTOPOLOGY_REFL : thm
    val CLOSED_IN_SUBTOPOLOGY_UNION : thm
    val CLOSED_IN_TOPSPACE : thm
    val CLOSED_IN_UNION : thm
    val CLOSED_LIMPT : thm
    val COMPL_COMPL_applied : thm
    val COUNTABLE_DISJOINT_UNION_OF_IDEMPOT : thm
    val COUNTABLE_INTERSECTION_OF_COMPLEMENT : thm
    val COUNTABLE_INTERSECTION_OF_EMPTY : thm
    val COUNTABLE_INTERSECTION_OF_IDEMPOT : thm
    val COUNTABLE_INTERSECTION_OF_INC : thm
    val COUNTABLE_INTERSECTION_OF_INTER : thm
    val COUNTABLE_INTERSECTION_OF_INTERS : thm
    val COUNTABLE_INTERSECTION_OF_RELATIVE_TO : thm
    val COUNTABLE_INTERSECTION_OF_RELATIVE_TO_ALT : thm
    val COUNTABLE_INTERSECTION_OF_UNION : thm
    val COUNTABLE_INTERSECTION_OF_UNIONS : thm
    val COUNTABLE_INTERSECTION_OF_UNIONS_NONEMPTY : thm
    val COUNTABLE_INTERSECTION_OF_UNION_EQ : thm
    val COUNTABLE_SUBSET_NUM : thm
    val COUNTABLE_UNION_OF_ASCENDING : thm
    val COUNTABLE_UNION_OF_COMPLEMENT : thm
    val COUNTABLE_UNION_OF_EMPTY : thm
    val COUNTABLE_UNION_OF_EXPLICIT : thm
    val COUNTABLE_UNION_OF_IDEMPOT : thm
    val COUNTABLE_UNION_OF_INC : thm
    val COUNTABLE_UNION_OF_INTER : thm
    val COUNTABLE_UNION_OF_INTERS : thm
    val COUNTABLE_UNION_OF_INTERS_NONEMPTY : thm
    val COUNTABLE_UNION_OF_INTER_EQ : thm
    val COUNTABLE_UNION_OF_RELATIVE_TO : thm
    val COUNTABLE_UNION_OF_UNION : thm
    val COUNTABLE_UNION_OF_UNIONS : thm
    val DIFF_INTERS : thm
    val DIFF_UNIONS : thm
    val DIFF_UNIONS_NONEMPTY : thm
    val EMPTY_GSPEC : thm
    val EXT_SKOLEM_THM : thm
    val EXT_SKOLEM_THM' : thm
    val FINITE_IMAGE : thm
    val FINITE_INDUCT_STRONG : thm
    val FINITE_INTERSECTION_OF_COMPLEMENT : thm
    val FINITE_INTERSECTION_OF_EMPTY : thm
    val FINITE_INTERSECTION_OF_IDEMPOT : thm
    val FINITE_INTERSECTION_OF_INC : thm
    val FINITE_INTERSECTION_OF_INTER : thm
    val FINITE_INTERSECTION_OF_INTERS : thm
    val FINITE_INTERSECTION_OF_RELATIVE_TO : thm
    val FINITE_INTERSECTION_OF_RELATIVE_TO_ALT : thm
    val FINITE_INTERSECTION_OF_UNION : thm
    val FINITE_INTERSECTION_OF_UNION_EQ : thm
    val FINITE_SUBSET : thm
    val FINITE_UNION_OF_COMPLEMENT : thm
    val FINITE_UNION_OF_EMPTY : thm
    val FINITE_UNION_OF_IDEMPOT : thm
    val FINITE_UNION_OF_INC : thm
    val FINITE_UNION_OF_INTER : thm
    val FINITE_UNION_OF_INTER_EQ : thm
    val FINITE_UNION_OF_RELATIVE_TO : thm
    val FINITE_UNION_OF_UNION : thm
    val FINITE_UNION_OF_UNIONS : thm
    val FORALL_INTERSECTION_OF : thm
    val FORALL_RELATIVE_TO : thm
    val FORALL_UNION_OF : thm
    val HULLS_EQ : thm
    val HULL_ANTIMONO : thm
    val HULL_EQ : thm
    val HULL_HULL : thm
    val HULL_IMAGE : thm
    val HULL_IMAGE_GALOIS : thm
    val HULL_IMAGE_SUBSET : thm
    val HULL_INC : thm
    val HULL_INDUCT : thm
    val HULL_MINIMAL : thm
    val HULL_MONO : thm
    val HULL_P : thm
    val HULL_P_AND_Q : thm
    val HULL_REDUNDANT : thm
    val HULL_REDUNDANT_EQ : thm
    val HULL_SUBSET : thm
    val HULL_UNION : thm
    val HULL_UNION_LEFT : thm
    val HULL_UNION_RIGHT : thm
    val HULL_UNION_SUBSET : thm
    val HULL_UNIQUE : thm
    val IMP_CONJ : thm
    val IMP_IMP : thm
    val INTERSECTION_OF_EMPTY : thm
    val INTERSECTION_OF_INC : thm
    val INTERSECTION_OF_MONO : thm
    val INTERS_0 : thm
    val INTERS_1 : thm
    val INTERS_2 : thm
    val INTERS_GSPEC : thm
    val INTERS_IMAGE : thm
    val INTERS_INSERT : thm
    val INTERS_SUBSET : thm
    val INTERS_SUBSET_STRONG : thm
    val INTERS_UNIONS : thm
    val INTER_INTERS : thm
    val INTER_UNIONS : thm
    val IN_GSPEC : thm
    val IN_INTERS : thm
    val IN_UNIONS : thm
    val ISTOPOLOGY_OPEN_IN : thm
    val ISTOPOLOGY_SUBTOPOLOGY : thm
    val IS_HULL : thm
    val LE_0 : thm
    val OPEN_IN_BIGINTER : thm
    val OPEN_IN_BIGUNION : thm
    val OPEN_IN_CLAUSES : thm
    val OPEN_IN_CLOSED_IN : thm
    val OPEN_IN_CLOSED_IN_EQ : thm
    val OPEN_IN_DIFF : thm
    val OPEN_IN_EMPTY : thm
    val OPEN_IN_IMP_SUBSET : thm
    val OPEN_IN_INTER : thm
    val OPEN_IN_RELATIVE_TO : thm
    val OPEN_IN_SUBOPEN : thm
    val OPEN_IN_SUBSET : thm
    val OPEN_IN_SUBTOPOLOGY : thm
    val OPEN_IN_SUBTOPOLOGY_EMPTY : thm
    val OPEN_IN_SUBTOPOLOGY_REFL : thm
    val OPEN_IN_SUBTOPOLOGY_UNION : thm
    val OPEN_IN_TOPSPACE : thm
    val OPEN_IN_UNION : thm
    val OPEN_NEIGH : thm
    val OPEN_OWN_NEIGH : thm
    val OPEN_SUBOPEN : thm
    val OPEN_UNOPEN : thm
    val PAIRWISE_AND : thm
    val PAIRWISE_EMPTY : thm
    val PAIRWISE_IMAGE : thm
    val PAIRWISE_IMP : thm
    val PAIRWISE_INSERT : thm
    val PAIRWISE_MONO : thm
    val PAIRWISE_SING : thm
    val PAIRWISE_UNION : thm
    val P_HULL : thm
    val RELATIVE_TO : thm
    val RELATIVE_TO_COMPL : thm
    val RELATIVE_TO_IMP_SUBSET : thm
    val RELATIVE_TO_INC : thm
    val RELATIVE_TO_INTER : thm
    val RELATIVE_TO_MONO : thm
    val RELATIVE_TO_RELATIVE_TO : thm
    val RELATIVE_TO_SUBSET : thm
    val RELATIVE_TO_SUBSET_INC : thm
    val RELATIVE_TO_SUBSET_TRANS : thm
    val RELATIVE_TO_UNION : thm
    val RELATIVE_TO_UNIV : thm
    val SIMPLE_IMAGE : thm
    val SING_GSPEC : thm
    val SUBSET_HULL : thm
    val SUBSET_RESTRICT : thm
    val SUBTOPOLOGY_SUBTOPOLOGY : thm
    val SUBTOPOLOGY_SUPERSET : thm
    val SUBTOPOLOGY_TOPSPACE : thm
    val SUBTOPOLOGY_UNIV : thm
    val TOPOLOGY_EQ : thm
    val TOPSPACE_SUBTOPOLOGY : thm
    val UNIONS_0 : thm
    val UNIONS_1 : thm
    val UNIONS_2 : thm
    val UNIONS_GSPEC : thm
    val UNIONS_IMAGE : thm
    val UNIONS_INSERT : thm
    val UNIONS_INTERS : thm
    val UNIONS_SUBSET : thm
    val UNIONS_UNION : thm
    val UNION_OF_EMPTY : thm
    val UNION_OF_INC : thm
    val UNION_OF_MONO : thm
    val UNIV_GSPEC : thm
    val closed_topspace : thm
    val limpt_thm : thm
    val open_topspace : thm
    val pairwiseD_alt_pairwiseN : thm
  
  val topology_grammars : type_grammar.grammar * term_grammar.grammar
(*
   [cardinal] Parent theory of "topology"
   
   [ARBITRARY]  Definition
      
      ⊢ ∀s. ARBITRARY s ⇔ T
   
   [INTERSECTION_OF]  Definition
      
      ⊢ ∀P Q.
          P INTERSECTION_OF Q =
          (λs. ∃u. P u ∧ (∀c. c ∈ u ⇒ Q c) ∧ BIGINTER u = s)
   
   [UNION_OF]  Definition
      
      ⊢ ∀P Q.
          P UNION_OF Q = (λs. ∃u. P u ∧ (∀c. c ∈ u ⇒ Q c) ∧ BIGUNION u = s)
   
   [closed_DEF]  Definition
      
      ⊢ ∀s. closed s ⇔ closed_in s 𝕌(:α)
   
   [closed_in]  Definition
      
      ⊢ ∀top s.
          closed_in top s ⇔
          s ⊆ topspace top ∧ open_in top (topspace top DIFF s)
   
   [hull]  Definition
      
      ⊢ ∀P s. P hull s = BIGINTER {t | P t ∧ s ⊆ t}
   
   [istopology]  Definition
      
      ⊢ ∀L. istopology L ⇔
            ∅ ∈ L ∧ (∀s t. s ∈ L ∧ t ∈ L ⇒ s ∩ t ∈ L) ∧
            ∀k. k ⊆ L ⇒ BIGUNION k ∈ L
   
   [limpt]  Definition
      
      ⊢ ∀top x S'.
          limpt top x S' ⇔
          x ∈ topspace top ∧ ∀N. neigh top (N,x) ⇒ ∃y. x ≠ y ∧ S' y ∧ N y
   
   [neigh]  Definition
      
      ⊢ ∀top N x.
          neigh top (N,x) ⇔
          ∃P. open_in top P ∧ P ⊆ N ∧ P x ∧ N ⊆ topspace top
   
   [open_DEF]  Definition
      
      ⊢ ∀s. open s ⇔ open_in s 𝕌(:α)
   
   [pairwise]  Definition
      
      ⊢ ∀r s. pairwiseD r s ⇔ ∀x y. x ∈ s ∧ y ∈ s ∧ x ≠ y ⇒ r x y
   
   [relative_to]  Definition
      
      ⊢ ∀P s t. (P relative_to s) t ⇔ ∃u. P u ∧ s ∩ u = t
   
   [subtopology]  Definition
      
      ⊢ ∀top u. subtopology top u = topology {s ∩ u | open_in top s}
   
   [topology_TY_DEF]  Definition
      
      ⊢ ∃rep. TYPE_DEFINITION istopology rep
   
   [topology_tybij]  Definition
      
      ⊢ (∀a. topology (open_in a) = a) ∧
        ∀r. istopology r ⇔ open_in (topology r) = r
   
   [topspace]  Definition
      
      ⊢ ∀top. topspace top = BIGUNION {s | open_in top s}
   
   [ARBITRARY_INTERSECTION_OF_COMPLEMENT]  Theorem
      
      ⊢ ∀P s.
          (ARBITRARY INTERSECTION_OF P) s ⇔
          (ARBITRARY UNION_OF (λs. P (𝕌(:α) DIFF s))) (𝕌(:α) DIFF s)
   
   [ARBITRARY_INTERSECTION_OF_EMPTY]  Theorem
      
      ⊢ ∀P. (ARBITRARY INTERSECTION_OF P) 𝕌(:α)
   
   [ARBITRARY_INTERSECTION_OF_IDEMPOT]  Theorem
      
      ⊢ ∀P. ARBITRARY INTERSECTION_OF ARBITRARY INTERSECTION_OF P =
            ARBITRARY INTERSECTION_OF P
   
   [ARBITRARY_INTERSECTION_OF_INC]  Theorem
      
      ⊢ ∀P s. P s ⇒ (ARBITRARY INTERSECTION_OF P) s
   
   [ARBITRARY_INTERSECTION_OF_INTER]  Theorem
      
      ⊢ ∀P s t.
          (ARBITRARY INTERSECTION_OF P) s ∧ (ARBITRARY INTERSECTION_OF P) t ⇒
          (ARBITRARY INTERSECTION_OF P) (s ∩ t)
   
   [ARBITRARY_INTERSECTION_OF_INTERS]  Theorem
      
      ⊢ ∀P u.
          (∀s. s ∈ u ⇒ (ARBITRARY INTERSECTION_OF P) s) ⇒
          (ARBITRARY INTERSECTION_OF P) (BIGINTER u)
   
   [ARBITRARY_INTERSECTION_OF_RELATIVE_TO]  Theorem
      
      ⊢ ∀P u.
          ARBITRARY INTERSECTION_OF P relative_to u =
          ARBITRARY INTERSECTION_OF (P relative_to u) relative_to u
   
   [ARBITRARY_INTERSECTION_OF_UNION]  Theorem
      
      ⊢ ∀P. (∀s t. P s ∧ P t ⇒ P (s ∪ t)) ⇒
            ∀s t.
              (ARBITRARY INTERSECTION_OF P) s ∧
              (ARBITRARY INTERSECTION_OF P) t ⇒
              (ARBITRARY INTERSECTION_OF P) (s ∪ t)
   
   [ARBITRARY_INTERSECTION_OF_UNION_EQ]  Theorem
      
      ⊢ ∀P. (∀s t.
               (ARBITRARY INTERSECTION_OF P) s ∧
               (ARBITRARY INTERSECTION_OF P) t ⇒
               (ARBITRARY INTERSECTION_OF P) (s ∪ t)) ⇔
            ∀s t. P s ∧ P t ⇒ (ARBITRARY INTERSECTION_OF P) (s ∪ t)
   
   [ARBITRARY_UNION_OF_ALT]  Theorem
      
      ⊢ ∀B s.
          (ARBITRARY UNION_OF B) s ⇔ ∀x. x ∈ s ⇒ ∃u. u ∈ B ∧ x ∈ u ∧ u ⊆ s
   
   [ARBITRARY_UNION_OF_COMPLEMENT]  Theorem
      
      ⊢ ∀P s.
          (ARBITRARY UNION_OF P) s ⇔
          (ARBITRARY INTERSECTION_OF (λs. P (𝕌(:α) DIFF s))) (𝕌(:α) DIFF s)
   
   [ARBITRARY_UNION_OF_EMPTY]  Theorem
      
      ⊢ ∀P. (ARBITRARY UNION_OF P) ∅
   
   [ARBITRARY_UNION_OF_IDEMPOT]  Theorem
      
      ⊢ ∀P. ARBITRARY UNION_OF ARBITRARY UNION_OF P = ARBITRARY UNION_OF P
   
   [ARBITRARY_UNION_OF_INC]  Theorem
      
      ⊢ ∀P s. P s ⇒ (ARBITRARY UNION_OF P) s
   
   [ARBITRARY_UNION_OF_INTER]  Theorem
      
      ⊢ ∀P. (∀s t. P s ∧ P t ⇒ P (s ∩ t)) ⇒
            ∀s t.
              (ARBITRARY UNION_OF P) s ∧ (ARBITRARY UNION_OF P) t ⇒
              (ARBITRARY UNION_OF P) (s ∩ t)
   
   [ARBITRARY_UNION_OF_INTER_EQ]  Theorem
      
      ⊢ ∀P. (∀s t.
               (ARBITRARY UNION_OF P) s ∧ (ARBITRARY UNION_OF P) t ⇒
               (ARBITRARY UNION_OF P) (s ∩ t)) ⇔
            ∀s t. P s ∧ P t ⇒ (ARBITRARY UNION_OF P) (s ∩ t)
   
   [ARBITRARY_UNION_OF_NONEMPTY_FINITE_INTERSECTION]  Theorem
      
      ⊢ ∀u. ARBITRARY UNION_OF (λs. FINITE s ∧ s ≠ ∅) INTERSECTION_OF u =
            ARBITRARY UNION_OF
            (FINITE INTERSECTION_OF u relative_to BIGUNION u)
   
   [ARBITRARY_UNION_OF_RELATIVE_TO]  Theorem
      
      ⊢ ∀P u.
          ARBITRARY UNION_OF P relative_to u =
          ARBITRARY UNION_OF (P relative_to u)
   
   [ARBITRARY_UNION_OF_UNION]  Theorem
      
      ⊢ ∀P s t.
          (ARBITRARY UNION_OF P) s ∧ (ARBITRARY UNION_OF P) t ⇒
          (ARBITRARY UNION_OF P) (s ∪ t)
   
   [ARBITRARY_UNION_OF_UNIONS]  Theorem
      
      ⊢ ∀P u.
          (∀s. s ∈ u ⇒ (ARBITRARY UNION_OF P) s) ⇒
          (ARBITRARY UNION_OF P) (BIGUNION u)
   
   [BIGUNION_2]  Theorem
      
      ⊢ ∀s t. BIGUNION {s; t} = s ∪ t
   
   [CLOSED_IN_BIGINTER]  Theorem
      
      ⊢ ∀top k.
          k ≠ ∅ ∧ (∀s. s ∈ k ⇒ closed_in top s) ⇒
          closed_in top (BIGINTER k)
   
   [CLOSED_IN_BIGUNION]  Theorem
      
      ⊢ ∀top s.
          FINITE s ∧ (∀t. t ∈ s ⇒ closed_in top t) ⇒
          closed_in top (BIGUNION s)
   
   [CLOSED_IN_DIFF]  Theorem
      
      ⊢ ∀top s t.
          closed_in top s ∧ open_in top t ⇒ closed_in top (s DIFF t)
   
   [CLOSED_IN_EMPTY]  Theorem
      
      ⊢ ∀top. closed_in top ∅
   
   [CLOSED_IN_IMP_SUBSET]  Theorem
      
      ⊢ ∀top s t. closed_in (subtopology top s) t ⇒ t ⊆ s
   
   [CLOSED_IN_INTER]  Theorem
      
      ⊢ ∀top s t. closed_in top s ∧ closed_in top t ⇒ closed_in top (s ∩ t)
   
   [CLOSED_IN_OPEN_IN_COMPL]  Theorem
      
      ⊢ ∀top. closed top ⇒ ∀s. closed_in top s ⇔ open_in top (COMPL s)
   
   [CLOSED_IN_RELATIVE_TO]  Theorem
      
      ⊢ ∀top s. closed_in top relative_to s = closed_in (subtopology top s)
   
   [CLOSED_IN_SUBSET]  Theorem
      
      ⊢ ∀top s. closed_in top s ⇒ s ⊆ topspace top
   
   [CLOSED_IN_SUBTOPOLOGY]  Theorem
      
      ⊢ ∀top u s.
          closed_in (subtopology top u) s ⇔ ∃t. closed_in top t ∧ s = t ∩ u
   
   [CLOSED_IN_SUBTOPOLOGY_EMPTY]  Theorem
      
      ⊢ ∀top s. closed_in (subtopology top ∅) s ⇔ s = ∅
   
   [CLOSED_IN_SUBTOPOLOGY_REFL]  Theorem
      
      ⊢ ∀top u. closed_in (subtopology top u) u ⇔ u ⊆ topspace top
   
   [CLOSED_IN_SUBTOPOLOGY_UNION]  Theorem
      
      ⊢ ∀top s t u.
          closed_in (subtopology top t) s ∧ closed_in (subtopology top u) s ⇒
          closed_in (subtopology top (t ∪ u)) s
   
   [CLOSED_IN_TOPSPACE]  Theorem
      
      ⊢ ∀top. closed_in top (topspace top)
   
   [CLOSED_IN_UNION]  Theorem
      
      ⊢ ∀top s t. closed_in top s ∧ closed_in top t ⇒ closed_in top (s ∪ t)
   
   [CLOSED_LIMPT]  Theorem
      
      ⊢ ∀top.
          closed top ⇒ ∀S'. closed_in top S' ⇔ ∀x. limpt top x S' ⇒ S' x
   
   [COMPL_COMPL_applied]  Theorem
      
      ⊢ ∀s. 𝕌(:α) DIFF (𝕌(:α) DIFF s) = s
   
   [COUNTABLE_DISJOINT_UNION_OF_IDEMPOT]  Theorem
      
      ⊢ ∀P. (countable ∩ pairwiseD DISJOINT) UNION_OF
            (countable ∩ pairwiseD DISJOINT) UNION_OF P =
            (countable ∩ pairwiseD DISJOINT) UNION_OF P
   
   [COUNTABLE_INTERSECTION_OF_COMPLEMENT]  Theorem
      
      ⊢ ∀P s.
          (countable INTERSECTION_OF P) s ⇔
          (countable UNION_OF (λs. P (𝕌(:α) DIFF s))) (𝕌(:α) DIFF s)
   
   [COUNTABLE_INTERSECTION_OF_EMPTY]  Theorem
      
      ⊢ ∀P. (countable INTERSECTION_OF P) 𝕌(:α)
   
   [COUNTABLE_INTERSECTION_OF_IDEMPOT]  Theorem
      
      ⊢ ∀P. countable INTERSECTION_OF countable INTERSECTION_OF P =
            countable INTERSECTION_OF P
   
   [COUNTABLE_INTERSECTION_OF_INC]  Theorem
      
      ⊢ ∀P s. P s ⇒ (countable INTERSECTION_OF P) s
   
   [COUNTABLE_INTERSECTION_OF_INTER]  Theorem
      
      ⊢ ∀P s t.
          (countable INTERSECTION_OF P) s ∧ (countable INTERSECTION_OF P) t ⇒
          (countable INTERSECTION_OF P) (s ∩ t)
   
   [COUNTABLE_INTERSECTION_OF_INTERS]  Theorem
      
      ⊢ ∀P u.
          countable u ∧ (∀s. s ∈ u ⇒ (countable INTERSECTION_OF P) s) ⇒
          (countable INTERSECTION_OF P) (BIGINTER u)
   
   [COUNTABLE_INTERSECTION_OF_RELATIVE_TO]  Theorem
      
      ⊢ ∀P u.
          countable INTERSECTION_OF P relative_to u =
          countable INTERSECTION_OF (P relative_to u) relative_to u
   
   [COUNTABLE_INTERSECTION_OF_RELATIVE_TO_ALT]  Theorem
      
      ⊢ ∀P u s.
          P u ⇒
          ((countable INTERSECTION_OF P relative_to u) s ⇔
           (countable INTERSECTION_OF P) s ∧ s ⊆ u)
   
   [COUNTABLE_INTERSECTION_OF_UNION]  Theorem
      
      ⊢ ∀P. (∀s t. P s ∧ P t ⇒ P (s ∪ t)) ⇒
            ∀s t.
              (countable INTERSECTION_OF P) s ∧
              (countable INTERSECTION_OF P) t ⇒
              (countable INTERSECTION_OF P) (s ∪ t)
   
   [COUNTABLE_INTERSECTION_OF_UNIONS]  Theorem
      
      ⊢ ∀P u.
          (countable INTERSECTION_OF P) ∅ ∧ (∀s t. P s ∧ P t ⇒ P (s ∪ t)) ∧
          FINITE u ∧ (∀s. s ∈ u ⇒ (countable INTERSECTION_OF P) s) ⇒
          (countable INTERSECTION_OF P) (BIGUNION u)
   
   [COUNTABLE_INTERSECTION_OF_UNIONS_NONEMPTY]  Theorem
      
      ⊢ ∀P u.
          (∀s t. P s ∧ P t ⇒ P (s ∪ t)) ∧ FINITE u ∧ u ≠ ∅ ∧
          (∀s. s ∈ u ⇒ (countable INTERSECTION_OF P) s) ⇒
          (countable INTERSECTION_OF P) (BIGUNION u)
   
   [COUNTABLE_INTERSECTION_OF_UNION_EQ]  Theorem
      
      ⊢ ∀P. (∀s t.
               (countable INTERSECTION_OF P) s ∧
               (countable INTERSECTION_OF P) t ⇒
               (countable INTERSECTION_OF P) (s ∪ t)) ⇔
            ∀s t. P s ∧ P t ⇒ (countable INTERSECTION_OF P) (s ∪ t)
   
   [COUNTABLE_SUBSET_NUM]  Theorem
      
      ⊢ ∀s. countable s
   
   [COUNTABLE_UNION_OF_ASCENDING]  Theorem
      
      ⊢ ∀P s.
          P ∅ ∧ (∀t u. P t ∧ P u ⇒ P (t ∪ u)) ⇒
          ((countable UNION_OF P) s ⇔
           ∃t. (∀n. P (t n)) ∧ (∀n. t n ⊆ t (SUC n)) ∧
               BIGUNION {t n | n ∈ 𝕌(:num)} = s)
   
   [COUNTABLE_UNION_OF_COMPLEMENT]  Theorem
      
      ⊢ ∀P s.
          (countable UNION_OF P) s ⇔
          (countable INTERSECTION_OF (λs. P (𝕌(:α) DIFF s))) (𝕌(:α) DIFF s)
   
   [COUNTABLE_UNION_OF_EMPTY]  Theorem
      
      ⊢ ∀P. (countable UNION_OF P) ∅
   
   [COUNTABLE_UNION_OF_EXPLICIT]  Theorem
      
      ⊢ ∀P s.
          P ∅ ⇒
          ((countable UNION_OF P) s ⇔
           ∃t. (∀n. P (t n)) ∧ BIGUNION {t n | n ∈ 𝕌(:num)} = s)
   
   [COUNTABLE_UNION_OF_IDEMPOT]  Theorem
      
      ⊢ ∀P. countable UNION_OF countable UNION_OF P = countable UNION_OF P
   
   [COUNTABLE_UNION_OF_INC]  Theorem
      
      ⊢ ∀P s. P s ⇒ (countable UNION_OF P) s
   
   [COUNTABLE_UNION_OF_INTER]  Theorem
      
      ⊢ ∀P. (∀s t. P s ∧ P t ⇒ P (s ∩ t)) ⇒
            ∀s t.
              (countable UNION_OF P) s ∧ (countable UNION_OF P) t ⇒
              (countable UNION_OF P) (s ∩ t)
   
   [COUNTABLE_UNION_OF_INTERS]  Theorem
      
      ⊢ ∀P u.
          (countable UNION_OF P) 𝕌(:α) ∧ (∀s t. P s ∧ P t ⇒ P (s ∩ t)) ∧
          FINITE u ∧ (∀s. s ∈ u ⇒ (countable UNION_OF P) s) ⇒
          (countable UNION_OF P) (BIGINTER u)
   
   [COUNTABLE_UNION_OF_INTERS_NONEMPTY]  Theorem
      
      ⊢ ∀P u.
          (∀s t. P s ∧ P t ⇒ P (s ∩ t)) ∧ FINITE u ∧ u ≠ ∅ ∧
          (∀s. s ∈ u ⇒ (countable UNION_OF P) s) ⇒
          (countable UNION_OF P) (BIGINTER u)
   
   [COUNTABLE_UNION_OF_INTER_EQ]  Theorem
      
      ⊢ ∀P. (∀s t.
               (countable UNION_OF P) s ∧ (countable UNION_OF P) t ⇒
               (countable UNION_OF P) (s ∩ t)) ⇔
            ∀s t. P s ∧ P t ⇒ (countable UNION_OF P) (s ∩ t)
   
   [COUNTABLE_UNION_OF_RELATIVE_TO]  Theorem
      
      ⊢ ∀P u.
          countable UNION_OF P relative_to u =
          countable UNION_OF (P relative_to u)
   
   [COUNTABLE_UNION_OF_UNION]  Theorem
      
      ⊢ ∀P s t.
          (countable UNION_OF P) s ∧ (countable UNION_OF P) t ⇒
          (countable UNION_OF P) (s ∪ t)
   
   [COUNTABLE_UNION_OF_UNIONS]  Theorem
      
      ⊢ ∀P u.
          countable u ∧ (∀s. s ∈ u ⇒ (countable UNION_OF P) s) ⇒
          (countable UNION_OF P) (BIGUNION u)
   
   [DIFF_INTERS]  Theorem
      
      ⊢ ∀u s. u DIFF BIGINTER s = BIGUNION {u DIFF t | t ∈ s}
   
   [DIFF_UNIONS]  Theorem
      
      ⊢ ∀u s. u DIFF BIGUNION s = u ∩ BIGINTER {u DIFF t | t ∈ s}
   
   [DIFF_UNIONS_NONEMPTY]  Theorem
      
      ⊢ ∀u s. s ≠ ∅ ⇒ u DIFF BIGUNION s = BIGINTER {u DIFF t | t ∈ s}
   
   [EMPTY_GSPEC]  Theorem
      
      ⊢ {x | F} = ∅
   
   [EXT_SKOLEM_THM]  Theorem
      
      ⊢ ∀P Q. (∀x. x ∈ P ⇒ ∃y. Q x y) ⇔ ∃f. ∀x. x ∈ P ⇒ Q x (f x)
   
   [EXT_SKOLEM_THM']  Theorem
      
      ⊢ ∀P Q. (∀x. P x ⇒ ∃y. Q x y) ⇔ ∃f. ∀x. P x ⇒ Q x (f x)
   
   [FINITE_IMAGE]  Theorem
      
      ⊢ ∀s. FINITE s ⇒ ∀f. FINITE (IMAGE f s)
   
   [FINITE_INDUCT_STRONG]  Theorem
      
      ⊢ ∀P. P ∅ ∧ (∀x s. P s ∧ x ∉ s ∧ FINITE s ⇒ P (x INSERT s)) ⇒
            ∀s. FINITE s ⇒ P s
   
   [FINITE_INTERSECTION_OF_COMPLEMENT]  Theorem
      
      ⊢ ∀P s.
          (FINITE INTERSECTION_OF P) s ⇔
          (FINITE UNION_OF (λs. P (𝕌(:α) DIFF s))) (𝕌(:α) DIFF s)
   
   [FINITE_INTERSECTION_OF_EMPTY]  Theorem
      
      ⊢ ∀P. (FINITE INTERSECTION_OF P) 𝕌(:α)
   
   [FINITE_INTERSECTION_OF_IDEMPOT]  Theorem
      
      ⊢ ∀P. FINITE INTERSECTION_OF FINITE INTERSECTION_OF P =
            FINITE INTERSECTION_OF P
   
   [FINITE_INTERSECTION_OF_INC]  Theorem
      
      ⊢ ∀P s. P s ⇒ (FINITE INTERSECTION_OF P) s
   
   [FINITE_INTERSECTION_OF_INTER]  Theorem
      
      ⊢ ∀P s t.
          (FINITE INTERSECTION_OF P) s ∧ (FINITE INTERSECTION_OF P) t ⇒
          (FINITE INTERSECTION_OF P) (s ∩ t)
   
   [FINITE_INTERSECTION_OF_INTERS]  Theorem
      
      ⊢ ∀P u.
          FINITE u ∧ (∀s. s ∈ u ⇒ (FINITE INTERSECTION_OF P) s) ⇒
          (FINITE INTERSECTION_OF P) (BIGINTER u)
   
   [FINITE_INTERSECTION_OF_RELATIVE_TO]  Theorem
      
      ⊢ ∀P u.
          FINITE INTERSECTION_OF P relative_to u =
          FINITE INTERSECTION_OF (P relative_to u) relative_to u
   
   [FINITE_INTERSECTION_OF_RELATIVE_TO_ALT]  Theorem
      
      ⊢ ∀P u s.
          P u ⇒
          ((FINITE INTERSECTION_OF P relative_to u) s ⇔
           (FINITE INTERSECTION_OF P) s ∧ s ⊆ u)
   
   [FINITE_INTERSECTION_OF_UNION]  Theorem
      
      ⊢ ∀P. (∀s t. P s ∧ P t ⇒ P (s ∪ t)) ⇒
            ∀s t.
              (FINITE INTERSECTION_OF P) s ∧ (FINITE INTERSECTION_OF P) t ⇒
              (FINITE INTERSECTION_OF P) (s ∪ t)
   
   [FINITE_INTERSECTION_OF_UNION_EQ]  Theorem
      
      ⊢ ∀P. (∀s t.
               (FINITE INTERSECTION_OF P) s ∧ (FINITE INTERSECTION_OF P) t ⇒
               (FINITE INTERSECTION_OF P) (s ∪ t)) ⇔
            ∀s t. P s ∧ P t ⇒ (FINITE INTERSECTION_OF P) (s ∪ t)
   
   [FINITE_SUBSET]  Theorem
      
      ⊢ ∀s t. FINITE s ∧ t ⊆ s ⇒ FINITE t
   
   [FINITE_UNION_OF_COMPLEMENT]  Theorem
      
      ⊢ ∀P s.
          (FINITE UNION_OF P) s ⇔
          (FINITE INTERSECTION_OF (λs. P (𝕌(:α) DIFF s))) (𝕌(:α) DIFF s)
   
   [FINITE_UNION_OF_EMPTY]  Theorem
      
      ⊢ ∀P. (FINITE UNION_OF P) ∅
   
   [FINITE_UNION_OF_IDEMPOT]  Theorem
      
      ⊢ ∀P. FINITE UNION_OF FINITE UNION_OF P = FINITE UNION_OF P
   
   [FINITE_UNION_OF_INC]  Theorem
      
      ⊢ ∀P s. P s ⇒ (FINITE UNION_OF P) s
   
   [FINITE_UNION_OF_INTER]  Theorem
      
      ⊢ ∀P. (∀s t. P s ∧ P t ⇒ P (s ∩ t)) ⇒
            ∀s t.
              (FINITE UNION_OF P) s ∧ (FINITE UNION_OF P) t ⇒
              (FINITE UNION_OF P) (s ∩ t)
   
   [FINITE_UNION_OF_INTER_EQ]  Theorem
      
      ⊢ ∀P. (∀s t.
               (FINITE UNION_OF P) s ∧ (FINITE UNION_OF P) t ⇒
               (FINITE UNION_OF P) (s ∩ t)) ⇔
            ∀s t. P s ∧ P t ⇒ (FINITE UNION_OF P) (s ∩ t)
   
   [FINITE_UNION_OF_RELATIVE_TO]  Theorem
      
      ⊢ ∀P u.
          FINITE UNION_OF P relative_to u =
          FINITE UNION_OF (P relative_to u)
   
   [FINITE_UNION_OF_UNION]  Theorem
      
      ⊢ ∀P s t.
          (FINITE UNION_OF P) s ∧ (FINITE UNION_OF P) t ⇒
          (FINITE UNION_OF P) (s ∪ t)
   
   [FINITE_UNION_OF_UNIONS]  Theorem
      
      ⊢ ∀P u.
          FINITE u ∧ (∀s. s ∈ u ⇒ (FINITE UNION_OF P) s) ⇒
          (FINITE UNION_OF P) (BIGUNION u)
   
   [FORALL_INTERSECTION_OF]  Theorem
      
      ⊢ (∀s. (P INTERSECTION_OF Q) s ⇒ R s) ⇔
        ∀t. P t ∧ (∀c. c ∈ t ⇒ Q c) ⇒ R (BIGINTER t)
   
   [FORALL_RELATIVE_TO]  Theorem
      
      ⊢ (∀s. (P relative_to u) s ⇒ Q s) ⇔ ∀s. P s ⇒ Q (u ∩ s)
   
   [FORALL_UNION_OF]  Theorem
      
      ⊢ (∀s. (P UNION_OF Q) s ⇒ R s) ⇔
        ∀t. P t ∧ (∀c. c ∈ t ⇒ Q c) ⇒ R (BIGUNION t)
   
   [HULLS_EQ]  Theorem
      
      ⊢ ∀P s t.
          (∀f. (∀s. s ∈ f ⇒ P s) ⇒ P (BIGINTER f)) ∧ s ⊆ P hull t ∧
          t ⊆ P hull s ⇒
          P hull s = P hull t
   
   [HULL_ANTIMONO]  Theorem
      
      ⊢ ∀P Q s. P ⊆ Q ⇒ Q hull s ⊆ P hull s
   
   [HULL_EQ]  Theorem
      
      ⊢ ∀P s.
          (∀f. (∀s. s ∈ f ⇒ P s) ⇒ P (BIGINTER f)) ⇒ (P hull s = s ⇔ P s)
   
   [HULL_HULL]  Theorem
      
      ⊢ ∀P s. P hull (P hull s) = P hull s
   
   [HULL_IMAGE]  Theorem
      
      ⊢ ∀P f s.
          (∀s. P (P hull s)) ∧ (∀s. P (IMAGE f s) ⇔ P s) ∧
          (∀x y. f x = f y ⇒ x = y) ∧ (∀y. ∃x. f x = y) ⇒
          P hull IMAGE f s = IMAGE f (P hull s)
   
   [HULL_IMAGE_GALOIS]  Theorem
      
      ⊢ ∀P f g s.
          (∀s. P (P hull s)) ∧ (∀s. P s ⇒ P (IMAGE f s)) ∧
          (∀s. P s ⇒ P (IMAGE g s)) ∧ (∀s t. s ⊆ IMAGE g t ⇔ IMAGE f s ⊆ t) ⇒
          P hull IMAGE f s = IMAGE f (P hull s)
   
   [HULL_IMAGE_SUBSET]  Theorem
      
      ⊢ ∀P f s.
          P (P hull s) ∧ (∀s. P s ⇒ P (IMAGE f s)) ⇒
          P hull IMAGE f s ⊆ IMAGE f (P hull s)
   
   [HULL_INC]  Theorem
      
      ⊢ ∀P s x. x ∈ s ⇒ x ∈ P hull s
   
   [HULL_INDUCT]  Theorem
      
      ⊢ ∀P p s. (∀x. x ∈ s ⇒ p x) ∧ P {x | p x} ⇒ ∀x. x ∈ P hull s ⇒ p x
   
   [HULL_MINIMAL]  Theorem
      
      ⊢ ∀P s t. s ⊆ t ∧ P t ⇒ P hull s ⊆ t
   
   [HULL_MONO]  Theorem
      
      ⊢ ∀P s t. s ⊆ t ⇒ P hull s ⊆ P hull t
   
   [HULL_P]  Theorem
      
      ⊢ ∀P s. P s ⇒ P hull s = s
   
   [HULL_P_AND_Q]  Theorem
      
      ⊢ ∀P Q.
          (∀f. (∀s. s ∈ f ⇒ P s) ⇒ P (BIGINTER f)) ∧
          (∀f. (∀s. s ∈ f ⇒ Q s) ⇒ Q (BIGINTER f)) ∧
          (∀s. Q s ⇒ Q (P hull s)) ⇒
          (λx. P x ∧ Q x) hull s = P hull (Q hull s)
   
   [HULL_REDUNDANT]  Theorem
      
      ⊢ ∀P a s. a ∈ P hull s ⇒ P hull (a INSERT s) = P hull s
   
   [HULL_REDUNDANT_EQ]  Theorem
      
      ⊢ ∀P a s. a ∈ P hull s ⇔ P hull (a INSERT s) = P hull s
   
   [HULL_SUBSET]  Theorem
      
      ⊢ ∀P s. s ⊆ P hull s
   
   [HULL_UNION]  Theorem
      
      ⊢ ∀P s t. P hull s ∪ t = P hull (P hull s) ∪ (P hull t)
   
   [HULL_UNION_LEFT]  Theorem
      
      ⊢ ∀P s t. P hull s ∪ t = P hull (P hull s) ∪ t
   
   [HULL_UNION_RIGHT]  Theorem
      
      ⊢ ∀P s t. P hull s ∪ t = P hull s ∪ (P hull t)
   
   [HULL_UNION_SUBSET]  Theorem
      
      ⊢ ∀P s t. (P hull s) ∪ (P hull t) ⊆ P hull s ∪ t
   
   [HULL_UNIQUE]  Theorem
      
      ⊢ ∀P s t. s ⊆ t ∧ P t ∧ (∀t'. s ⊆ t' ∧ P t' ⇒ t ⊆ t') ⇒ P hull s = t
   
   [IMP_CONJ]  Theorem
      
      ⊢ ∀p q r. p ∧ q ⇒ r ⇔ p ⇒ q ⇒ r
   
   [IMP_IMP]  Theorem
      
      ⊢ ∀t1 t2 t3. t1 ⇒ t2 ⇒ t3 ⇔ t1 ∧ t2 ⇒ t3
   
   [INTERSECTION_OF_EMPTY]  Theorem
      
      ⊢ ∀P Q. P ∅ ⇒ (P INTERSECTION_OF Q) 𝕌(:α)
   
   [INTERSECTION_OF_INC]  Theorem
      
      ⊢ ∀P Q s. P {s} ∧ Q s ⇒ (P INTERSECTION_OF Q) s
   
   [INTERSECTION_OF_MONO]  Theorem
      
      ⊢ ∀P Q Q' s.
          (P INTERSECTION_OF Q) s ∧ (∀x. Q x ⇒ Q' x) ⇒
          (P INTERSECTION_OF Q') s
   
   [INTERS_0]  Theorem
      
      ⊢ BIGINTER ∅ = 𝕌(:α)
   
   [INTERS_1]  Theorem
      
      ⊢ ∀P. BIGINTER {P} = P
   
   [INTERS_2]  Theorem
      
      ⊢ ∀P Q. BIGINTER {P; Q} = P ∩ Q
   
   [INTERS_GSPEC]  Theorem
      
      ⊢ (∀P f. BIGINTER {f x | P x} = {a | ∀x. P x ⇒ a ∈ f x}) ∧
        (∀P f. BIGINTER {f x y | P x y} = {a | ∀x y. P x y ⇒ a ∈ f x y}) ∧
        ∀P f.
          BIGINTER {f x y z | P x y z} =
          {a | ∀x y z. P x y z ⇒ a ∈ f x y z}
   
   [INTERS_IMAGE]  Theorem
      
      ⊢ ∀f s. BIGINTER (IMAGE f s) = {y | ∀x. x ∈ s ⇒ y ∈ f x}
   
   [INTERS_INSERT]  Theorem
      
      ⊢ ∀P B. BIGINTER (P INSERT B) = P ∩ BIGINTER B
   
   [INTERS_SUBSET]  Theorem
      
      ⊢ ∀u s. u ≠ ∅ ∧ (∀t. t ∈ u ⇒ t ⊆ s) ⇒ BIGINTER u ⊆ s
   
   [INTERS_SUBSET_STRONG]  Theorem
      
      ⊢ ∀u s. (∃t. t ∈ u ∧ t ⊆ s) ⇒ BIGINTER u ⊆ s
   
   [INTERS_UNIONS]  Theorem
      
      ⊢ ∀s. BIGINTER s = 𝕌(:α) DIFF BIGUNION {𝕌(:α) DIFF t | t ∈ s}
   
   [INTER_INTERS]  Theorem
      
      ⊢ (∀f s.
           s ∩ BIGINTER f = if f = ∅ then s else BIGINTER {s ∩ t | t ∈ f}) ∧
        ∀f s.
          BIGINTER f ∩ s = if f = ∅ then s else BIGINTER {t ∩ s | t ∈ f}
   
   [INTER_UNIONS]  Theorem
      
      ⊢ (∀s t. BIGUNION s ∩ t = BIGUNION {x ∩ t | x ∈ s}) ∧
        ∀s t. t ∩ BIGUNION s = BIGUNION {t ∩ x | x ∈ s}
   
   [IN_GSPEC]  Theorem
      
      ⊢ ∀s. {x | x ∈ s} = s
   
   [IN_INTERS]  Theorem
      
      ⊢ x ∈ BIGINTER B ⇔ ∀P. P ∈ B ⇒ x ∈ P
   
   [IN_UNIONS]  Theorem
      
      ⊢ ∀x sos. x ∈ BIGUNION sos ⇔ ∃s. x ∈ s ∧ s ∈ sos
   
   [ISTOPOLOGY_OPEN_IN]  Theorem
      
      ⊢ ∀top. istopology (open_in top)
   
   [ISTOPOLOGY_SUBTOPOLOGY]  Theorem
      
      ⊢ ∀top u. istopology {s ∩ u | open_in top s}
   
   [IS_HULL]  Theorem
      
      ⊢ ∀P s.
          (∀f. (∀s. s ∈ f ⇒ P s) ⇒ P (BIGINTER f)) ⇒
          (P s ⇔ ∃t. s = P hull t)
   
   [LE_0]  Theorem
      
      ⊢ ∀n. 0 ≤ n
   
   [OPEN_IN_BIGINTER]  Theorem
      
      ⊢ ∀top s.
          FINITE s ∧ s ≠ ∅ ∧ (∀t. t ∈ s ⇒ open_in top t) ⇒
          open_in top (BIGINTER s)
   
   [OPEN_IN_BIGUNION]  Theorem
      
      ⊢ ∀top k. (∀s. s ∈ k ⇒ open_in top s) ⇒ open_in top (BIGUNION k)
   
   [OPEN_IN_CLAUSES]  Theorem
      
      ⊢ ∀top.
          open_in top ∅ ∧
          (∀s t. open_in top s ∧ open_in top t ⇒ open_in top (s ∩ t)) ∧
          ∀k. (∀s. s ∈ k ⇒ open_in top s) ⇒ open_in top (BIGUNION k)
   
   [OPEN_IN_CLOSED_IN]  Theorem
      
      ⊢ ∀top s.
          s ⊆ topspace top ⇒
          (open_in top s ⇔ closed_in top (topspace top DIFF s))
   
   [OPEN_IN_CLOSED_IN_EQ]  Theorem
      
      ⊢ ∀top s.
          open_in top s ⇔
          s ⊆ topspace top ∧ closed_in top (topspace top DIFF s)
   
   [OPEN_IN_DIFF]  Theorem
      
      ⊢ ∀top s t. open_in top s ∧ closed_in top t ⇒ open_in top (s DIFF t)
   
   [OPEN_IN_EMPTY]  Theorem
      
      ⊢ ∀top. open_in top ∅
   
   [OPEN_IN_IMP_SUBSET]  Theorem
      
      ⊢ ∀top s t. open_in (subtopology top s) t ⇒ t ⊆ s
   
   [OPEN_IN_INTER]  Theorem
      
      ⊢ ∀top s t. open_in top s ∧ open_in top t ⇒ open_in top (s ∩ t)
   
   [OPEN_IN_RELATIVE_TO]  Theorem
      
      ⊢ ∀top s. open_in top relative_to s = open_in (subtopology top s)
   
   [OPEN_IN_SUBOPEN]  Theorem
      
      ⊢ ∀top s.
          open_in top s ⇔ ∀x. x ∈ s ⇒ ∃t. open_in top t ∧ x ∈ t ∧ t ⊆ s
   
   [OPEN_IN_SUBSET]  Theorem
      
      ⊢ ∀top s. open_in top s ⇒ s ⊆ topspace top
   
   [OPEN_IN_SUBTOPOLOGY]  Theorem
      
      ⊢ ∀top u s.
          open_in (subtopology top u) s ⇔ ∃t. open_in top t ∧ s = t ∩ u
   
   [OPEN_IN_SUBTOPOLOGY_EMPTY]  Theorem
      
      ⊢ ∀top s. open_in (subtopology top ∅) s ⇔ s = ∅
   
   [OPEN_IN_SUBTOPOLOGY_REFL]  Theorem
      
      ⊢ ∀top u. open_in (subtopology top u) u ⇔ u ⊆ topspace top
   
   [OPEN_IN_SUBTOPOLOGY_UNION]  Theorem
      
      ⊢ ∀top s t u.
          open_in (subtopology top t) s ∧ open_in (subtopology top u) s ⇒
          open_in (subtopology top (t ∪ u)) s
   
   [OPEN_IN_TOPSPACE]  Theorem
      
      ⊢ ∀top. open_in top (topspace top)
   
   [OPEN_IN_UNION]  Theorem
      
      ⊢ ∀top s t. open_in top s ∧ open_in top t ⇒ open_in top (s ∪ t)
   
   [OPEN_NEIGH]  Theorem
      
      ⊢ ∀A top. open_in top A ⇔ ∀x. A x ⇒ ∃N. neigh top (N,x) ∧ N ⊆ A
   
   [OPEN_OWN_NEIGH]  Theorem
      
      ⊢ ∀A top x. open_in top A ∧ A x ⇒ neigh top (A,x)
   
   [OPEN_SUBOPEN]  Theorem
      
      ⊢ ∀S' top.
          open_in top S' ⇔ ∀x. S' x ⇒ ∃P. P x ∧ open_in top P ∧ P ⊆ S'
   
   [OPEN_UNOPEN]  Theorem
      
      ⊢ ∀S' top.
          open_in top S' ⇔ BIGUNION {P | open_in top P ∧ P ⊆ S'} = S'
   
   [PAIRWISE_AND]  Theorem
      
      ⊢ ∀R R' s.
          pairwiseD R s ∧ pairwiseD R' s ⇔
          pairwiseD (λx y. R x y ∧ R' x y) s
   
   [PAIRWISE_EMPTY]  Theorem
      
      ⊢ ∀r. pairwiseD r ∅ ⇔ T
   
   [PAIRWISE_IMAGE]  Theorem
      
      ⊢ ∀r f.
          pairwiseD r (IMAGE f s) ⇔
          pairwiseD (λx y. f x ≠ f y ⇒ r (f x) (f y)) s
   
   [PAIRWISE_IMP]  Theorem
      
      ⊢ ∀P Q s.
          pairwiseD P s ∧ (∀x y. x ∈ s ∧ y ∈ s ∧ P x y ∧ x ≠ y ⇒ Q x y) ⇒
          pairwiseD Q s
   
   [PAIRWISE_INSERT]  Theorem
      
      ⊢ ∀r x s.
          pairwiseD r (x INSERT s) ⇔
          (∀y. y ∈ s ∧ y ≠ x ⇒ r x y ∧ r y x) ∧ pairwiseD r s
   
   [PAIRWISE_MONO]  Theorem
      
      ⊢ ∀r s t. pairwiseD r s ∧ t ⊆ s ⇒ pairwiseD r t
   
   [PAIRWISE_SING]  Theorem
      
      ⊢ ∀r x. pairwiseD r {x} ⇔ T
   
   [PAIRWISE_UNION]  Theorem
      
      ⊢ ∀R s t.
          pairwiseD R (s ∪ t) ⇔
          pairwiseD R s ∧ pairwiseD R t ∧
          ∀x y. x ∈ s DIFF t ∧ y ∈ t DIFF s ⇒ R x y ∧ R y x
   
   [P_HULL]  Theorem
      
      ⊢ ∀P s. (∀f. (∀s. s ∈ f ⇒ P s) ⇒ P (BIGINTER f)) ⇒ P (P hull s)
   
   [RELATIVE_TO]  Theorem
      
      ⊢ P relative_to u = {u ∩ s | P s}
   
   [RELATIVE_TO_COMPL]  Theorem
      
      ⊢ ∀P u s.
          s ⊆ u ⇒
          ((P relative_to u) (u DIFF s) ⇔
           ((λc. P (𝕌(:α) DIFF c)) relative_to u) s)
   
   [RELATIVE_TO_IMP_SUBSET]  Theorem
      
      ⊢ ∀P s t. (P relative_to s) t ⇒ t ⊆ s
   
   [RELATIVE_TO_INC]  Theorem
      
      ⊢ ∀P u s. P s ⇒ (P relative_to u) (u ∩ s)
   
   [RELATIVE_TO_INTER]  Theorem
      
      ⊢ ∀P s.
          (∀c d. P c ∧ P d ⇒ P (c ∩ d)) ⇒
          ∀c d.
            (P relative_to s) c ∧ (P relative_to s) d ⇒
            (P relative_to s) (c ∩ d)
   
   [RELATIVE_TO_MONO]  Theorem
      
      ⊢ ∀P Q.
          (∀s. P s ⇒ Q s) ⇒ ∀u. (P relative_to u) s ⇒ (Q relative_to u) s
   
   [RELATIVE_TO_RELATIVE_TO]  Theorem
      
      ⊢ ∀P s t. P relative_to s relative_to t = P relative_to s ∩ t
   
   [RELATIVE_TO_SUBSET]  Theorem
      
      ⊢ ∀P s t. s ⊆ t ∧ P s ⇒ (P relative_to t) s
   
   [RELATIVE_TO_SUBSET_INC]  Theorem
      
      ⊢ ∀P u s. s ⊆ u ∧ P s ⇒ (P relative_to u) s
   
   [RELATIVE_TO_SUBSET_TRANS]  Theorem
      
      ⊢ ∀P u s t. (P relative_to u) s ∧ s ⊆ t ∧ t ⊆ u ⇒ (P relative_to t) s
   
   [RELATIVE_TO_UNION]  Theorem
      
      ⊢ ∀P s.
          (∀c d. P c ∧ P d ⇒ P (c ∪ d)) ⇒
          ∀c d.
            (P relative_to s) c ∧ (P relative_to s) d ⇒
            (P relative_to s) (c ∪ d)
   
   [RELATIVE_TO_UNIV]  Theorem
      
      ⊢ ∀P s. (P relative_to 𝕌(:α)) s ⇔ P s
   
   [SIMPLE_IMAGE]  Theorem
      
      ⊢ ∀f s. {f x | x ∈ s} = IMAGE f s
   
   [SING_GSPEC]  Theorem
      
      ⊢ (∀a. {x | x = a} = {a}) ∧ ∀a. {x | a = x} = {a}
   
   [SUBSET_HULL]  Theorem
      
      ⊢ ∀P s t. P t ⇒ (P hull s ⊆ t ⇔ s ⊆ t)
   
   [SUBSET_RESTRICT]  Theorem
      
      ⊢ ∀s P. {x | x ∈ s ∧ P x} ⊆ s
   
   [SUBTOPOLOGY_SUBTOPOLOGY]  Theorem
      
      ⊢ ∀top s t.
          subtopology (subtopology top s) t = subtopology top (s ∩ t)
   
   [SUBTOPOLOGY_SUPERSET]  Theorem
      
      ⊢ ∀top s. topspace top ⊆ s ⇒ subtopology top s = top
   
   [SUBTOPOLOGY_TOPSPACE]  Theorem
      
      ⊢ ∀top. subtopology top (topspace top) = top
   
   [SUBTOPOLOGY_UNIV]  Theorem
      
      ⊢ ∀top. subtopology top 𝕌(:α) = top
   
   [TOPOLOGY_EQ]  Theorem
      
      ⊢ ∀top1 top2. top1 = top2 ⇔ ∀s. open_in top1 s ⇔ open_in top2 s
   
   [TOPSPACE_SUBTOPOLOGY]  Theorem
      
      ⊢ ∀top u. topspace (subtopology top u) = topspace top ∩ u
   
   [UNIONS_0]  Theorem
      
      ⊢ BIGUNION ∅ = ∅
   
   [UNIONS_1]  Theorem
      
      ⊢ ∀x. BIGUNION {x} = x
   
   [UNIONS_2]  Theorem
      
      ⊢ ∀s t. BIGUNION {s; t} = s ∪ t
   
   [UNIONS_GSPEC]  Theorem
      
      ⊢ (∀P f. BIGUNION {f x | P x} = {a | ∃x. P x ∧ a ∈ f x}) ∧
        (∀P f. BIGUNION {f x y | P x y} = {a | ∃x y. P x y ∧ a ∈ f x y}) ∧
        ∀P f.
          BIGUNION {f x y z | P x y z} =
          {a | ∃x y z. P x y z ∧ a ∈ f x y z}
   
   [UNIONS_IMAGE]  Theorem
      
      ⊢ ∀f s. BIGUNION (IMAGE f s) = {y | ∃x. x ∈ s ∧ y ∈ f x}
   
   [UNIONS_INSERT]  Theorem
      
      ⊢ ∀s P. BIGUNION (s INSERT P) = s ∪ BIGUNION P
   
   [UNIONS_INTERS]  Theorem
      
      ⊢ ∀s. BIGUNION s = 𝕌(:α) DIFF BIGINTER {𝕌(:α) DIFF t | t ∈ s}
   
   [UNIONS_SUBSET]  Theorem
      
      ⊢ ∀X P. BIGUNION P ⊆ X ⇔ ∀Y. Y ∈ P ⇒ Y ⊆ X
   
   [UNIONS_UNION]  Theorem
      
      ⊢ ∀s1 s2. BIGUNION (s1 ∪ s2) = BIGUNION s1 ∪ BIGUNION s2
   
   [UNION_OF_EMPTY]  Theorem
      
      ⊢ ∀P Q. P ∅ ⇒ (P UNION_OF Q) ∅
   
   [UNION_OF_INC]  Theorem
      
      ⊢ ∀P Q s. P {s} ∧ Q s ⇒ (P UNION_OF Q) s
   
   [UNION_OF_MONO]  Theorem
      
      ⊢ ∀P Q Q' s. (P UNION_OF Q) s ∧ (∀x. Q x ⇒ Q' x) ⇒ (P UNION_OF Q') s
   
   [UNIV_GSPEC]  Theorem
      
      ⊢ {x | T} = 𝕌(:α)
   
   [closed_topspace]  Theorem
      
      ⊢ ∀top. closed top ⇒ topspace top = 𝕌(:α)
   
   [limpt_thm]  Theorem
      
      ⊢ limpt t x A ⇔
        x ∈ topspace t ∧
        ∀U. open_in t U ∧ x ∈ U ⇒ ∃y. y ∈ U ∧ y ∈ A ∧ y ≠ x
   
   [open_topspace]  Theorem
      
      ⊢ ∀top. open top ⇒ topspace top = 𝕌(:α)
   
   [pairwiseD_alt_pairwiseN]  Theorem
      
      ⊢ ∀R. pairwiseD R = pairwiseN (RC R)
   
   
*)
end


Source File Identifier index Theory binding index

HOL 4, Trindemossen-1