Structure transcTheory


Source File Identifier index Theory binding index

signature transcTheory =
sig
  type thm = Thm.thm
  
  (*  Definitions  *)
    val acs : thm
    val asn : thm
    val atn : thm
    val cos : thm
    val lg_def : thm
    val ln : thm
    val logr_def : thm
    val pi : thm
    val root : thm
    val rpow_def : thm
    val sin : thm
    val tan : thm
  
  (*  Theorems  *)
    val ACS : thm
    val ACS_BOUNDS : thm
    val ACS_BOUNDS_LT : thm
    val ACS_COS : thm
    val AGM : thm
    val AGM_2 : thm
    val AGM_GEN : thm
    val AGM_ROOT : thm
    val AGM_RPOW : thm
    val AGM_SQRT : thm
    val ASN : thm
    val ASN_BOUNDS : thm
    val ASN_BOUNDS_LT : thm
    val ASN_SIN : thm
    val ATN : thm
    val ATN_BOUNDS : thm
    val ATN_TAN : thm
    val BASE_RPOW_LE : thm
    val BASE_RPOW_LT : thm
    val COS_0 : thm
    val COS_2 : thm
    val COS_ACS : thm
    val COS_ADD : thm
    val COS_ASN_NZ : thm
    val COS_ATN_NZ : thm
    val COS_BOUND : thm
    val COS_BOUNDS : thm
    val COS_CONVERGES : thm
    val COS_DOUBLE : thm
    val COS_FDIFF : thm
    val COS_ISZERO : thm
    val COS_NEG : thm
    val COS_NPI : thm
    val COS_PAIRED : thm
    val COS_PERIODIC : thm
    val COS_PERIODIC_PI : thm
    val COS_PI : thm
    val COS_PI2 : thm
    val COS_POS_PI : thm
    val COS_POS_PI2 : thm
    val COS_POS_PI2_LE : thm
    val COS_POS_PI_LE : thm
    val COS_SIN : thm
    val COS_SIN_SQ : thm
    val COS_SIN_SQRT : thm
    val COS_TOTAL : thm
    val COS_ZERO : thm
    val COS_ZERO_LEMMA : thm
    val DIFF_ACS : thm
    val DIFF_ACS_LEMMA : thm
    val DIFF_ASN : thm
    val DIFF_ASN_LEMMA : thm
    val DIFF_ATN : thm
    val DIFF_COMPOSITE : thm
    val DIFF_COMPOSITE_EXP : thm
    val DIFF_COS : thm
    val DIFF_EXP : thm
    val DIFF_LN : thm
    val DIFF_LN_COMPOSITE : thm
    val DIFF_LN_COMPOSITE' : thm
    val DIFF_RPOW : thm
    val DIFF_SIN : thm
    val DIFF_TAN : thm
    val EXP_0 : thm
    val EXP_ADD : thm
    val EXP_ADD_MUL : thm
    val EXP_CONVERGES : thm
    val EXP_FDIFF : thm
    val EXP_INJ : thm
    val EXP_LE_X : thm
    val EXP_LE_X_FULL : thm
    val EXP_LN : thm
    val EXP_LT_1 : thm
    val EXP_MONO_IMP : thm
    val EXP_MONO_LE : thm
    val EXP_MONO_LT : thm
    val EXP_N : thm
    val EXP_NEG : thm
    val EXP_NEG_MUL : thm
    val EXP_NEG_MUL2 : thm
    val EXP_NZ : thm
    val EXP_POS_LE : thm
    val EXP_POS_LT : thm
    val EXP_SUB : thm
    val EXP_TOTAL : thm
    val EXP_TOTAL_LEMMA : thm
    val GEN_RPOW : thm
    val LN_1 : thm
    val LN_DIV : thm
    val LN_EXP : thm
    val LN_INJ : thm
    val LN_INV : thm
    val LN_LE : thm
    val LN_LT_X : thm
    val LN_MONO_LE : thm
    val LN_MONO_LT : thm
    val LN_MUL : thm
    val LN_NEG : thm
    val LN_NEG_LT : thm
    val LN_POS : thm
    val LN_POS_LT : thm
    val LN_POW : thm
    val LN_PRODUCT : thm
    val LN_RPOW : thm
    val LOGR_MONO_LE : thm
    val LOGR_MONO_LE_IMP : thm
    val LOGR_MONO_LT : thm
    val MCLAURIN : thm
    val MCLAURIN_ALL_LE : thm
    val MCLAURIN_ALL_LT : thm
    val MCLAURIN_EXP_LE : thm
    val MCLAURIN_EXP_LT : thm
    val MCLAURIN_LN_NEG : thm
    val MCLAURIN_LN_POS : thm
    val MCLAURIN_NEG : thm
    val MCLAURIN_ZERO : thm
    val ONE_RPOW : thm
    val PI2 : thm
    val PI2_BOUNDS : thm
    val PI_POS : thm
    val POW_ROOT_POS : thm
    val REAL_DIV_SQRT : thm
    val REAL_EXP_ADD : thm
    val REAL_EXP_BOUND_LEMMA : thm
    val REAL_ROOT_RPOW : thm
    val ROOT_0 : thm
    val ROOT_1 : thm
    val ROOT_11 : thm
    val ROOT_DIV : thm
    val ROOT_INV : thm
    val ROOT_LN : thm
    val ROOT_LT_LEMMA : thm
    val ROOT_MONO_LE : thm
    val ROOT_MONO_LE_EQ : thm
    val ROOT_MUL : thm
    val ROOT_POS : thm
    val ROOT_POS_LT : thm
    val ROOT_POS_UNIQ : thm
    val ROOT_POW_POS : thm
    val ROOT_PRODUCT : thm
    val RPOW_0 : thm
    val RPOW_1 : thm
    val RPOW_ADD : thm
    val RPOW_ADD_MUL : thm
    val RPOW_DIV : thm
    val RPOW_DIV_BASE : thm
    val RPOW_INV : thm
    val RPOW_LE : thm
    val RPOW_LT : thm
    val RPOW_MUL : thm
    val RPOW_NZ : thm
    val RPOW_POS_LT : thm
    val RPOW_RPOW : thm
    val RPOW_SUB : thm
    val RPOW_SUC_N : thm
    val RPOW_UNIQ_BASE : thm
    val RPOW_UNIQ_EXP : thm
    val SIN_0 : thm
    val SIN_ACS_NZ : thm
    val SIN_ADD : thm
    val SIN_ASN : thm
    val SIN_BOUND : thm
    val SIN_BOUNDS : thm
    val SIN_CIRCLE : thm
    val SIN_CONVERGES : thm
    val SIN_COS : thm
    val SIN_COS_ADD : thm
    val SIN_COS_NEG : thm
    val SIN_COS_SQ : thm
    val SIN_COS_SQRT : thm
    val SIN_DOUBLE : thm
    val SIN_FDIFF : thm
    val SIN_NEG : thm
    val SIN_NEGLEMMA : thm
    val SIN_NPI : thm
    val SIN_PAIRED : thm
    val SIN_PERIODIC : thm
    val SIN_PERIODIC_PI : thm
    val SIN_PI : thm
    val SIN_PI2 : thm
    val SIN_POS : thm
    val SIN_POS_PI : thm
    val SIN_POS_PI2 : thm
    val SIN_POS_PI2_LE : thm
    val SIN_POS_PI_LE : thm
    val SIN_TOTAL : thm
    val SIN_ZERO : thm
    val SIN_ZERO_LEMMA : thm
    val SQRT_EVEN_POW2 : thm
    val SQRT_RPOW : thm
    val TAN_0 : thm
    val TAN_ADD : thm
    val TAN_ATN : thm
    val TAN_DOUBLE : thm
    val TAN_NEG : thm
    val TAN_NPI : thm
    val TAN_PERIODIC : thm
    val TAN_PI : thm
    val TAN_POS_PI2 : thm
    val TAN_SEC : thm
    val TAN_TOTAL : thm
    val TAN_TOTAL_LEMMA : thm
    val TAN_TOTAL_POS : thm
    val YOUNG_INEQUALITY : thm
    val exp : thm
    val exp_convex : thm
    val lg_1 : thm
    val lg_2 : thm
    val lg_inv : thm
    val lg_mul : thm
    val lg_nonzero : thm
    val lg_pow : thm
    val logr_1 : thm
    val logr_div : thm
    val logr_inv : thm
    val logr_mul : thm
    val neg_lg : thm
    val neg_logr : thm
    val pos_concave_lg : thm
    val pos_concave_ln : thm
    val pos_concave_logr : thm
    val pos_convex_inv : thm
    val sqrt : thm
  
  val transc_grammars : type_grammar.grammar * term_grammar.grammar
(*
   [powser] Parent theory of "transc"
   
   [acs]  Definition
      
      ⊢ ∀y. acs y = @x. 0 ≤ x ∧ x ≤ pi ∧ cos x = y
   
   [asn]  Definition
      
      ⊢ ∀y. asn y = @x. -(pi / 2) ≤ x ∧ x ≤ pi / 2 ∧ sin x = y
   
   [atn]  Definition
      
      ⊢ ∀y. atn y = @x. -(pi / 2) < x ∧ x < pi / 2 ∧ tan x = y
   
   [cos]  Definition
      
      ⊢ ∀x. cos x =
            suminf
              (λn.
                   (λn. if EVEN n then -1 pow (n DIV 2) / &FACT n else 0) n *
                   x pow n)
   
   [lg_def]  Definition
      
      ⊢ ∀x. lg x = logr 2 x
   
   [ln]  Definition
      
      ⊢ ∀x. ln x = @u. exp u = x
   
   [logr_def]  Definition
      
      ⊢ ∀a x. logr a x = ln x / ln a
   
   [pi]  Definition
      
      ⊢ pi = 2 * @x. 0 ≤ x ∧ x ≤ 2 ∧ cos x = 0
   
   [root]  Definition
      
      ⊢ ∀n x. root n x = @u. (0 < x ⇒ 0 < u) ∧ u pow n = x
   
   [rpow_def]  Definition
      
      ⊢ ∀a b. a powr b = exp (b * ln a)
   
   [sin]  Definition
      
      ⊢ ∀x. sin x =
            suminf
              (λn.
                   (λn.
                        if EVEN n then 0
                        else -1 pow ((n − 1) DIV 2) / &FACT n) n * x pow n)
   
   [tan]  Definition
      
      ⊢ ∀x. tan x = sin x / cos x
   
   [ACS]  Theorem
      
      ⊢ ∀y. -1 ≤ y ∧ y ≤ 1 ⇒ 0 ≤ acs y ∧ acs y ≤ pi ∧ cos (acs y) = y
   
   [ACS_BOUNDS]  Theorem
      
      ⊢ ∀y. -1 ≤ y ∧ y ≤ 1 ⇒ 0 ≤ acs y ∧ acs y ≤ pi
   
   [ACS_BOUNDS_LT]  Theorem
      
      ⊢ ∀y. -1 < y ∧ y < 1 ⇒ 0 < acs y ∧ acs y < pi
   
   [ACS_COS]  Theorem
      
      ⊢ ∀y. -1 ≤ y ∧ y ≤ 1 ⇒ cos (acs y) = y
   
   [AGM]  Theorem
      
      ⊢ ∀s x n.
          s HAS_SIZE n ∧ n ≠ 0 ∧ (∀i. i ∈ s ⇒ 0 ≤ x i) ⇒
          product s x ≤ (sum s x / &n) pow n
   
   [AGM_2]  Theorem
      
      ⊢ ∀x y u v.
          0 < x ∧ 0 < y ∧ 0 ≤ u ∧ 0 ≤ v ∧ u + v = 1 ⇒
          x powr u * y powr v ≤ u * x + v * y
   
   [AGM_GEN]  Theorem
      
      ⊢ ∀a x s.
          FINITE s ∧ sum s a = 1 ∧ (∀i. i ∈ s ⇒ 0 ≤ a i ∧ 0 < x i) ⇒
          product s (λi. x i powr a i) ≤ sum s (λi. a i * x i)
   
   [AGM_ROOT]  Theorem
      
      ⊢ ∀s x n.
          s HAS_SIZE n ∧ n ≠ 0 ∧ (∀i. i ∈ s ⇒ 0 ≤ x i) ⇒
          root n (product s x) ≤ sum s x / &n
   
   [AGM_RPOW]  Theorem
      
      ⊢ ∀s x n.
          s HAS_SIZE n ∧ n ≠ 0 ∧ (∀i. i ∈ s ⇒ 0 < x i) ⇒
          product s (λi. x i powr (1 / &n)) ≤ sum s (λi. x i / &n)
   
   [AGM_SQRT]  Theorem
      
      ⊢ ∀x y. 0 ≤ x ∧ 0 ≤ y ⇒ sqrt (x * y) ≤ (x + y) / 2
   
   [ASN]  Theorem
      
      ⊢ ∀y. -1 ≤ y ∧ y ≤ 1 ⇒
            -(pi / 2) ≤ asn y ∧ asn y ≤ pi / 2 ∧ sin (asn y) = y
   
   [ASN_BOUNDS]  Theorem
      
      ⊢ ∀y. -1 ≤ y ∧ y ≤ 1 ⇒ -(pi / 2) ≤ asn y ∧ asn y ≤ pi / 2
   
   [ASN_BOUNDS_LT]  Theorem
      
      ⊢ ∀y. -1 < y ∧ y < 1 ⇒ -(pi / 2) < asn y ∧ asn y < pi / 2
   
   [ASN_SIN]  Theorem
      
      ⊢ ∀y. -1 ≤ y ∧ y ≤ 1 ⇒ sin (asn y) = y
   
   [ATN]  Theorem
      
      ⊢ ∀y. -(pi / 2) < atn y ∧ atn y < pi / 2 ∧ tan (atn y) = y
   
   [ATN_BOUNDS]  Theorem
      
      ⊢ ∀y. -(pi / 2) < atn y ∧ atn y < pi / 2
   
   [ATN_TAN]  Theorem
      
      ⊢ ∀y. tan (atn y) = y
   
   [BASE_RPOW_LE]  Theorem
      
      ⊢ ∀a b c. 0 < a ∧ 0 < c ∧ 0 < b ⇒ (a powr b ≤ c powr b ⇔ a ≤ c)
   
   [BASE_RPOW_LT]  Theorem
      
      ⊢ ∀a b c. 0 < a ∧ 0 < c ∧ 0 < b ⇒ (a powr b < c powr b ⇔ a < c)
   
   [COS_0]  Theorem
      
      ⊢ cos 0 = 1
   
   [COS_2]  Theorem
      
      ⊢ cos 2 < 0
   
   [COS_ACS]  Theorem
      
      ⊢ ∀x. 0 ≤ x ∧ x ≤ pi ⇒ acs (cos x) = x
   
   [COS_ADD]  Theorem
      
      ⊢ ∀x y. cos (x + y) = cos x * cos y − sin x * sin y
   
   [COS_ASN_NZ]  Theorem
      
      ⊢ ∀x. -1 < x ∧ x < 1 ⇒ cos (asn x) ≠ 0
   
   [COS_ATN_NZ]  Theorem
      
      ⊢ ∀x. cos (atn x) ≠ 0
   
   [COS_BOUND]  Theorem
      
      ⊢ ∀x. abs (cos x) ≤ 1
   
   [COS_BOUNDS]  Theorem
      
      ⊢ ∀x. -1 ≤ cos x ∧ cos x ≤ 1
   
   [COS_CONVERGES]  Theorem
      
      ⊢ ∀x. (λn.
                 (λn. if EVEN n then -1 pow (n DIV 2) / &FACT n else 0) n *
                 x pow n) sums cos x
   
   [COS_DOUBLE]  Theorem
      
      ⊢ ∀x. cos (2 * x) = (cos x)² − (sin x)²
   
   [COS_FDIFF]  Theorem
      
      ⊢ diffs (λn. if EVEN n then -1 pow (n DIV 2) / &FACT n else 0) =
        (λn.
             -(λn. if EVEN n then 0 else -1 pow ((n − 1) DIV 2) / &FACT n)
               n)
   
   [COS_ISZERO]  Theorem
      
      ⊢ ∃!x. 0 ≤ x ∧ x ≤ 2 ∧ cos x = 0
   
   [COS_NEG]  Theorem
      
      ⊢ ∀x. cos (-x) = cos x
   
   [COS_NPI]  Theorem
      
      ⊢ ∀n. cos (&n * pi) = -1 pow n
   
   [COS_PAIRED]  Theorem
      
      ⊢ ∀x. (λn. -1 pow n / &FACT (2 * n) * x pow (2 * n)) sums cos x
   
   [COS_PERIODIC]  Theorem
      
      ⊢ ∀x. cos (x + 2 * pi) = cos x
   
   [COS_PERIODIC_PI]  Theorem
      
      ⊢ ∀x. cos (x + pi) = -cos x
   
   [COS_PI]  Theorem
      
      ⊢ cos pi = -1
   
   [COS_PI2]  Theorem
      
      ⊢ cos (pi / 2) = 0
   
   [COS_POS_PI]  Theorem
      
      ⊢ ∀x. -(pi / 2) < x ∧ x < pi / 2 ⇒ 0 < cos x
   
   [COS_POS_PI2]  Theorem
      
      ⊢ ∀x. 0 < x ∧ x < pi / 2 ⇒ 0 < cos x
   
   [COS_POS_PI2_LE]  Theorem
      
      ⊢ ∀x. 0 ≤ x ∧ x ≤ pi / 2 ⇒ 0 ≤ cos x
   
   [COS_POS_PI_LE]  Theorem
      
      ⊢ ∀x. -(pi / 2) ≤ x ∧ x ≤ pi / 2 ⇒ 0 ≤ cos x
   
   [COS_SIN]  Theorem
      
      ⊢ ∀x. cos x = sin (pi / 2 − x)
   
   [COS_SIN_SQ]  Theorem
      
      ⊢ ∀x. -(pi / 2) ≤ x ∧ x ≤ pi / 2 ⇒ cos x = sqrt (1 − (sin x)²)
   
   [COS_SIN_SQRT]  Theorem
      
      ⊢ ∀x. 0 ≤ cos x ⇒ cos x = sqrt (1 − (sin x)²)
   
   [COS_TOTAL]  Theorem
      
      ⊢ ∀y. -1 ≤ y ∧ y ≤ 1 ⇒ ∃!x. 0 ≤ x ∧ x ≤ pi ∧ cos x = y
   
   [COS_ZERO]  Theorem
      
      ⊢ ∀x. cos x = 0 ⇔
            (∃n. ¬EVEN n ∧ x = &n * (pi / 2)) ∨
            ∃n. ¬EVEN n ∧ x = -(&n * (pi / 2))
   
   [COS_ZERO_LEMMA]  Theorem
      
      ⊢ ∀x. 0 ≤ x ∧ cos x = 0 ⇒ ∃n. ¬EVEN n ∧ x = &n * (pi / 2)
   
   [DIFF_ACS]  Theorem
      
      ⊢ ∀x. -1 < x ∧ x < 1 ⇒ (acs diffl -(sqrt (1 − x²))⁻¹) x
   
   [DIFF_ACS_LEMMA]  Theorem
      
      ⊢ ∀x. -1 < x ∧ x < 1 ⇒ (acs diffl (-sin (acs x))⁻¹) x
   
   [DIFF_ASN]  Theorem
      
      ⊢ ∀x. -1 < x ∧ x < 1 ⇒ (asn diffl (sqrt (1 − x²))⁻¹) x
   
   [DIFF_ASN_LEMMA]  Theorem
      
      ⊢ ∀x. -1 < x ∧ x < 1 ⇒ (asn diffl (cos (asn x))⁻¹) x
   
   [DIFF_ATN]  Theorem
      
      ⊢ ∀x. (atn diffl (1 + x²)⁻¹) x
   
   [DIFF_COMPOSITE]  Theorem
      
      ⊢ ((f diffl l) x ∧ f x ≠ 0 ⇒ ((λx. (f x)⁻¹) diffl -(l / (f x)²)) x) ∧
        ((f diffl l) x ∧ (g diffl m) x ∧ g x ≠ 0 ⇒
         ((λx. f x / g x) diffl ((l * g x − m * f x) / (g x)²)) x) ∧
        ((f diffl l) x ∧ (g diffl m) x ⇒ ((λx. f x + g x) diffl (l + m)) x) ∧
        ((f diffl l) x ∧ (g diffl m) x ⇒
         ((λx. f x * g x) diffl (l * g x + m * f x)) x) ∧
        ((f diffl l) x ∧ (g diffl m) x ⇒ ((λx. f x − g x) diffl (l − m)) x) ∧
        ((f diffl l) x ⇒ ((λx. -f x) diffl -l) x) ∧
        ((g diffl m) x ⇒
         ((λx. g x pow n) diffl (&n * g x pow (n − 1) * m)) x) ∧
        ((g diffl m) x ⇒ ((λx. exp (g x)) diffl (exp (g x) * m)) x) ∧
        ((g diffl m) x ⇒ ((λx. sin (g x)) diffl (cos (g x) * m)) x) ∧
        ((g diffl m) x ⇒ ((λx. cos (g x)) diffl (-sin (g x) * m)) x)
   
   [DIFF_COMPOSITE_EXP]  Theorem
      
      ⊢ ∀g m x. (g diffl m) x ⇒ ((λx. exp (g x)) diffl (exp (g x) * m)) x
   
   [DIFF_COS]  Theorem
      
      ⊢ ∀x. (cos diffl -sin x) x
   
   [DIFF_EXP]  Theorem
      
      ⊢ ∀x. (exp diffl exp x) x
   
   [DIFF_LN]  Theorem
      
      ⊢ ∀x. 0 < x ⇒ (ln diffl x⁻¹) x
   
   [DIFF_LN_COMPOSITE]  Theorem
      
      ⊢ ∀g m x.
          (g diffl m) x ∧ 0 < g x ⇒ ((λx. ln (g x)) diffl ((g x)⁻¹ * m)) x
   
   [DIFF_LN_COMPOSITE']  Theorem
      
      ⊢ (g diffl m) x ∧ 0 < g x ⇒ ((λx. ln (g x)) diffl ((g x)⁻¹ * m)) x
   
   [DIFF_RPOW]  Theorem
      
      ⊢ ∀x y. 0 < x ⇒ ((λx. x powr y) diffl (y * x powr (y − 1))) x
   
   [DIFF_SIN]  Theorem
      
      ⊢ ∀x. (sin diffl cos x) x
   
   [DIFF_TAN]  Theorem
      
      ⊢ ∀x. cos x ≠ 0 ⇒ (tan diffl (cos x)² ⁻¹) x
   
   [EXP_0]  Theorem
      
      ⊢ exp 0 = 1
   
   [EXP_ADD]  Theorem
      
      ⊢ ∀x y. exp (x + y) = exp x * exp y
   
   [EXP_ADD_MUL]  Theorem
      
      ⊢ ∀x y. exp (x + y) * exp (-x) = exp y
   
   [EXP_CONVERGES]  Theorem
      
      ⊢ ∀x. (λn. (λn. (&FACT n)⁻¹) n * x pow n) sums exp x
   
   [EXP_FDIFF]  Theorem
      
      ⊢ diffs (λn. (&FACT n)⁻¹) = (λn. (&FACT n)⁻¹)
   
   [EXP_INJ]  Theorem
      
      ⊢ ∀x y. exp x = exp y ⇔ x = y
   
   [EXP_LE_X]  Theorem
      
      ⊢ ∀x. 0 ≤ x ⇒ 1 + x ≤ exp x
   
   [EXP_LE_X_FULL]  Theorem
      
      ⊢ ∀x. 1 + x ≤ exp x
   
   [EXP_LN]  Theorem
      
      ⊢ ∀x. exp (ln x) = x ⇔ 0 < x
   
   [EXP_LT_1]  Theorem
      
      ⊢ ∀x. 0 < x ⇒ 1 < exp x
   
   [EXP_MONO_IMP]  Theorem
      
      ⊢ ∀x y. x < y ⇒ exp x < exp y
   
   [EXP_MONO_LE]  Theorem
      
      ⊢ ∀x y. exp x ≤ exp y ⇔ x ≤ y
   
   [EXP_MONO_LT]  Theorem
      
      ⊢ ∀x y. exp x < exp y ⇔ x < y
   
   [EXP_N]  Theorem
      
      ⊢ ∀n x. exp (&n * x) = exp x pow n
   
   [EXP_NEG]  Theorem
      
      ⊢ ∀x. exp (-x) = (exp x)⁻¹
   
   [EXP_NEG_MUL]  Theorem
      
      ⊢ ∀x. exp x * exp (-x) = 1
   
   [EXP_NEG_MUL2]  Theorem
      
      ⊢ ∀x. exp (-x) * exp x = 1
   
   [EXP_NZ]  Theorem
      
      ⊢ ∀x. exp x ≠ 0
   
   [EXP_POS_LE]  Theorem
      
      ⊢ ∀x. 0 ≤ exp x
   
   [EXP_POS_LT]  Theorem
      
      ⊢ ∀x. 0 < exp x
   
   [EXP_SUB]  Theorem
      
      ⊢ ∀x y. exp (x − y) = exp x / exp y
   
   [EXP_TOTAL]  Theorem
      
      ⊢ ∀y. 0 < y ⇒ ∃x. exp x = y
   
   [EXP_TOTAL_LEMMA]  Theorem
      
      ⊢ ∀y. 1 ≤ y ⇒ ∃x. 0 ≤ x ∧ x ≤ y − 1 ∧ exp x = y
   
   [GEN_RPOW]  Theorem
      
      ⊢ ∀a n. 0 < a ⇒ a pow n = a powr &n
   
   [LN_1]  Theorem
      
      ⊢ ln 1 = 0
   
   [LN_DIV]  Theorem
      
      ⊢ ∀x y. 0 < x ∧ 0 < y ⇒ ln (x / y) = ln x − ln y
   
   [LN_EXP]  Theorem
      
      ⊢ ∀x. ln (exp x) = x
   
   [LN_INJ]  Theorem
      
      ⊢ ∀x y. 0 < x ∧ 0 < y ⇒ (ln x = ln y ⇔ x = y)
   
   [LN_INV]  Theorem
      
      ⊢ ∀x. 0 < x ⇒ ln x⁻¹ = -ln x
   
   [LN_LE]  Theorem
      
      ⊢ ∀x. 0 ≤ x ⇒ ln (1 + x) ≤ x
   
   [LN_LT_X]  Theorem
      
      ⊢ ∀x. 0 < x ⇒ ln x < x
   
   [LN_MONO_LE]  Theorem
      
      ⊢ ∀x y. 0 < x ∧ 0 < y ⇒ (ln x ≤ ln y ⇔ x ≤ y)
   
   [LN_MONO_LT]  Theorem
      
      ⊢ ∀x y. 0 < x ∧ 0 < y ⇒ (ln x < ln y ⇔ x < y)
   
   [LN_MUL]  Theorem
      
      ⊢ ∀x y. 0 < x ∧ 0 < y ⇒ ln (x * y) = ln x + ln y
   
   [LN_NEG]  Theorem
      
      ⊢ ∀x. 0 < x ∧ x ≤ 1 ⇒ ln x ≤ 0
   
   [LN_NEG_LT]  Theorem
      
      ⊢ ∀x. 0 < x ∧ x < 1 ⇒ ln x < 0
   
   [LN_POS]  Theorem
      
      ⊢ ∀x. 1 ≤ x ⇒ 0 ≤ ln x
   
   [LN_POS_LT]  Theorem
      
      ⊢ ∀x. 1 < x ⇒ 0 < ln x
   
   [LN_POW]  Theorem
      
      ⊢ ∀n x. 0 < x ⇒ ln (x pow n) = &n * ln x
   
   [LN_PRODUCT]  Theorem
      
      ⊢ ∀f s.
          FINITE s ∧ (∀x. x ∈ s ⇒ 0 < f x) ⇒
          ln (product s f) = sum s (λx. ln (f x))
   
   [LN_RPOW]  Theorem
      
      ⊢ ∀a b. 0 < a ⇒ ln (a powr b) = b * ln a
   
   [LOGR_MONO_LE]  Theorem
      
      ⊢ ∀x y b. 0 < x ∧ 0 < y ∧ 1 < b ⇒ (logr b x ≤ logr b y ⇔ x ≤ y)
   
   [LOGR_MONO_LE_IMP]  Theorem
      
      ⊢ ∀x y b. 0 < x ∧ x ≤ y ∧ 1 ≤ b ⇒ logr b x ≤ logr b y
   
   [LOGR_MONO_LT]  Theorem
      
      ⊢ ∀x y b. 0 < x ∧ 0 < y ∧ 1 < b ⇒ (logr b x < logr b y ⇔ x < y)
   
   [MCLAURIN]  Theorem
      
      ⊢ ∀f diff h n.
          0 < h ∧ 0 < n ∧ diff 0 = f ∧
          (∀m t. m < n ∧ 0 ≤ t ∧ t ≤ h ⇒ (diff m diffl diff (SUC m) t) t) ⇒
          ∃t. 0 < t ∧ t < h ∧
              f h =
              sum (0,n) (λm. diff m 0 / &FACT m * h pow m) +
              diff n t / &FACT n * h pow n
   
   [MCLAURIN_ALL_LE]  Theorem
      
      ⊢ ∀f diff.
          diff 0 = f ∧ (∀m x. (diff m diffl diff (SUC m) x) x) ⇒
          ∀x n. ∃t.
            abs t ≤ abs x ∧
            f x =
            sum (0,n) (λm. diff m 0 / &FACT m * x pow m) +
            diff n t / &FACT n * x pow n
   
   [MCLAURIN_ALL_LT]  Theorem
      
      ⊢ ∀f diff.
          diff 0 = f ∧ (∀m x. (diff m diffl diff (SUC m) x) x) ⇒
          ∀x n.
            x ≠ 0 ∧ 0 < n ⇒
            ∃t. 0 < abs t ∧ abs t < abs x ∧
                f x =
                sum (0,n) (λm. diff m 0 / &FACT m * x pow m) +
                diff n t / &FACT n * x pow n
   
   [MCLAURIN_EXP_LE]  Theorem
      
      ⊢ ∀x n. ∃t.
          abs t ≤ abs x ∧
          exp x =
          sum (0,n) (λm. x pow m / &FACT m) + exp t / &FACT n * x pow n
   
   [MCLAURIN_EXP_LT]  Theorem
      
      ⊢ ∀x n.
          x ≠ 0 ∧ 0 < n ⇒
          ∃t. 0 < abs t ∧ abs t < abs x ∧
              exp x =
              sum (0,n) (λm. x pow m / &FACT m) + exp t / &FACT n * x pow n
   
   [MCLAURIN_LN_NEG]  Theorem
      
      ⊢ ∀x n.
          0 < x ∧ x < 1 ∧ 0 < n ⇒
          ∃t. 0 < t ∧ t < x ∧
              -ln (1 − x) =
              sum (0,n) (λm. x pow m / &m) + x pow n / (&n * (1 − t) pow n)
   
   [MCLAURIN_LN_POS]  Theorem
      
      ⊢ ∀x n.
          0 < x ∧ 0 < n ⇒
          ∃t. 0 < t ∧ t < x ∧
              ln (1 + x) =
              sum (0,n) (λm. -1 pow SUC m * x pow m / &m) +
              -1 pow SUC n * x pow n / (&n * (1 + t) pow n)
   
   [MCLAURIN_NEG]  Theorem
      
      ⊢ ∀f diff h n.
          h < 0 ∧ 0 < n ∧ diff 0 = f ∧
          (∀m t. m < n ∧ h ≤ t ∧ t ≤ 0 ⇒ (diff m diffl diff (SUC m) t) t) ⇒
          ∃t. h < t ∧ t < 0 ∧
              f h =
              sum (0,n) (λm. diff m 0 / &FACT m * h pow m) +
              diff n t / &FACT n * h pow n
   
   [MCLAURIN_ZERO]  Theorem
      
      ⊢ ∀diff n x.
          x = 0 ∧ 0 < n ⇒
          sum (0,n) (λm. diff m 0 / &FACT m * x pow m) = diff 0 0
   
   [ONE_RPOW]  Theorem
      
      ⊢ ∀a. 0 < a ⇒ 1 powr a = 1
   
   [PI2]  Theorem
      
      ⊢ pi / 2 = @x. 0 ≤ x ∧ x ≤ 2 ∧ cos x = 0
   
   [PI2_BOUNDS]  Theorem
      
      ⊢ 0 < pi / 2 ∧ pi / 2 < 2
   
   [PI_POS]  Theorem
      
      ⊢ 0 < pi
   
   [POW_ROOT_POS]  Theorem
      
      ⊢ ∀n x. 0 ≤ x ⇒ root (SUC n) (x pow SUC n) = x
   
   [REAL_DIV_SQRT]  Theorem
      
      ⊢ ∀x. 0 ≤ x ⇒ x / sqrt x = sqrt x
   
   [REAL_EXP_ADD]  Theorem
      
      ⊢ ∀x y. exp (x + y) = exp x * exp y
   
   [REAL_EXP_BOUND_LEMMA]  Theorem
      
      ⊢ ∀x. 0 ≤ x ∧ x ≤ 2⁻¹ ⇒ exp x ≤ 1 + 2 * x
   
   [REAL_ROOT_RPOW]  Theorem
      
      ⊢ ∀n x. n ≠ 0 ∧ 0 < x ⇒ root n x = x powr (&n)⁻¹
   
   [ROOT_0]  Theorem
      
      ⊢ ∀n. root (SUC n) 0 = 0
   
   [ROOT_1]  Theorem
      
      ⊢ ∀n. root (SUC n) 1 = 1
   
   [ROOT_11]  Theorem
      
      ⊢ ∀n x y. 0 ≤ x ∧ 0 ≤ y ∧ root (SUC n) x = root (SUC n) y ⇒ x = y
   
   [ROOT_DIV]  Theorem
      
      ⊢ ∀n x y.
          0 ≤ x ∧ 0 ≤ y ⇒
          root (SUC n) (x / y) = root (SUC n) x / root (SUC n) y
   
   [ROOT_INV]  Theorem
      
      ⊢ ∀n x. 0 ≤ x ⇒ root (SUC n) x⁻¹ = (root (SUC n) x)⁻¹
   
   [ROOT_LN]  Theorem
      
      ⊢ ∀n x. 0 < x ⇒ root (SUC n) x = exp (ln x / &SUC n)
   
   [ROOT_LT_LEMMA]  Theorem
      
      ⊢ ∀n x. 0 < x ⇒ exp (ln x / &SUC n) pow SUC n = x
   
   [ROOT_MONO_LE]  Theorem
      
      ⊢ ∀n x y. 0 ≤ x ∧ x ≤ y ⇒ root (SUC n) x ≤ root (SUC n) y
   
   [ROOT_MONO_LE_EQ]  Theorem
      
      ⊢ ∀n x y. 0 ≤ x ∧ 0 ≤ y ⇒ (root (SUC n) x ≤ root (SUC n) y ⇔ x ≤ y)
   
   [ROOT_MUL]  Theorem
      
      ⊢ ∀n x y.
          0 ≤ x ∧ 0 ≤ y ⇒
          root (SUC n) (x * y) = root (SUC n) x * root (SUC n) y
   
   [ROOT_POS]  Theorem
      
      ⊢ ∀n x. 0 ≤ x ⇒ 0 ≤ root (SUC n) x
   
   [ROOT_POS_LT]  Theorem
      
      ⊢ ∀n x. 0 < x ⇒ 0 < root (SUC n) x
   
   [ROOT_POS_UNIQ]  Theorem
      
      ⊢ ∀n x y. 0 ≤ x ∧ 0 ≤ y ∧ y pow SUC n = x ⇒ root (SUC n) x = y
   
   [ROOT_POW_POS]  Theorem
      
      ⊢ ∀n x. 0 ≤ x ⇒ root (SUC n) x pow SUC n = x
   
   [ROOT_PRODUCT]  Theorem
      
      ⊢ ∀n f s.
          FINITE s ∧ n ≠ 0 ∧ (∀x. x ∈ s ⇒ 0 ≤ f x) ⇒
          root n (product s f) = product s (λi. root n (f i))
   
   [RPOW_0]  Theorem
      
      ⊢ ∀a. 0 < a ⇒ a powr 0 = 1
   
   [RPOW_1]  Theorem
      
      ⊢ ∀a. 0 < a ⇒ a powr 1 = a
   
   [RPOW_ADD]  Theorem
      
      ⊢ ∀a b c. a powr (b + c) = a powr b * a powr c
   
   [RPOW_ADD_MUL]  Theorem
      
      ⊢ ∀a b c. a powr (b + c) * a powr -b = a powr c
   
   [RPOW_DIV]  Theorem
      
      ⊢ ∀a b c. 0 < a ∧ 0 < b ⇒ (a / b) powr c = a powr c / b powr c
   
   [RPOW_DIV_BASE]  Theorem
      
      ⊢ ∀x t. 0 < x ⇒ x powr t / x = x powr (t − 1)
   
   [RPOW_INV]  Theorem
      
      ⊢ ∀a b. 0 < a ⇒ a⁻¹ powr b = (a powr b)⁻¹
   
   [RPOW_LE]  Theorem
      
      ⊢ ∀a b c. 1 < a ⇒ (a powr b ≤ a powr c ⇔ b ≤ c)
   
   [RPOW_LT]  Theorem
      
      ⊢ ∀a b c. 1 < a ⇒ (a powr b < a powr c ⇔ b < c)
   
   [RPOW_MUL]  Theorem
      
      ⊢ ∀a b c. 0 < a ∧ 0 < b ⇒ (a * b) powr c = a powr c * b powr c
   
   [RPOW_NZ]  Theorem
      
      ⊢ ∀a b. 0 ≠ a ⇒ a powr b ≠ 0
   
   [RPOW_POS_LT]  Theorem
      
      ⊢ ∀a b. 0 < a ⇒ 0 < a powr b
   
   [RPOW_RPOW]  Theorem
      
      ⊢ ∀a b c. 0 < a ⇒ (a powr b) powr c = a powr (b * c)
   
   [RPOW_SUB]  Theorem
      
      ⊢ ∀a b c. a powr (b − c) = a powr b / a powr c
   
   [RPOW_SUC_N]  Theorem
      
      ⊢ ∀a n. 0 < a ⇒ a powr (&n + 1) = a pow SUC n
   
   [RPOW_UNIQ_BASE]  Theorem
      
      ⊢ ∀a b c. 0 < a ∧ 0 < c ∧ 0 ≠ b ∧ a powr b = c powr b ⇒ a = c
   
   [RPOW_UNIQ_EXP]  Theorem
      
      ⊢ ∀a b c. 1 < a ∧ 0 < c ∧ 0 < b ∧ a powr b = a powr c ⇒ b = c
   
   [SIN_0]  Theorem
      
      ⊢ sin 0 = 0
   
   [SIN_ACS_NZ]  Theorem
      
      ⊢ ∀x. -1 < x ∧ x < 1 ⇒ sin (acs x) ≠ 0
   
   [SIN_ADD]  Theorem
      
      ⊢ ∀x y. sin (x + y) = sin x * cos y + cos x * sin y
   
   [SIN_ASN]  Theorem
      
      ⊢ ∀x. -(pi / 2) ≤ x ∧ x ≤ pi / 2 ⇒ asn (sin x) = x
   
   [SIN_BOUND]  Theorem
      
      ⊢ ∀x. abs (sin x) ≤ 1
   
   [SIN_BOUNDS]  Theorem
      
      ⊢ ∀x. -1 ≤ sin x ∧ sin x ≤ 1
   
   [SIN_CIRCLE]  Theorem
      
      ⊢ ∀x. (sin x)² + (cos x)² = 1
   
   [SIN_CONVERGES]  Theorem
      
      ⊢ ∀x. (λn.
                 (λn.
                      if EVEN n then 0
                      else -1 pow ((n − 1) DIV 2) / &FACT n) n * x pow n) sums
            sin x
   
   [SIN_COS]  Theorem
      
      ⊢ ∀x. sin x = cos (pi / 2 − x)
   
   [SIN_COS_ADD]  Theorem
      
      ⊢ ∀x y.
          (sin (x + y) − (sin x * cos y + cos x * sin y))² +
          (cos (x + y) − (cos x * cos y − sin x * sin y))² =
          0
   
   [SIN_COS_NEG]  Theorem
      
      ⊢ ∀x. (sin (-x) + sin x)² + (cos (-x) − cos x)² = 0
   
   [SIN_COS_SQ]  Theorem
      
      ⊢ ∀x. 0 ≤ x ∧ x ≤ pi ⇒ sin x = sqrt (1 − (cos x)²)
   
   [SIN_COS_SQRT]  Theorem
      
      ⊢ ∀x. 0 ≤ sin x ⇒ sin x = sqrt (1 − (cos x)²)
   
   [SIN_DOUBLE]  Theorem
      
      ⊢ ∀x. sin (2 * x) = 2 * (sin x * cos x)
   
   [SIN_FDIFF]  Theorem
      
      ⊢ diffs (λn. if EVEN n then 0 else -1 pow ((n − 1) DIV 2) / &FACT n) =
        (λn. if EVEN n then -1 pow (n DIV 2) / &FACT n else 0)
   
   [SIN_NEG]  Theorem
      
      ⊢ ∀x. sin (-x) = -sin x
   
   [SIN_NEGLEMMA]  Theorem
      
      ⊢ ∀x. -sin x =
            suminf
              (λn.
                   -((λn.
                         if EVEN n then 0
                         else -1 pow ((n − 1) DIV 2) / &FACT n) n * x pow n))
   
   [SIN_NPI]  Theorem
      
      ⊢ ∀n. sin (&n * pi) = 0
   
   [SIN_PAIRED]  Theorem
      
      ⊢ ∀x. (λn. -1 pow n / &FACT (2 * n + 1) * x pow (2 * n + 1)) sums
            sin x
   
   [SIN_PERIODIC]  Theorem
      
      ⊢ ∀x. sin (x + 2 * pi) = sin x
   
   [SIN_PERIODIC_PI]  Theorem
      
      ⊢ ∀x. sin (x + pi) = -sin x
   
   [SIN_PI]  Theorem
      
      ⊢ sin pi = 0
   
   [SIN_PI2]  Theorem
      
      ⊢ sin (pi / 2) = 1
   
   [SIN_POS]  Theorem
      
      ⊢ ∀x. 0 < x ∧ x < 2 ⇒ 0 < sin x
   
   [SIN_POS_PI]  Theorem
      
      ⊢ ∀x. 0 < x ∧ x < pi ⇒ 0 < sin x
   
   [SIN_POS_PI2]  Theorem
      
      ⊢ ∀x. 0 < x ∧ x < pi / 2 ⇒ 0 < sin x
   
   [SIN_POS_PI2_LE]  Theorem
      
      ⊢ ∀x. 0 ≤ x ∧ x ≤ pi / 2 ⇒ 0 ≤ sin x
   
   [SIN_POS_PI_LE]  Theorem
      
      ⊢ ∀x. 0 ≤ x ∧ x ≤ pi ⇒ 0 ≤ sin x
   
   [SIN_TOTAL]  Theorem
      
      ⊢ ∀y. -1 ≤ y ∧ y ≤ 1 ⇒ ∃!x. -(pi / 2) ≤ x ∧ x ≤ pi / 2 ∧ sin x = y
   
   [SIN_ZERO]  Theorem
      
      ⊢ ∀x. sin x = 0 ⇔
            (∃n. EVEN n ∧ x = &n * (pi / 2)) ∨
            ∃n. EVEN n ∧ x = -(&n * (pi / 2))
   
   [SIN_ZERO_LEMMA]  Theorem
      
      ⊢ ∀x. 0 ≤ x ∧ sin x = 0 ⇒ ∃n. EVEN n ∧ x = &n * (pi / 2)
   
   [SQRT_EVEN_POW2]  Theorem
      
      ⊢ ∀n. EVEN n ⇒ sqrt (2 pow n) = 2 pow (n DIV 2)
   
   [SQRT_RPOW]  Theorem
      
      ⊢ ∀x. 0 < x ⇒ sqrt x = x powr 2⁻¹
   
   [TAN_0]  Theorem
      
      ⊢ tan 0 = 0
   
   [TAN_ADD]  Theorem
      
      ⊢ ∀x y.
          cos x ≠ 0 ∧ cos y ≠ 0 ∧ cos (x + y) ≠ 0 ⇒
          tan (x + y) = (tan x + tan y) / (1 − tan x * tan y)
   
   [TAN_ATN]  Theorem
      
      ⊢ ∀x. -(pi / 2) < x ∧ x < pi / 2 ⇒ atn (tan x) = x
   
   [TAN_DOUBLE]  Theorem
      
      ⊢ ∀x. cos x ≠ 0 ∧ cos (2 * x) ≠ 0 ⇒
            tan (2 * x) = 2 * tan x / (1 − (tan x)²)
   
   [TAN_NEG]  Theorem
      
      ⊢ ∀x. tan (-x) = -tan x
   
   [TAN_NPI]  Theorem
      
      ⊢ ∀n. tan (&n * pi) = 0
   
   [TAN_PERIODIC]  Theorem
      
      ⊢ ∀x. tan (x + 2 * pi) = tan x
   
   [TAN_PI]  Theorem
      
      ⊢ tan pi = 0
   
   [TAN_POS_PI2]  Theorem
      
      ⊢ ∀x. 0 < x ∧ x < pi / 2 ⇒ 0 < tan x
   
   [TAN_SEC]  Theorem
      
      ⊢ ∀x. cos x ≠ 0 ⇒ 1 + (tan x)² = (cos x)⁻¹ ²
   
   [TAN_TOTAL]  Theorem
      
      ⊢ ∀y. ∃!x. -(pi / 2) < x ∧ x < pi / 2 ∧ tan x = y
   
   [TAN_TOTAL_LEMMA]  Theorem
      
      ⊢ ∀y. 0 < y ⇒ ∃x. 0 < x ∧ x < pi / 2 ∧ y < tan x
   
   [TAN_TOTAL_POS]  Theorem
      
      ⊢ ∀y. 0 ≤ y ⇒ ∃x. 0 ≤ x ∧ x < pi / 2 ∧ tan x = y
   
   [YOUNG_INEQUALITY]  Theorem
      
      ⊢ ∀a b p q.
          0 < a ∧ 0 < b ∧ 0 < p ∧ 0 < q ∧ p⁻¹ + q⁻¹ = 1 ⇒
          a * b ≤ a powr p / p + b powr q / q
   
   [exp]  Theorem
      
      ⊢ ∀x. exp x = suminf (λn. (λn. (&FACT n)⁻¹) n * x pow n)
   
   [exp_convex]  Theorem
      
      ⊢ exp ∈ convex_fn
   
   [lg_1]  Theorem
      
      ⊢ lg 1 = 0
   
   [lg_2]  Theorem
      
      ⊢ lg 2 = 1
   
   [lg_inv]  Theorem
      
      ⊢ ∀x. 0 < x ⇒ lg x⁻¹ = -lg x
   
   [lg_mul]  Theorem
      
      ⊢ ∀x y. 0 < x ∧ 0 < y ⇒ lg (x * y) = lg x + lg y
   
   [lg_nonzero]  Theorem
      
      ⊢ ∀x. x ≠ 0 ∧ 0 ≤ x ⇒ (lg x ≠ 0 ⇔ x ≠ 1)
   
   [lg_pow]  Theorem
      
      ⊢ ∀n. lg (2 pow n) = &n
   
   [logr_1]  Theorem
      
      ⊢ ∀b. logr b 1 = 0
   
   [logr_div]  Theorem
      
      ⊢ ∀b x y. 0 < x ∧ 0 < y ⇒ logr b (x / y) = logr b x − logr b y
   
   [logr_inv]  Theorem
      
      ⊢ ∀b x. 0 < x ⇒ logr b x⁻¹ = -logr b x
   
   [logr_mul]  Theorem
      
      ⊢ ∀b x y. 0 < x ∧ 0 < y ⇒ logr b (x * y) = logr b x + logr b y
   
   [neg_lg]  Theorem
      
      ⊢ ∀x. 0 < x ⇒ -lg x = lg x⁻¹
   
   [neg_logr]  Theorem
      
      ⊢ ∀b x. 0 < x ⇒ -logr b x = logr b x⁻¹
   
   [pos_concave_lg]  Theorem
      
      ⊢ lg ∈ pos_concave_fn
   
   [pos_concave_ln]  Theorem
      
      ⊢ ln ∈ pos_concave_fn
   
   [pos_concave_logr]  Theorem
      
      ⊢ ∀b. 1 ≤ b ⇒ logr b ∈ pos_concave_fn
   
   [pos_convex_inv]  Theorem
      
      ⊢ realinv ∈ pos_convex_fn
   
   [sqrt]  Theorem
      
      ⊢ ∀x. sqrt x = root 2 x
   
   
*)
end


Source File Identifier index Theory binding index

HOL 4, Trindemossen-1