EQ_LENGTH_SNOC_INDUCT_TAC reduces a goal
 !x y . (LENGTH x = LENGTH y) ==> t[x,y],
 where x and y range over lists, to two
subgoals corresponding to the base and step cases in a proof by 
induction on the length of x and y. The induction hypothesis appears among
the assumptions of the
subgoal for the step case.  The specification of EQ_LENGTH_SNOC_INDUCT_TAC is:
     A ?- !x y . (LENGTH x = LENGTH y) ==> t[x,y]
   ================================================  EQ_LENGTH_SNOC_INDUCT_TAC
                            A ?- t[NIL/x][NIL/y]
    A u {{LENGTH x = LENGTH y, t[x'/x, y'/y]}} ?- 
         !h h'. t[(SNOC h x)/x, (SNOC h' y)/y]