Structure ConseqConvTheory
signature ConseqConvTheory =
sig
type thm = Thm.thm
(* Definitions *)
val ASM_MARKER_DEF : thm
(* Theorems *)
val AND_CLAUSES_FX : thm
val AND_CLAUSES_TX : thm
val AND_CLAUSES_XF : thm
val AND_CLAUSES_XT : thm
val AND_CLAUSES_XX : thm
val ASM_MARKER_THM : thm
val COND_CLAUSES_CF : thm
val COND_CLAUSES_CT : thm
val COND_CLAUSES_FF : thm
val COND_CLAUSES_FT : thm
val COND_CLAUSES_ID : thm
val COND_CLAUSES_TF : thm
val COND_CLAUSES_TT : thm
val IMP_CLAUSES_FX : thm
val IMP_CLAUSES_TX : thm
val IMP_CLAUSES_XF : thm
val IMP_CLAUSES_XT : thm
val IMP_CLAUSES_XX : thm
val IMP_CONG_cond : thm
val IMP_CONG_cond_simple : thm
val IMP_CONG_conj_strengthen : thm
val IMP_CONG_conj_weaken : thm
val IMP_CONG_disj_strengthen : thm
val IMP_CONG_disj_weaken : thm
val IMP_CONG_imp_strengthen : thm
val IMP_CONG_imp_weaken : thm
val IMP_CONG_simple_imp_strengthen : thm
val IMP_CONG_simple_imp_weaken : thm
val NOT_CLAUSES_F : thm
val NOT_CLAUSES_T : thm
val NOT_CLAUSES_X : thm
val OR_CLAUSES_FX : thm
val OR_CLAUSES_TX : thm
val OR_CLAUSES_XF : thm
val OR_CLAUSES_XT : thm
val OR_CLAUSES_XX : thm
val exists_eq_thm : thm
val false_imp : thm
val forall_eq_thm : thm
val true_imp : thm
val ConseqConv_grammars : type_grammar.grammar * term_grammar.grammar
(*
[bool] Parent theory of "ConseqConv"
[ASM_MARKER_DEF] Definition
|- ASM_MARKER = (λy x. x)
[AND_CLAUSES_FX] Theorem
|- ∀t. F ∧ t ⇔ F
[AND_CLAUSES_TX] Theorem
|- ∀t. T ∧ t ⇔ t
[AND_CLAUSES_XF] Theorem
|- ∀t. t ∧ F ⇔ F
[AND_CLAUSES_XT] Theorem
|- ∀t. t ∧ T ⇔ t
[AND_CLAUSES_XX] Theorem
|- ∀t. t ∧ t ⇔ t
[ASM_MARKER_THM] Theorem
|- ∀y x. ASM_MARKER y x ⇔ x
[COND_CLAUSES_CF] Theorem
|- ∀t1 t2. (if F then t1 else t2) = t2
[COND_CLAUSES_CT] Theorem
|- ∀t1 t2. (if T then t1 else t2) = t1
[COND_CLAUSES_FF] Theorem
|- ∀c x. (if c then x else F) ⇔ c ∧ x
[COND_CLAUSES_FT] Theorem
|- ∀c x. (if c then x else T) ⇔ c ⇒ x
[COND_CLAUSES_ID] Theorem
|- ∀b t. (if b then t else t) = t
[COND_CLAUSES_TF] Theorem
|- ∀c x. (if c then F else x) ⇔ ¬c ∧ x
[COND_CLAUSES_TT] Theorem
|- ∀c x. (if c then T else x) ⇔ ¬c ⇒ x
[IMP_CLAUSES_FX] Theorem
|- ∀t. F ⇒ t ⇔ T
[IMP_CLAUSES_TX] Theorem
|- ∀t. T ⇒ t ⇔ t
[IMP_CLAUSES_XF] Theorem
|- ∀t. t ⇒ F ⇔ ¬t
[IMP_CLAUSES_XT] Theorem
|- ∀t. t ⇒ T ⇔ T
[IMP_CLAUSES_XX] Theorem
|- ∀t. t ⇒ t ⇔ T
[IMP_CONG_cond] Theorem
|- ∀c x x' y y'.
(c ⇒ x' ⇒ x) ∧ (¬c ⇒ y' ⇒ y) ⇒
(if c then x' else y') ⇒
if c then x else y
[IMP_CONG_cond_simple] Theorem
|- ∀c x x' y y'.
(x' ⇒ x) ∧ (y' ⇒ y) ⇒
(if c then x' else y') ⇒
if c then x else y
[IMP_CONG_conj_strengthen] Theorem
|- ∀x x' y y'. (y ⇒ x' ⇒ x) ∧ (x' ⇒ y' ⇒ y) ⇒ x' ∧ y' ⇒ x ∧ y
[IMP_CONG_conj_weaken] Theorem
|- ∀x x' y y'. (y ⇒ x ⇒ x') ∧ (x' ⇒ y ⇒ y') ⇒ x ∧ y ⇒ x' ∧ y'
[IMP_CONG_disj_strengthen] Theorem
|- ∀x x' y y'. (¬y ⇒ x' ⇒ x) ∧ (¬x' ⇒ y' ⇒ y) ⇒ x' ∨ y' ⇒ x ∨ y
[IMP_CONG_disj_weaken] Theorem
|- ∀x x' y y'. (¬y ⇒ x ⇒ x') ∧ (¬x' ⇒ y ⇒ y') ⇒ x ∨ y ⇒ x' ∨ y'
[IMP_CONG_imp_strengthen] Theorem
|- ∀x x' y y'. (x ⇒ y' ⇒ y) ∧ (¬y' ⇒ x ⇒ x') ⇒ (x' ⇒ y') ⇒ x ⇒ y
[IMP_CONG_imp_weaken] Theorem
|- ∀x x' y y'. (x ⇒ y ⇒ y') ∧ (¬y' ⇒ x' ⇒ x) ⇒ (x ⇒ y) ⇒ x' ⇒ y'
[IMP_CONG_simple_imp_strengthen] Theorem
|- ∀x x' y y'. (x ⇒ x') ∧ (x' ⇒ y' ⇒ y) ⇒ (x' ⇒ y') ⇒ x ⇒ y
[IMP_CONG_simple_imp_weaken] Theorem
|- ∀x x' y y'. (x' ⇒ x) ∧ (x' ⇒ y ⇒ y') ⇒ (x ⇒ y) ⇒ x' ⇒ y'
[NOT_CLAUSES_F] Theorem
|- ¬F ⇔ T
[NOT_CLAUSES_T] Theorem
|- ¬T ⇔ F
[NOT_CLAUSES_X] Theorem
|- ∀t. ¬ ¬t ⇔ t
[OR_CLAUSES_FX] Theorem
|- ∀t. F ∨ t ⇔ t
[OR_CLAUSES_TX] Theorem
|- ∀t. T ∨ t ⇔ T
[OR_CLAUSES_XF] Theorem
|- ∀t. t ∨ F ⇔ t
[OR_CLAUSES_XT] Theorem
|- ∀t. t ∨ T ⇔ T
[OR_CLAUSES_XX] Theorem
|- ∀t. t ∨ t ⇔ t
[exists_eq_thm] Theorem
|- (∀s. P s ⇔ Q s) ⇒ ((∃s. P s) ⇔ ∃s. Q s)
[false_imp] Theorem
|- ∀t. F ⇒ t
[forall_eq_thm] Theorem
|- (∀s. P s ⇔ Q s) ⇒ ((∀s. P s) ⇔ ∀s. Q s)
[true_imp] Theorem
|- ∀t. t ⇒ T
*)
end
HOL 4, Kananaskis-10