Structure EncodeVarTheory
signature EncodeVarTheory =
sig
type thm = Thm.thm
(* Definitions *)
val fixed_width_def : thm
val of_length_def : thm
(* Theorems *)
val fixed_width_bnum : thm
val fixed_width_bool : thm
val fixed_width_exists : thm
val fixed_width_prod : thm
val fixed_width_sum : thm
val fixed_width_unit : thm
val fixed_width_univ : thm
val of_length_exists_suc : thm
val of_length_exists_zero : thm
val of_length_univ_suc : thm
val of_length_univ_zero : thm
val EncodeVar_grammars : type_grammar.grammar * term_grammar.grammar
(*
[Coder] Parent theory of "EncodeVar"
[fixed_width_def] Definition
|- ∀n c.
fixed_width n c ⇔ ∀x. domain c x ⇒ (LENGTH (encoder c x) = n)
[of_length_def] Definition
|- ∀l n. l ∈ of_length n ⇔ (LENGTH l = n)
[fixed_width_bnum] Theorem
|- ∀m p. fixed_width m (bnum_coder m p)
[fixed_width_bool] Theorem
|- ∀p. fixed_width 1 (bool_coder p)
[fixed_width_exists] Theorem
|- ∀phi c n.
wf_coder c ∧ fixed_width n c ⇒
((∃x. domain c x ∧ phi x) ⇔ ∃w::of_length n. phi (decoder c w))
[fixed_width_prod] Theorem
|- ∀c1 c2 n1 n2.
fixed_width n1 c1 ∧ fixed_width n2 c2 ⇒
fixed_width (n1 + n2) (prod_coder c1 c2)
[fixed_width_sum] Theorem
|- ∀c1 c2 n.
fixed_width n c1 ∧ fixed_width n c2 ⇒
fixed_width (SUC n) (sum_coder c1 c2)
[fixed_width_unit] Theorem
|- ∀p. fixed_width 0 (unit_coder p)
[fixed_width_univ] Theorem
|- ∀phi c n.
wf_coder c ∧ fixed_width n c ⇒
((∀x. domain c x ⇒ phi x) ⇔ ∀w::of_length n. phi (decoder c w))
[of_length_exists_suc] Theorem
|- ∀phi n.
(∃w::of_length (SUC n). phi w) ⇔ ∃x (w::of_length n). phi (x::w)
[of_length_exists_zero] Theorem
|- ∀phi. (∃w::of_length 0. phi w) ⇔ phi []
[of_length_univ_suc] Theorem
|- ∀phi n.
(∀w::of_length (SUC n). phi w) ⇔ ∀x (w::of_length n). phi (x::w)
[of_length_univ_zero] Theorem
|- ∀phi. (∀w::of_length 0. phi w) ⇔ phi []
*)
end
HOL 4, Kananaskis-10