Structure OmegaTheory
signature OmegaTheory =
sig
type thm = Thm.thm
(* Definitions *)
val MAP2_curried_def : thm
val MAP2_tupled_primitive_def : thm
val calc_nightmare_curried_def : thm
val calc_nightmare_tupled_primitive_def : thm
val dark_shadow_cond_row_curried_def : thm
val dark_shadow_cond_row_tupled_primitive_def : thm
val dark_shadow_condition_curried_def : thm
val dark_shadow_condition_tupled_primitive_def : thm
val dark_shadow_curried_def : thm
val dark_shadow_row_curried_def : thm
val dark_shadow_row_tupled_primitive_def : thm
val dark_shadow_tupled_primitive_def : thm
val evallower_curried_def : thm
val evallower_tupled_primitive_def : thm
val evalupper_curried_def : thm
val evalupper_tupled_primitive_def : thm
val fst1_def : thm
val fst_nzero_def : thm
val modhat_def : thm
val nightmare_curried_def : thm
val nightmare_tupled_primitive_def : thm
val real_shadow_def : thm
val rshadow_row_curried_def : thm
val rshadow_row_tupled_primitive_def : thm
val sumc_curried_def : thm
val sumc_tupled_primitive_def : thm
(* Theorems *)
val MAP2_def : thm
val MAP2_ind : thm
val MAP2_zero_ADD : thm
val alternative_equivalence : thm
val basic_shadow_equivalence : thm
val bigger_satisfies_lowers : thm
val calc_nightmare_def : thm
val calc_nightmare_ind : thm
val calculational_nightmare : thm
val dark_implies_real : thm
val dark_shadow_FORALL : thm
val dark_shadow_cond_row_def : thm
val dark_shadow_cond_row_ind : thm
val dark_shadow_condition_def : thm
val dark_shadow_condition_ind : thm
val dark_shadow_def : thm
val dark_shadow_ind : thm
val dark_shadow_row_def : thm
val dark_shadow_row_ind : thm
val darkrow_implies_realrow : thm
val equality_removal : thm
val eval_base : thm
val eval_step_extra1 : thm
val eval_step_extra2 : thm
val eval_step_extra3 : thm
val eval_step_extra4 : thm
val eval_step_lower1 : thm
val eval_step_lower2 : thm
val eval_step_upper1 : thm
val eval_step_upper2 : thm
val evallower_FORALL : thm
val evallower_def : thm
val evallower_ind : thm
val evalupper_FORALL : thm
val evalupper_def : thm
val evalupper_ind : thm
val exact_shadow_case : thm
val final_equivalence : thm
val nightmare_EXISTS : thm
val nightmare_def : thm
val nightmare_implies_LHS : thm
val nightmare_ind : thm
val onlylowers_satisfiable : thm
val onlyuppers_satisfiable : thm
val real_shadow_FORALL : thm
val real_shadow_always_implied : thm
val real_shadow_revimp_lowers1 : thm
val real_shadow_revimp_uppers1 : thm
val rshadow_row_def : thm
val rshadow_row_ind : thm
val singleton_real_shadow : thm
val smaller_satisfies_uppers : thm
val sumc_ADD : thm
val sumc_MULT : thm
val sumc_def : thm
val sumc_ind : thm
val sumc_nonsingle : thm
val sumc_singleton : thm
val sumc_thm : thm
val Omega_grammars : type_grammar.grammar * term_grammar.grammar
(*
[integer] Parent theory of "Omega"
[MAP2_curried_def] Definition
|- ∀x x1 x2 x3. MAP2 x x1 x2 x3 = MAP2_tupled (x,x1,x2,x3)
[MAP2_tupled_primitive_def] Definition
|- MAP2_tupled =
WFREC
(@R.
WF R ∧ (∀y ys f pad. R (pad,f,[],ys) (pad,f,[],y::ys)) ∧
(∀x xs f pad. R (pad,f,xs,[]) (pad,f,x::xs,[])) ∧
∀y x ys xs f pad. R (pad,f,xs,ys) (pad,f,x::xs,y::ys))
(λMAP2_tupled a.
case a of
(pad,f,[],[]) => I []
| (pad,f,[],y::ys) => I (f pad y::MAP2_tupled (pad,f,[],ys))
| (pad,f,x::xs,[]) => I (f x pad::MAP2_tupled (pad,f,xs,[]))
| (pad,f,x::xs,y'::ys') =>
I (f x y'::MAP2_tupled (pad,f,xs,ys')))
[calc_nightmare_curried_def] Definition
|- ∀x x1 x2. calc_nightmare x x1 x2 ⇔ calc_nightmare_tupled (x,x1,x2)
[calc_nightmare_tupled_primitive_def] Definition
|- calc_nightmare_tupled =
WFREC (@R'. WF R' ∧ ∀R d rs c x. R' (x,c,rs) (x,c,(d,R)::rs))
(λcalc_nightmare_tupled a.
case a of
(x,c,[]) => I F
| (x,c,(d,R)::rs) =>
I
((∃i.
(0 ≤ i ∧ i ≤ (&c * &d − &c − &d) / &c) ∧
(&d * x = R + i)) ∨
calc_nightmare_tupled (x,c,rs)))
[dark_shadow_cond_row_curried_def] Definition
|- ∀x x1.
dark_shadow_cond_row x x1 ⇔ dark_shadow_cond_row_tupled (x,x1)
[dark_shadow_cond_row_tupled_primitive_def] Definition
|- dark_shadow_cond_row_tupled =
WFREC (@R'. WF R' ∧ ∀R d t L c. R' ((c,L),t) ((c,L),(d,R)::t))
(λdark_shadow_cond_row_tupled a.
case a of
(v,[]) => I T
| ((c,L),(d,R)::t) =>
I
(¬(∃i.
&c * &d * i < &c * R ∧ &c * R ≤ &d * L ∧
&d * L < &c * &d * (i + 1)) ∧
dark_shadow_cond_row_tupled ((c,L),t)))
[dark_shadow_condition_curried_def] Definition
|- ∀x x1.
dark_shadow_condition x x1 ⇔ dark_shadow_condition_tupled (x,x1)
[dark_shadow_condition_tupled_primitive_def] Definition
|- dark_shadow_condition_tupled =
WFREC
(@R.
WF R ∧
∀L c lowers uppers. R (uppers,lowers) ((c,L)::uppers,lowers))
(λdark_shadow_condition_tupled a.
case a of
([],lowers) => I T
| ((c,L)::uppers,lowers) =>
I
(dark_shadow_cond_row (c,L) lowers ∧
dark_shadow_condition_tupled (uppers,lowers)))
[dark_shadow_curried_def] Definition
|- ∀x x1. dark_shadow x x1 ⇔ dark_shadow_tupled (x,x1)
[dark_shadow_row_curried_def] Definition
|- ∀x x1 x2.
dark_shadow_row x x1 x2 ⇔ dark_shadow_row_tupled (x,x1,x2)
[dark_shadow_row_tupled_primitive_def] Definition
|- dark_shadow_row_tupled =
WFREC (@R'. WF R' ∧ ∀R d rs L c. R' (c,L,rs) (c,L,(d,R)::rs))
(λdark_shadow_row_tupled a.
case a of
(c,L,[]) => I T
| (c,L,(d,R)::rs) =>
I
(&d * L − &c * R ≥ (&c − 1) * (&d − 1) ∧
dark_shadow_row_tupled (c,L,rs)))
[dark_shadow_tupled_primitive_def] Definition
|- dark_shadow_tupled =
WFREC
(@R.
WF R ∧
∀L c lowers uppers. R (uppers,lowers) ((c,L)::uppers,lowers))
(λdark_shadow_tupled a.
case a of
([],lowers) => I T
| ((c,L)::uppers,lowers) =>
I
(dark_shadow_row c L lowers ∧
dark_shadow_tupled (uppers,lowers)))
[evallower_curried_def] Definition
|- ∀x x1. evallower x x1 ⇔ evallower_tupled (x,x1)
[evallower_tupled_primitive_def] Definition
|- evallower_tupled =
WFREC (@R. WF R ∧ ∀y c cs x. R (x,cs) (x,(c,y)::cs))
(λevallower_tupled a.
case a of
(x,[]) => I T
| (x,(c,y)::cs) => I (y ≤ &c * x ∧ evallower_tupled (x,cs)))
[evalupper_curried_def] Definition
|- ∀x x1. evalupper x x1 ⇔ evalupper_tupled (x,x1)
[evalupper_tupled_primitive_def] Definition
|- evalupper_tupled =
WFREC (@R. WF R ∧ ∀y c cs x. R (x,cs) (x,(c,y)::cs))
(λevalupper_tupled a.
case a of
(x,[]) => I T
| (x,(c,y)::cs) => I (&c * x ≤ y ∧ evalupper_tupled (x,cs)))
[fst1_def] Definition
|- ∀x. fst1 x ⇔ (FST x = 1)
[fst_nzero_def] Definition
|- ∀x. fst_nzero x ⇔ 0 < FST x
[modhat_def] Definition
|- ∀x y. modhat x y = x − y * ((2 * x + y) / (2 * y))
[nightmare_curried_def] Definition
|- ∀x x1 x2 x3 x4.
nightmare x x1 x2 x3 x4 ⇔ nightmare_tupled (x,x1,x2,x3,x4)
[nightmare_tupled_primitive_def] Definition
|- nightmare_tupled =
WFREC
(@R'.
WF R' ∧
∀R d rs lowers uppers c x.
R' (x,c,uppers,lowers,rs) (x,c,uppers,lowers,(d,R)::rs))
(λnightmare_tupled a.
case a of
(x,c,uppers,lowers,[]) => I F
| (x,c,uppers,lowers,(d,R)::rs) =>
I
((∃i.
(0 ≤ i ∧ i ≤ (&c * &d − &c − &d) / &c) ∧
(&d * x = R + i) ∧ evalupper x uppers ∧
evallower x lowers) ∨
nightmare_tupled (x,c,uppers,lowers,rs)))
[real_shadow_def] Definition
|- (∀lowers. real_shadow [] lowers ⇔ T) ∧
∀upper ls lowers.
real_shadow (upper::ls) lowers ⇔
rshadow_row upper lowers ∧ real_shadow ls lowers
[rshadow_row_curried_def] Definition
|- ∀x x1. rshadow_row x x1 ⇔ rshadow_row_tupled (x,x1)
[rshadow_row_tupled_primitive_def] Definition
|- rshadow_row_tupled =
WFREC
(@R.
WF R ∧
∀lowery lowerc rs uppery upperc.
R ((upperc,uppery),rs)
((upperc,uppery),(lowerc,lowery)::rs))
(λrshadow_row_tupled a.
case a of
(v,[]) => I T
| ((upperc,uppery),(lowerc,lowery)::rs) =>
I
(&upperc * lowery ≤ &lowerc * uppery ∧
rshadow_row_tupled ((upperc,uppery),rs)))
[sumc_curried_def] Definition
|- ∀x x1. sumc x x1 = sumc_tupled (x,x1)
[sumc_tupled_primitive_def] Definition
|- sumc_tupled =
WFREC (@R. WF R ∧ ∀v c vs cs. R (cs,vs) (c::cs,v::vs))
(λsumc_tupled a.
case a of
(c::cs,v::vs) => I (c * v + sumc_tupled (cs,vs))
| _ => I 0)
[MAP2_def] Theorem
|- (∀pad f. MAP2 pad f [] [] = []) ∧
(∀ys y pad f. MAP2 pad f [] (y::ys) = f pad y::MAP2 pad f [] ys) ∧
(∀xs x pad f. MAP2 pad f (x::xs) [] = f x pad::MAP2 pad f xs []) ∧
∀ys y xs x pad f.
MAP2 pad f (x::xs) (y::ys) = f x y::MAP2 pad f xs ys
[MAP2_ind] Theorem
|- ∀P.
(∀pad f. P pad f [] []) ∧
(∀pad f y ys. P pad f [] ys ⇒ P pad f [] (y::ys)) ∧
(∀pad f x xs. P pad f xs [] ⇒ P pad f (x::xs) []) ∧
(∀pad f x xs y ys. P pad f xs ys ⇒ P pad f (x::xs) (y::ys)) ⇒
∀v v1 v2 v3. P v v1 v2 v3
[MAP2_zero_ADD] Theorem
|- ∀xs. (MAP2 0 $+ [] xs = xs) ∧ (MAP2 0 $+ xs [] = xs)
[alternative_equivalence] Theorem
|- ∀uppers lowers m.
EVERY fst_nzero uppers ∧ EVERY fst_nzero lowers ∧
EVERY (λp. FST p ≤ m) uppers ⇒
((∃x. evalupper x uppers ∧ evallower x lowers) ⇔
dark_shadow uppers lowers ∨
∃x. nightmare x m uppers lowers lowers)
[basic_shadow_equivalence] Theorem
|- ∀uppers lowers.
EVERY fst_nzero uppers ∧ EVERY fst_nzero lowers ⇒
((∃x. evalupper x uppers ∧ evallower x lowers) ⇔
real_shadow uppers lowers ∧
dark_shadow_condition uppers lowers)
[bigger_satisfies_lowers] Theorem
|- ∀lowers x y. evallower x lowers ∧ x < y ⇒ evallower y lowers
[calc_nightmare_def] Theorem
|- (∀x c. calc_nightmare x c [] ⇔ F) ∧
∀x rs d c R.
calc_nightmare x c ((d,R)::rs) ⇔
(∃i.
(0 ≤ i ∧ i ≤ (&c * &d − &c − &d) / &c) ∧ (&d * x = R + i)) ∨
calc_nightmare x c rs
[calc_nightmare_ind] Theorem
|- ∀P.
(∀x c. P x c []) ∧ (∀x c d R rs. P x c rs ⇒ P x c ((d,R)::rs)) ⇒
∀v v1 v2. P v v1 v2
[calculational_nightmare] Theorem
|- ∀rs.
nightmare x c uppers lowers rs ⇔
calc_nightmare x c rs ∧ evalupper x uppers ∧ evallower x lowers
[dark_implies_real] Theorem
|- ∀uppers lowers.
EVERY fst_nzero uppers ∧ EVERY fst_nzero lowers ∧
dark_shadow uppers lowers ⇒
real_shadow uppers lowers
[dark_shadow_FORALL] Theorem
|- ∀uppers lowers.
dark_shadow uppers lowers ⇔
∀c d L R.
MEM (c,L) uppers ∧ MEM (d,R) lowers ⇒
&d * L − &c * R ≥ (&c − 1) * (&d − 1)
[dark_shadow_cond_row_def] Theorem
|- (∀c L. dark_shadow_cond_row (c,L) [] ⇔ T) ∧
∀t d c R L.
dark_shadow_cond_row (c,L) ((d,R)::t) ⇔
¬(∃i.
&c * &d * i < &c * R ∧ &c * R ≤ &d * L ∧
&d * L < &c * &d * (i + 1)) ∧ dark_shadow_cond_row (c,L) t
[dark_shadow_cond_row_ind] Theorem
|- ∀P.
(∀c L. P (c,L) []) ∧
(∀c L d R t. P (c,L) t ⇒ P (c,L) ((d,R)::t)) ⇒
∀v v1 v2. P (v,v1) v2
[dark_shadow_condition_def] Theorem
|- (∀lowers. dark_shadow_condition [] lowers ⇔ T) ∧
∀uppers lowers c L.
dark_shadow_condition ((c,L)::uppers) lowers ⇔
dark_shadow_cond_row (c,L) lowers ∧
dark_shadow_condition uppers lowers
[dark_shadow_condition_ind] Theorem
|- ∀P.
(∀lowers. P [] lowers) ∧
(∀c L uppers lowers.
P uppers lowers ⇒ P ((c,L)::uppers) lowers) ⇒
∀v v1. P v v1
[dark_shadow_def] Theorem
|- (∀lowers. dark_shadow [] lowers ⇔ T) ∧
∀uppers lowers c L.
dark_shadow ((c,L)::uppers) lowers ⇔
dark_shadow_row c L lowers ∧ dark_shadow uppers lowers
[dark_shadow_ind] Theorem
|- ∀P.
(∀lowers. P [] lowers) ∧
(∀c L uppers lowers.
P uppers lowers ⇒ P ((c,L)::uppers) lowers) ⇒
∀v v1. P v v1
[dark_shadow_row_def] Theorem
|- (∀c L. dark_shadow_row c L [] ⇔ T) ∧
∀rs d c R L.
dark_shadow_row c L ((d,R)::rs) ⇔
&d * L − &c * R ≥ (&c − 1) * (&d − 1) ∧ dark_shadow_row c L rs
[dark_shadow_row_ind] Theorem
|- ∀P.
(∀c L. P c L []) ∧ (∀c L d R rs. P c L rs ⇒ P c L ((d,R)::rs)) ⇒
∀v v1 v2. P v v1 v2
[darkrow_implies_realrow] Theorem
|- ∀lowers c L.
0 < c ∧ EVERY fst_nzero lowers ∧ dark_shadow_row c L lowers ⇒
rshadow_row (c,L) lowers
[equality_removal] Theorem
|- ∀c x cs vs.
0 < c ⇒
((0 = c * x + sumc cs vs) ⇔
∃s.
(x =
-(c + 1) * s + sumc (MAP (λx. modhat x (c + 1)) cs) vs) ∧
(0 = c * x + sumc cs vs))
[eval_base] Theorem
|- p ⇔ ((evalupper x [] ∧ evallower x []) ∧ T) ∧ p
[eval_step_extra1] Theorem
|- ((evalupper x ups ∧ evallower x lows) ∧ T) ∧ ex' ⇔
(evalupper x ups ∧ evallower x lows) ∧ ex'
[eval_step_extra2] Theorem
|- ((evalupper x ups ∧ evallower x lows) ∧ ex) ∧ ex' ⇔
(evalupper x ups ∧ evallower x lows) ∧ ex ∧ ex'
[eval_step_extra3] Theorem
|- ((evalupper x ups ∧ evallower x lows) ∧ T) ∧ ex' ∧ p ⇔
((evalupper x ups ∧ evallower x lows) ∧ ex') ∧ p
[eval_step_extra4] Theorem
|- ((evalupper x ups ∧ evallower x lows) ∧ ex) ∧ ex' ∧ p ⇔
((evalupper x ups ∧ evallower x lows) ∧ ex ∧ ex') ∧ p
[eval_step_lower1] Theorem
|- ((evalupper x ups ∧ evallower x lows) ∧ ex) ∧ r ≤ &c * x ⇔
(evalupper x ups ∧ evallower x ((c,r)::lows)) ∧ ex
[eval_step_lower2] Theorem
|- ((evalupper x ups ∧ evallower x lows) ∧ ex) ∧ r ≤ &c * x ∧ p ⇔
((evalupper x ups ∧ evallower x ((c,r)::lows)) ∧ ex) ∧ p
[eval_step_upper1] Theorem
|- ((evalupper x ups ∧ evallower x lows) ∧ ex) ∧ &c * x ≤ r ⇔
(evalupper x ((c,r)::ups) ∧ evallower x lows) ∧ ex
[eval_step_upper2] Theorem
|- ((evalupper x ups ∧ evallower x lows) ∧ ex) ∧ &c * x ≤ r ∧ p ⇔
((evalupper x ((c,r)::ups) ∧ evallower x lows) ∧ ex) ∧ p
[evallower_FORALL] Theorem
|- ∀lowers x.
evallower x lowers ⇔ ∀d R. MEM (d,R) lowers ⇒ R ≤ &d * x
[evallower_def] Theorem
|- (∀x. evallower x [] ⇔ T) ∧
∀y x cs c. evallower x ((c,y)::cs) ⇔ y ≤ &c * x ∧ evallower x cs
[evallower_ind] Theorem
|- ∀P.
(∀x. P x []) ∧ (∀x c y cs. P x cs ⇒ P x ((c,y)::cs)) ⇒
∀v v1. P v v1
[evalupper_FORALL] Theorem
|- ∀uppers x.
evalupper x uppers ⇔ ∀c L. MEM (c,L) uppers ⇒ &c * x ≤ L
[evalupper_def] Theorem
|- (∀x. evalupper x [] ⇔ T) ∧
∀y x cs c. evalupper x ((c,y)::cs) ⇔ &c * x ≤ y ∧ evalupper x cs
[evalupper_ind] Theorem
|- ∀P.
(∀x. P x []) ∧ (∀x c y cs. P x cs ⇒ P x ((c,y)::cs)) ⇒
∀v v1. P v v1
[exact_shadow_case] Theorem
|- ∀uppers lowers.
EVERY fst_nzero uppers ∧ EVERY fst_nzero lowers ⇒
EVERY fst1 uppers ∨ EVERY fst1 lowers ⇒
((∃x. evalupper x uppers ∧ evallower x lowers) ⇔
real_shadow uppers lowers)
[final_equivalence] Theorem
|- ∀uppers lowers m.
EVERY fst_nzero uppers ∧ EVERY fst_nzero lowers ∧
EVERY (λp. FST p ≤ m) uppers ⇒
((∃x. evalupper x uppers ∧ evallower x lowers) ⇔
real_shadow uppers lowers ∧
(dark_shadow uppers lowers ∨
∃x. nightmare x m uppers lowers lowers))
[nightmare_EXISTS] Theorem
|- ∀rs x c uppers lowers.
nightmare x c uppers lowers rs ⇔
∃i d R.
0 ≤ i ∧ i ≤ (&d * &c − &c − &d) / &c ∧ MEM (d,R) rs ∧
evalupper x uppers ∧ evallower x lowers ∧ (&d * x = R + i)
[nightmare_def] Theorem
|- (∀x uppers lowers c. nightmare x c uppers lowers [] ⇔ F) ∧
∀x uppers rs lowers d c R.
nightmare x c uppers lowers ((d,R)::rs) ⇔
(∃i.
(0 ≤ i ∧ i ≤ (&c * &d − &c − &d) / &c) ∧ (&d * x = R + i) ∧
evalupper x uppers ∧ evallower x lowers) ∨
nightmare x c uppers lowers rs
[nightmare_implies_LHS] Theorem
|- ∀rs x uppers lowers c.
nightmare x c uppers lowers rs ⇒
evalupper x uppers ∧ evallower x lowers
[nightmare_ind] Theorem
|- ∀P.
(∀x c uppers lowers. P x c uppers lowers []) ∧
(∀x c uppers lowers d R rs.
P x c uppers lowers rs ⇒ P x c uppers lowers ((d,R)::rs)) ⇒
∀v v1 v2 v3 v4. P v v1 v2 v3 v4
[onlylowers_satisfiable] Theorem
|- ∀lowers. EVERY fst_nzero lowers ⇒ ∃x. evallower x lowers
[onlyuppers_satisfiable] Theorem
|- ∀uppers. EVERY fst_nzero uppers ⇒ ∃x. evalupper x uppers
[real_shadow_FORALL] Theorem
|- ∀uppers lowers.
real_shadow uppers lowers ⇔
∀c d L R. MEM (c,L) uppers ∧ MEM (d,R) lowers ⇒ &c * R ≤ &d * L
[real_shadow_always_implied] Theorem
|- ∀uppers lowers x.
evalupper x uppers ∧ evallower x lowers ∧
EVERY fst_nzero uppers ∧ EVERY fst_nzero lowers ⇒
real_shadow uppers lowers
[real_shadow_revimp_lowers1] Theorem
|- ∀uppers lowers c L x.
0 < c ∧ rshadow_row (c,L) lowers ∧ evalupper x uppers ∧
evallower x lowers ∧ EVERY fst_nzero uppers ∧
EVERY fst1 lowers ⇒
∃x. &c * x ≤ L ∧ evalupper x uppers ∧ evallower x lowers
[real_shadow_revimp_uppers1] Theorem
|- ∀uppers lowers L x.
rshadow_row (1,L) lowers ∧ evallower x lowers ∧
evalupper x uppers ∧ EVERY fst_nzero lowers ∧
EVERY fst1 uppers ⇒
∃x. x ≤ L ∧ evalupper x uppers ∧ evallower x lowers
[rshadow_row_def] Theorem
|- (∀uppery upperc. rshadow_row (upperc,uppery) [] ⇔ T) ∧
∀uppery upperc rs lowery lowerc.
rshadow_row (upperc,uppery) ((lowerc,lowery)::rs) ⇔
&upperc * lowery ≤ &lowerc * uppery ∧
rshadow_row (upperc,uppery) rs
[rshadow_row_ind] Theorem
|- ∀P.
(∀upperc uppery. P (upperc,uppery) []) ∧
(∀upperc uppery lowerc lowery rs.
P (upperc,uppery) rs ⇒
P (upperc,uppery) ((lowerc,lowery)::rs)) ⇒
∀v v1 v2. P (v,v1) v2
[singleton_real_shadow] Theorem
|- ∀c L x.
&c * x ≤ L ∧ 0 < c ⇒
∀lowers.
EVERY fst_nzero lowers ∧ evallower x lowers ⇒
rshadow_row (c,L) lowers
[smaller_satisfies_uppers] Theorem
|- ∀uppers x y. evalupper x uppers ∧ y < x ⇒ evalupper y uppers
[sumc_ADD] Theorem
|- ∀cs vs ds. sumc cs vs + sumc ds vs = sumc (MAP2 0 $+ cs ds) vs
[sumc_MULT] Theorem
|- ∀cs vs f. f * sumc cs vs = sumc (MAP (λx. f * x) cs) vs
[sumc_def] Theorem
|- (∀v0. sumc v0 [] = 0) ∧ (∀v5 v4. sumc [] (v4::v5) = 0) ∧
∀vs v cs c. sumc (c::cs) (v::vs) = c * v + sumc cs vs
[sumc_ind] Theorem
|- ∀P.
(∀v0. P v0 []) ∧ (∀v4 v5. P [] (v4::v5)) ∧
(∀c cs v vs. P cs vs ⇒ P (c::cs) (v::vs)) ⇒
∀v v1. P v v1
[sumc_nonsingle] Theorem
|- ∀f cs c v vs.
sumc (MAP f (c::cs)) (v::vs) = f c * v + sumc (MAP f cs) vs
[sumc_singleton] Theorem
|- ∀f c. sumc (MAP f [c]) [1] = f c
[sumc_thm] Theorem
|- ∀cs vs c v.
(sumc [] vs = 0) ∧ (sumc cs [] = 0) ∧
(sumc (c::cs) (v::vs) = c * v + sumc cs vs)
*)
end
HOL 4, Kananaskis-10