Structure bitTheory
signature bitTheory =
sig
type thm = Thm.thm
(* Definitions *)
val BITS_def : thm
val BITV_def : thm
val BITWISE_def : thm
val BIT_MODIFY_def : thm
val BIT_REVERSE_def : thm
val BIT_def : thm
val DIVMOD_2EXP_def : thm
val DIV_2EXP_def : thm
val LOG2_def : thm
val LOWEST_SET_BIT_def : thm
val MOD_2EXP_EQ_def : thm
val MOD_2EXP_MAX_def : thm
val MOD_2EXP_def : thm
val SBIT_def : thm
val SIGN_EXTEND_def : thm
val SLICE_def : thm
val TIMES_2EXP_def : thm
(* Theorems *)
val ADD_BIT0 : thm
val ADD_BITS_SUC : thm
val ADD_BIT_SUC : thm
val BIT0_ODD : thm
val BITSLT_THM : thm
val BITSLT_THM2 : thm
val BITS_COMP_THM : thm
val BITS_COMP_THM2 : thm
val BITS_DIV_THM : thm
val BITS_LEQ : thm
val BITS_LOG2_ZERO_ID : thm
val BITS_LT_HIGH : thm
val BITS_LT_LOW : thm
val BITS_MUL : thm
val BITS_SLICE_THM : thm
val BITS_SLICE_THM2 : thm
val BITS_SUC : thm
val BITS_SUC_THM : thm
val BITS_SUM : thm
val BITS_SUM2 : thm
val BITS_SUM3 : thm
val BITS_THM : thm
val BITS_THM2 : thm
val BITS_ZERO : thm
val BITS_ZERO2 : thm
val BITS_ZERO3 : thm
val BITS_ZERO4 : thm
val BITS_ZERO5 : thm
val BITS_ZEROL : thm
val BITV_THM : thm
val BITWISE_BITS : thm
val BITWISE_COR : thm
val BITWISE_EVAL : thm
val BITWISE_LT_2EXP : thm
val BITWISE_NOT_COR : thm
val BITWISE_ONE_COMP_LEM : thm
val BITWISE_THM : thm
val BIT_B : thm
val BIT_BITS_THM : thm
val BIT_B_NEQ : thm
val BIT_COMPLEMENT : thm
val BIT_COMP_THM3 : thm
val BIT_DIV2 : thm
val BIT_EXP_SUB1 : thm
val BIT_IMP_GE_TWOEXP : thm
val BIT_LOG2 : thm
val BIT_MODIFY_THM : thm
val BIT_OF_BITS_THM : thm
val BIT_OF_BITS_THM2 : thm
val BIT_REVERSE_THM : thm
val BIT_SHIFT_THM : thm
val BIT_SHIFT_THM2 : thm
val BIT_SHIFT_THM3 : thm
val BIT_SHIFT_THM4 : thm
val BIT_SHIFT_THM5 : thm
val BIT_SIGN_EXTEND : thm
val BIT_SLICE : thm
val BIT_SLICE_LEM : thm
val BIT_SLICE_THM : thm
val BIT_SLICE_THM2 : thm
val BIT_SLICE_THM3 : thm
val BIT_SLICE_THM4 : thm
val BIT_ZERO : thm
val DIVMOD_2EXP : thm
val DIV_GT0 : thm
val DIV_LT : thm
val DIV_MULT_1 : thm
val DIV_MULT_THM : thm
val DIV_MULT_THM2 : thm
val DIV_SUB1 : thm
val EXISTS_BIT_IN_RANGE : thm
val EXISTS_BIT_LT : thm
val EXP_SUB_LESS_EQ : thm
val LEAST_THM : thm
val LESS_EQ_EXP_MULT : thm
val LESS_MULT_MONO2 : thm
val LOG2_LE_MONO : thm
val LOG2_TWOEXP : thm
val LOG2_UNIQUE : thm
val LT_TWOEXP : thm
val MOD_2EXP_LT : thm
val MOD_2EXP_MONO : thm
val MOD_ADD_1 : thm
val MOD_LEQ : thm
val MOD_PLUS_1 : thm
val MOD_PLUS_LEFT : thm
val MOD_PLUS_RIGHT : thm
val MOD_ZERO_GT : thm
val NOT_BIT : thm
val NOT_BITS : thm
val NOT_BITS2 : thm
val NOT_BIT_GT_BITWISE : thm
val NOT_BIT_GT_LOG2 : thm
val NOT_BIT_GT_TWOEXP : thm
val NOT_MOD2_LEM : thm
val NOT_MOD2_LEM2 : thm
val NOT_ZERO_ADD1 : thm
val ODD_MOD2_LEM : thm
val ONE_LE_TWOEXP : thm
val SBIT_DIV : thm
val SBIT_MULT : thm
val SLICELT_THM : thm
val SLICE_COMP_RWT : thm
val SLICE_COMP_THM : thm
val SLICE_COMP_THM2 : thm
val SLICE_THM : thm
val SLICE_ZERO : thm
val SLICE_ZERO2 : thm
val SLICE_ZERO_THM : thm
val SUC_SUB : thm
val TWOEXP_DIVISION : thm
val TWOEXP_LE_IMP_LE_LOG2 : thm
val TWOEXP_MONO : thm
val TWOEXP_MONO2 : thm
val TWOEXP_NOT_ZERO : thm
val ZERO_LT_TWOEXP : thm
val bit_grammars : type_grammar.grammar * term_grammar.grammar
(*
[logroot] Parent theory of "bit"
[BITS_def] Definition
|- ∀h l n. BITS h l n = MOD_2EXP (SUC h − l) (DIV_2EXP l n)
[BITV_def] Definition
|- ∀n b. BITV n b = BITS b b n
[BITWISE_def] Definition
|- (∀op x y. BITWISE 0 op x y = 0) ∧
∀n op x y.
BITWISE (SUC n) op x y =
BITWISE n op x y + SBIT (op (BIT n x) (BIT n y)) n
[BIT_MODIFY_def] Definition
|- (∀f x. BIT_MODIFY 0 f x = 0) ∧
∀n f x.
BIT_MODIFY (SUC n) f x =
BIT_MODIFY n f x + SBIT (f n (BIT n x)) n
[BIT_REVERSE_def] Definition
|- (∀x. BIT_REVERSE 0 x = 0) ∧
∀n x.
BIT_REVERSE (SUC n) x = BIT_REVERSE n x * 2 + SBIT (BIT n x) 0
[BIT_def] Definition
|- ∀b n. BIT b n ⇔ (BITS b b n = 1)
[DIVMOD_2EXP_def] Definition
|- ∀x n. DIVMOD_2EXP x n = (n DIV 2 ** x,n MOD 2 ** x)
[DIV_2EXP_def] Definition
|- ∀x n. DIV_2EXP x n = n DIV 2 ** x
[LOG2_def] Definition
|- LOG2 = LOG 2
[LOWEST_SET_BIT_def] Definition
|- ∀n. LOWEST_SET_BIT n = LEAST i. BIT i n
[MOD_2EXP_EQ_def] Definition
|- ∀n a b. MOD_2EXP_EQ n a b ⇔ (MOD_2EXP n a = MOD_2EXP n b)
[MOD_2EXP_MAX_def] Definition
|- ∀n a. MOD_2EXP_MAX n a ⇔ (MOD_2EXP n a = 2 ** n − 1)
[MOD_2EXP_def] Definition
|- ∀x n. MOD_2EXP x n = n MOD 2 ** x
[SBIT_def] Definition
|- ∀b n. SBIT b n = if b then 2 ** n else 0
[SIGN_EXTEND_def] Definition
|- ∀l h n.
SIGN_EXTEND l h n =
(let m = n MOD 2 ** l
in
if BIT (l − 1) n then 2 ** h − 2 ** l + m else m)
[SLICE_def] Definition
|- ∀h l n. SLICE h l n = MOD_2EXP (SUC h) n − MOD_2EXP l n
[TIMES_2EXP_def] Definition
|- ∀x n. TIMES_2EXP x n = n * 2 ** x
[ADD_BIT0] Theorem
|- ∀m n. BIT 0 (m + n) ⇔ (BIT 0 m ⇎ BIT 0 n)
[ADD_BITS_SUC] Theorem
|- ∀n a b.
BITS (SUC n) (SUC n) (a + b) =
(BITS (SUC n) (SUC n) a + BITS (SUC n) (SUC n) b +
BITS (SUC n) (SUC n) (BITS n 0 a + BITS n 0 b)) MOD 2
[ADD_BIT_SUC] Theorem
|- ∀n a b.
BIT (SUC n) (a + b) ⇔
if BIT (SUC n) (BITS n 0 a + BITS n 0 b) then
BIT (SUC n) a ⇔ BIT (SUC n) b
else BIT (SUC n) a ⇎ BIT (SUC n) b
[BIT0_ODD] Theorem
|- BIT 0 = ODD
[BITSLT_THM] Theorem
|- ∀h l n. BITS h l n < 2 ** (SUC h − l)
[BITSLT_THM2] Theorem
|- ∀h l n. BITS h l n < 2 ** SUC h
[BITS_COMP_THM] Theorem
|- ∀h1 l1 h2 l2 n.
h2 + l1 ≤ h1 ⇒
(BITS h2 l2 (BITS h1 l1 n) = BITS (h2 + l1) (l2 + l1) n)
[BITS_COMP_THM2] Theorem
|- ∀h1 l1 h2 l2 n.
BITS h2 l2 (BITS h1 l1 n) = BITS (MIN h1 (h2 + l1)) (l2 + l1) n
[BITS_DIV_THM] Theorem
|- ∀h l x n. BITS h l x DIV 2 ** n = BITS h (l + n) x
[BITS_LEQ] Theorem
|- ∀h l n. BITS h l n ≤ n
[BITS_LOG2_ZERO_ID] Theorem
|- ∀n. 0 < n ⇒ (BITS (LOG2 n) 0 n = n)
[BITS_LT_HIGH] Theorem
|- ∀h l n. n < 2 ** SUC h ⇒ (BITS h l n = n DIV 2 ** l)
[BITS_LT_LOW] Theorem
|- ∀h l n. n < 2 ** l ⇒ (BITS h l n = 0)
[BITS_MUL] Theorem
|- ∀h a b. BITS h 0 (BITS h 0 a * BITS h 0 b) = BITS h 0 (a * b)
[BITS_SLICE_THM] Theorem
|- ∀h l n. BITS h l (SLICE h l n) = BITS h l n
[BITS_SLICE_THM2] Theorem
|- ∀h h2 l n. h ≤ h2 ⇒ (BITS h2 l (SLICE h l n) = BITS h l n)
[BITS_SUC] Theorem
|- ∀h l n.
l ≤ SUC h ⇒
(SBIT (BIT (SUC h) n) (SUC h − l) + BITS h l n =
BITS (SUC h) l n)
[BITS_SUC_THM] Theorem
|- ∀h l n.
BITS (SUC h) l n =
if SUC h < l then 0
else SBIT (BIT (SUC h) n) (SUC h − l) + BITS h l n
[BITS_SUM] Theorem
|- ∀h l a b.
b < 2 ** l ⇒ (BITS h l (a * 2 ** l + b) = BITS h l (a * 2 ** l))
[BITS_SUM2] Theorem
|- ∀h l a b. BITS h l (a * 2 ** SUC h + b) = BITS h l b
[BITS_SUM3] Theorem
|- ∀h a b. BITS h 0 (BITS h 0 a + BITS h 0 b) = BITS h 0 (a + b)
[BITS_THM] Theorem
|- ∀h l n. BITS h l n = (n DIV 2 ** l) MOD 2 ** (SUC h − l)
[BITS_THM2] Theorem
|- ∀h l n. BITS h l n = n MOD 2 ** SUC h DIV 2 ** l
[BITS_ZERO] Theorem
|- ∀h l n. h < l ⇒ (BITS h l n = 0)
[BITS_ZERO2] Theorem
|- ∀h l. BITS h l 0 = 0
[BITS_ZERO3] Theorem
|- ∀h n. BITS h 0 n = n MOD 2 ** SUC h
[BITS_ZERO4] Theorem
|- ∀h l a. l ≤ h ⇒ (BITS h l (a * 2 ** l) = BITS (h − l) 0 a)
[BITS_ZERO5] Theorem
|- ∀n m. (∀i. i ≤ n ⇒ ¬BIT i m) ⇒ (BITS n 0 m = 0)
[BITS_ZEROL] Theorem
|- ∀h a. a < 2 ** SUC h ⇒ (BITS h 0 a = a)
[BITV_THM] Theorem
|- ∀b n. BITV n b = SBIT (BIT b n) 0
[BITWISE_BITS] Theorem
|- ∀wl op a b.
BITWISE (SUC wl) op (BITS wl 0 a) (BITS wl 0 b) =
BITWISE (SUC wl) op a b
[BITWISE_COR] Theorem
|- ∀x n op a b.
x < n ⇒
op (BIT x a) (BIT x b) ⇒
((BITWISE n op a b DIV 2 ** x) MOD 2 = 1)
[BITWISE_EVAL] Theorem
|- ∀n op a b.
BITWISE (SUC n) op a b =
2 * BITWISE n op (a DIV 2) (b DIV 2) +
SBIT (op (ODD a) (ODD b)) 0
[BITWISE_LT_2EXP] Theorem
|- ∀n op a b. BITWISE n op a b < 2 ** n
[BITWISE_NOT_COR] Theorem
|- ∀x n op a b.
x < n ⇒
¬op (BIT x a) (BIT x b) ⇒
((BITWISE n op a b DIV 2 ** x) MOD 2 = 0)
[BITWISE_ONE_COMP_LEM] Theorem
|- ∀n a b.
BITWISE (SUC n) (λx y. ¬x) a b = 2 ** SUC n − 1 − BITS n 0 a
[BITWISE_THM] Theorem
|- ∀x n op a b.
x < n ⇒ (BIT x (BITWISE n op a b) ⇔ op (BIT x a) (BIT x b))
[BIT_B] Theorem
|- ∀b. BIT b (2 ** b)
[BIT_BITS_THM] Theorem
|- ∀h l a b.
(∀x. l ≤ x ∧ x ≤ h ⇒ (BIT x a ⇔ BIT x b)) ⇔
(BITS h l a = BITS h l b)
[BIT_B_NEQ] Theorem
|- ∀a b. a ≠ b ⇒ ¬BIT a (2 ** b)
[BIT_COMPLEMENT] Theorem
|- ∀n i a.
BIT i (2 ** n − a MOD 2 ** n) ⇔
(a MOD 2 ** n = 0) ∧ (i = n) ∨
a MOD 2 ** n ≠ 0 ∧ i < n ∧ ¬BIT i (a MOD 2 ** n − 1)
[BIT_COMP_THM3] Theorem
|- ∀h m l n.
SUC m ≤ h ∧ l ≤ m ⇒
(BITS h (SUC m) n * 2 ** (SUC m − l) + BITS m l n = BITS h l n)
[BIT_DIV2] Theorem
|- ∀n i. BIT n (i DIV 2) ⇔ BIT (SUC n) i
[BIT_EXP_SUB1] Theorem
|- ∀b n. BIT b (2 ** n − 1) ⇔ b < n
[BIT_IMP_GE_TWOEXP] Theorem
|- ∀i n. BIT i n ⇒ 2 ** i ≤ n
[BIT_LOG2] Theorem
|- ∀n. n ≠ 0 ⇒ BIT (LOG2 n) n
[BIT_MODIFY_THM] Theorem
|- ∀x n f a. x < n ⇒ (BIT x (BIT_MODIFY n f a) ⇔ f x (BIT x a))
[BIT_OF_BITS_THM] Theorem
|- ∀n h l a. l + n ≤ h ⇒ (BIT n (BITS h l a) ⇔ BIT (l + n) a)
[BIT_OF_BITS_THM2] Theorem
|- ∀h l x n. h < l + x ⇒ ¬BIT x (BITS h l n)
[BIT_REVERSE_THM] Theorem
|- ∀x n a. x < n ⇒ (BIT x (BIT_REVERSE n a) ⇔ BIT (n − 1 − x) a)
[BIT_SHIFT_THM] Theorem
|- ∀n a s. BIT (n + s) (a * 2 ** s) ⇔ BIT n a
[BIT_SHIFT_THM2] Theorem
|- ∀n a s. s ≤ n ⇒ (BIT n (a * 2 ** s) ⇔ BIT (n − s) a)
[BIT_SHIFT_THM3] Theorem
|- ∀n a s. n < s ⇒ ¬BIT n (a * 2 ** s)
[BIT_SHIFT_THM4] Theorem
|- ∀n i a. BIT i (a DIV 2 ** n) ⇔ BIT (i + n) a
[BIT_SHIFT_THM5] Theorem
|- ∀n m i a.
i + n < m ∧ a < 2 ** m ⇒
(BIT i
(2 ** m −
(a DIV 2 ** n + if a MOD 2 ** n = 0 then 0 else 1) MOD
2 ** m) ⇔ BIT (i + n) (2 ** m − a MOD 2 ** m))
[BIT_SIGN_EXTEND] Theorem
|- ∀l h n i.
l ≠ 0 ⇒
(BIT i (SIGN_EXTEND l h n) ⇔
if l ≤ h ⇒ i < l then BIT i (n MOD 2 ** l)
else i < h ∧ BIT (l − 1) n)
[BIT_SLICE] Theorem
|- ∀n a b. (BIT n a ⇔ BIT n b) ⇔ (SLICE n n a = SLICE n n b)
[BIT_SLICE_LEM] Theorem
|- ∀y x n. SBIT (BIT x n) (x + y) = SLICE x x n * 2 ** y
[BIT_SLICE_THM] Theorem
|- ∀x n. SBIT (BIT x n) x = SLICE x x n
[BIT_SLICE_THM2] Theorem
|- ∀b n. BIT b n ⇔ (SLICE b b n = 2 ** b)
[BIT_SLICE_THM3] Theorem
|- ∀b n. ¬BIT b n ⇔ (SLICE b b n = 0)
[BIT_SLICE_THM4] Theorem
|- ∀b h l n. BIT b (SLICE h l n) ⇔ l ≤ b ∧ b ≤ h ∧ BIT b n
[BIT_ZERO] Theorem
|- ∀b. ¬BIT b 0
[DIVMOD_2EXP] Theorem
|- ∀x n. DIVMOD_2EXP x n = (DIV_2EXP x n,MOD_2EXP x n)
[DIV_GT0] Theorem
|- ∀a b. b ≤ a ∧ 0 < b ⇒ 0 < a DIV b
[DIV_LT] Theorem
|- ∀n m a. n < m ∧ a < 2 ** m ⇒ a DIV 2 ** n < 2 ** m
[DIV_MULT_1] Theorem
|- ∀r n. r < n ⇒ ((n + r) DIV n = 1)
[DIV_MULT_THM] Theorem
|- ∀x n. n DIV 2 ** x * 2 ** x = n − n MOD 2 ** x
[DIV_MULT_THM2] Theorem
|- ∀n. 2 * (n DIV 2) = n − n MOD 2
[DIV_SUB1] Theorem
|- ∀a b.
2 ** b ≤ a ∧ (a MOD 2 ** b = 0) ⇒
(a DIV 2 ** b − 1 = (a − 1) DIV 2 ** b)
[EXISTS_BIT_IN_RANGE] Theorem
|- ∀a b n.
n ≠ 0 ∧ 2 ** a ≤ n ∧ n < 2 ** b ⇒ ∃i. a ≤ i ∧ i < b ∧ BIT i n
[EXISTS_BIT_LT] Theorem
|- ∀b n. n ≠ 0 ∧ n < 2 ** b ⇒ ∃i. i < b ∧ BIT i n
[EXP_SUB_LESS_EQ] Theorem
|- ∀a b. 2 ** (a − b) ≤ 2 ** a
[LEAST_THM] Theorem
|- ∀n P. (∀m. m < n ⇒ ¬P m) ∧ P n ⇒ ($LEAST P = n)
[LESS_EQ_EXP_MULT] Theorem
|- ∀a b. a ≤ b ⇒ ∃p. 2 ** b = p * 2 ** a
[LESS_MULT_MONO2] Theorem
|- ∀a b x y. a < x ∧ b < y ⇒ a * b < x * y
[LOG2_LE_MONO] Theorem
|- ∀x y. 0 < x ⇒ x ≤ y ⇒ LOG2 x ≤ LOG2 y
[LOG2_TWOEXP] Theorem
|- ∀n. LOG2 (2 ** n) = n
[LOG2_UNIQUE] Theorem
|- ∀n p. 2 ** p ≤ n ∧ n < 2 ** SUC p ⇒ (LOG2 n = p)
[LT_TWOEXP] Theorem
|- ∀x n. x < 2 ** n ⇔ (x = 0) ∨ LOG2 x < n
[MOD_2EXP_LT] Theorem
|- ∀n k. k MOD 2 ** n < 2 ** n
[MOD_2EXP_MONO] Theorem
|- ∀n h l. l ≤ h ⇒ n MOD 2 ** l ≤ n MOD 2 ** SUC h
[MOD_ADD_1] Theorem
|- ∀n. 0 < n ⇒ ∀x. (x + 1) MOD n ≠ 0 ⇒ ((x + 1) MOD n = x MOD n + 1)
[MOD_LEQ] Theorem
|- ∀a b. 0 < b ⇒ a MOD b ≤ a
[MOD_PLUS_1] Theorem
|- ∀n. 0 < n ⇒ ∀x. ((x + 1) MOD n = 0) ⇔ (x MOD n + 1 = n)
[MOD_PLUS_LEFT] Theorem
|- ∀n. 0 < n ⇒ ∀j k. (k MOD n + j) MOD n = (k + j) MOD n
[MOD_PLUS_RIGHT] Theorem
|- ∀n. 0 < n ⇒ ∀j k. (j + k MOD n) MOD n = (j + k) MOD n
[MOD_ZERO_GT] Theorem
|- ∀n a. a ≠ 0 ∧ (a MOD 2 ** n = 0) ⇒ 2 ** n ≤ a
[NOT_BIT] Theorem
|- ∀n a. ¬BIT n a ⇔ (BITS n n a = 0)
[NOT_BITS] Theorem
|- ∀n a. BITS n n a ≠ 0 ⇔ (BITS n n a = 1)
[NOT_BITS2] Theorem
|- ∀n a. BITS n n a ≠ 1 ⇔ (BITS n n a = 0)
[NOT_BIT_GT_BITWISE] Theorem
|- ∀i n op a b. n ≤ i ⇒ ¬BIT i (BITWISE n op a b)
[NOT_BIT_GT_LOG2] Theorem
|- ∀i n. LOG2 n < i ⇒ ¬BIT i n
[NOT_BIT_GT_TWOEXP] Theorem
|- ∀i n. n < 2 ** i ⇒ ¬BIT i n
[NOT_MOD2_LEM] Theorem
|- ∀n. n MOD 2 ≠ 0 ⇔ (n MOD 2 = 1)
[NOT_MOD2_LEM2] Theorem
|- ∀n. n MOD 2 ≠ 1 ⇔ (n MOD 2 = 0)
[NOT_ZERO_ADD1] Theorem
|- ∀m. m ≠ 0 ⇒ ∃p. m = SUC p
[ODD_MOD2_LEM] Theorem
|- ∀n. ODD n ⇔ (n MOD 2 = 1)
[ONE_LE_TWOEXP] Theorem
|- ∀n. 1 ≤ 2 ** n
[SBIT_DIV] Theorem
|- ∀b m n. n < m ⇒ (SBIT b (m − n) = SBIT b m DIV 2 ** n)
[SBIT_MULT] Theorem
|- ∀b m n. SBIT b n * 2 ** m = SBIT b (n + m)
[SLICELT_THM] Theorem
|- ∀h l n. SLICE h l n < 2 ** SUC h
[SLICE_COMP_RWT] Theorem
|- ∀h m' m l n.
l ≤ m ∧ (m' = m + 1) ∧ m < h ⇒
(SLICE h m' n + SLICE m l n = SLICE h l n)
[SLICE_COMP_THM] Theorem
|- ∀h m l n.
SUC m ≤ h ∧ l ≤ m ⇒
(SLICE h (SUC m) n + SLICE m l n = SLICE h l n)
[SLICE_COMP_THM2] Theorem
|- ∀h l x y n.
h ≤ x ∧ y ≤ l ⇒ (SLICE h l (SLICE x y n) = SLICE h l n)
[SLICE_THM] Theorem
|- ∀n h l. SLICE h l n = BITS h l n * 2 ** l
[SLICE_ZERO] Theorem
|- ∀h l n. h < l ⇒ (SLICE h l n = 0)
[SLICE_ZERO2] Theorem
|- ∀l h. SLICE h l 0 = 0
[SLICE_ZERO_THM] Theorem
|- ∀n h. SLICE h 0 n = BITS h 0 n
[SUC_SUB] Theorem
|- ∀a. SUC a − a = 1
[TWOEXP_DIVISION] Theorem
|- ∀n k. k = k DIV 2 ** n * 2 ** n + k MOD 2 ** n
[TWOEXP_LE_IMP_LE_LOG2] Theorem
|- (∀x y. 2 ** x ≤ y ⇒ x ≤ LOG2 y) ∧
∀y x. 0 < x ⇒ x ≤ 2 ** y ⇒ LOG2 x ≤ y
[TWOEXP_MONO] Theorem
|- ∀a b. a < b ⇒ 2 ** a < 2 ** b
[TWOEXP_MONO2] Theorem
|- ∀a b. a ≤ b ⇒ 2 ** a ≤ 2 ** b
[TWOEXP_NOT_ZERO] Theorem
|- ∀n. 2 ** n ≠ 0
[ZERO_LT_TWOEXP] Theorem
|- ∀n. 0 < 2 ** n
*)
end
HOL 4, Kananaskis-10