Structure boolTheory
signature boolTheory =
sig
type thm = Thm.thm
(* Axioms *)
val BOOL_CASES_AX : thm
val ETA_AX : thm
val INFINITY_AX : thm
val SELECT_AX : thm
(* Definitions *)
val AND_DEF : thm
val BOUNDED_DEF : thm
val COND_DEF : thm
val DATATYPE_TAG_DEF : thm
val EXISTS_DEF : thm
val EXISTS_UNIQUE_DEF : thm
val FORALL_DEF : thm
val F_DEF : thm
val IN_DEF : thm
val LET_DEF : thm
val NOT_DEF : thm
val ONE_ONE_DEF : thm
val ONTO_DEF : thm
val OR_DEF : thm
val RES_ABSTRACT_DEF : thm
val RES_EXISTS_DEF : thm
val RES_EXISTS_UNIQUE_DEF : thm
val RES_FORALL_DEF : thm
val RES_SELECT_DEF : thm
val TYPE_DEFINITION : thm
val T_DEF : thm
val itself_TY_DEF : thm
val itself_case_thm : thm
val literal_case_DEF : thm
(* Theorems *)
val ABS_REP_THM : thm
val ABS_SIMP : thm
val AND1_THM : thm
val AND2_THM : thm
val AND_CLAUSES : thm
val AND_CONG : thm
val AND_IMP_INTRO : thm
val AND_INTRO_THM : thm
val BETA_THM : thm
val BOOL_EQ_DISTINCT : thm
val BOOL_FUN_CASES_THM : thm
val BOOL_FUN_INDUCT : thm
val BOTH_EXISTS_AND_THM : thm
val BOTH_EXISTS_IMP_THM : thm
val BOTH_FORALL_IMP_THM : thm
val BOTH_FORALL_OR_THM : thm
val BOUNDED_THM : thm
val COND_ABS : thm
val COND_CLAUSES : thm
val COND_CONG : thm
val COND_EXPAND : thm
val COND_EXPAND_IMP : thm
val COND_EXPAND_OR : thm
val COND_ID : thm
val COND_RAND : thm
val COND_RATOR : thm
val CONJ_ASSOC : thm
val CONJ_COMM : thm
val CONJ_SYM : thm
val DATATYPE_BOOL : thm
val DATATYPE_TAG_THM : thm
val DE_MORGAN_THM : thm
val DISJ_ASSOC : thm
val DISJ_COMM : thm
val DISJ_IMP_THM : thm
val DISJ_SYM : thm
val EQ_CLAUSES : thm
val EQ_EXPAND : thm
val EQ_EXT : thm
val EQ_IMP_THM : thm
val EQ_REFL : thm
val EQ_SYM : thm
val EQ_SYM_EQ : thm
val EQ_TRANS : thm
val ETA_THM : thm
val EXCLUDED_MIDDLE : thm
val EXISTS_OR_THM : thm
val EXISTS_REFL : thm
val EXISTS_SIMP : thm
val EXISTS_THM : thm
val EXISTS_UNIQUE_REFL : thm
val EXISTS_UNIQUE_THM : thm
val FALSITY : thm
val FORALL_AND_THM : thm
val FORALL_BOOL : thm
val FORALL_SIMP : thm
val FORALL_THM : thm
val FUN_EQ_THM : thm
val F_IMP : thm
val IMP_ANTISYM_AX : thm
val IMP_CLAUSES : thm
val IMP_CONG : thm
val IMP_CONJ_THM : thm
val IMP_DISJ_THM : thm
val IMP_F : thm
val IMP_F_EQ_F : thm
val ITSELF_UNIQUE : thm
val JRH_INDUCT_UTIL : thm
val LCOMM_THM : thm
val LEFT_AND_CONG : thm
val LEFT_AND_FORALL_THM : thm
val LEFT_AND_OVER_OR : thm
val LEFT_EXISTS_AND_THM : thm
val LEFT_EXISTS_IMP_THM : thm
val LEFT_FORALL_IMP_THM : thm
val LEFT_FORALL_OR_THM : thm
val LEFT_OR_CONG : thm
val LEFT_OR_EXISTS_THM : thm
val LEFT_OR_OVER_AND : thm
val LET_CONG : thm
val LET_RAND : thm
val LET_RATOR : thm
val LET_THM : thm
val MONO_ALL : thm
val MONO_AND : thm
val MONO_COND : thm
val MONO_EXISTS : thm
val MONO_IMP : thm
val MONO_NOT : thm
val MONO_NOT_EQ : thm
val MONO_OR : thm
val NOT_AND : thm
val NOT_CLAUSES : thm
val NOT_EXISTS_THM : thm
val NOT_F : thm
val NOT_FORALL_THM : thm
val NOT_IMP : thm
val ONE_ONE_THM : thm
val ONTO_THM : thm
val OR_CLAUSES : thm
val OR_CONG : thm
val OR_ELIM_THM : thm
val OR_IMP_THM : thm
val OR_INTRO_THM1 : thm
val OR_INTRO_THM2 : thm
val PEIRCE : thm
val PULL_EXISTS : thm
val PULL_FORALL : thm
val REFL_CLAUSE : thm
val RES_EXISTS_CONG : thm
val RES_EXISTS_FALSE : thm
val RES_EXISTS_THM : thm
val RES_EXISTS_UNIQUE_THM : thm
val RES_FORALL_CONG : thm
val RES_FORALL_THM : thm
val RES_FORALL_TRUE : thm
val RES_SELECT_THM : thm
val RIGHT_AND_FORALL_THM : thm
val RIGHT_AND_OVER_OR : thm
val RIGHT_EXISTS_AND_THM : thm
val RIGHT_EXISTS_IMP_THM : thm
val RIGHT_FORALL_IMP_THM : thm
val RIGHT_FORALL_OR_THM : thm
val RIGHT_OR_EXISTS_THM : thm
val RIGHT_OR_OVER_AND : thm
val SELECT_ELIM_THM : thm
val SELECT_REFL : thm
val SELECT_REFL_2 : thm
val SELECT_THM : thm
val SELECT_UNIQUE : thm
val SKOLEM_THM : thm
val SWAP_EXISTS_THM : thm
val SWAP_FORALL_THM : thm
val TRUTH : thm
val TYPE_DEFINITION_THM : thm
val UEXISTS_OR_THM : thm
val UEXISTS_SIMP : thm
val UNWIND_FORALL_THM1 : thm
val UNWIND_FORALL_THM2 : thm
val UNWIND_THM1 : thm
val UNWIND_THM2 : thm
val boolAxiom : thm
val bool_INDUCT : thm
val bool_case_CONG : thm
val bool_case_ID : thm
val bool_case_thm : thm
val itself_Axiom : thm
val itself_induction : thm
val literal_case_CONG : thm
val literal_case_RAND : thm
val literal_case_RATOR : thm
val literal_case_THM : thm
val literal_case_id : thm
val bool_grammars : type_grammar.grammar * term_grammar.grammar
(*
[min] Parent theory of "bool"
[BOOL_CASES_AX] Axiom
[oracles: ] [axioms: BOOL_CASES_AX] [] |- ∀t. (t ⇔ T) ∨ (t ⇔ F)
[ETA_AX] Axiom
[oracles: ] [axioms: ETA_AX] [] |- ∀t. (λx. t x) = t
[INFINITY_AX] Axiom
[oracles: ] [axioms: INFINITY_AX] [] |- ∃f. ONE_ONE f ∧ ¬ONTO f
[SELECT_AX] Axiom
[oracles: ] [axioms: SELECT_AX] [] |- ∀P x. P x ⇒ P ($@ P)
[AND_DEF] Definition
|- $/\ = (λt1 t2. ∀t. (t1 ⇒ t2 ⇒ t) ⇒ t)
[BOUNDED_DEF] Definition
|- BOUNDED = (λv. T)
[COND_DEF] Definition
|- COND = (λt t1 t2. @x. ((t ⇔ T) ⇒ (x = t1)) ∧ ((t ⇔ F) ⇒ (x = t2)))
[DATATYPE_TAG_DEF] Definition
|- DATATYPE = (λx. T)
[EXISTS_DEF] Definition
|- $? = (λP. P ($@ P))
[EXISTS_UNIQUE_DEF] Definition
|- $?! = (λP. $? P ∧ ∀x y. P x ∧ P y ⇒ (x = y))
[FORALL_DEF] Definition
|- $! = (λP. P = (λx. T))
[F_DEF] Definition
|- F ⇔ ∀t. t
[IN_DEF] Definition
|- $IN = (λx f. f x)
[LET_DEF] Definition
|- LET = (λf x. f x)
[NOT_DEF] Definition
|- $~ = (λt. t ⇒ F)
[ONE_ONE_DEF] Definition
|- ONE_ONE = (λf. ∀x1 x2. (f x1 = f x2) ⇒ (x1 = x2))
[ONTO_DEF] Definition
|- ONTO = (λf. ∀y. ∃x. y = f x)
[OR_DEF] Definition
|- $\/ = (λt1 t2. ∀t. (t1 ⇒ t) ⇒ (t2 ⇒ t) ⇒ t)
[RES_ABSTRACT_DEF] Definition
[oracles: ] [axioms: ETA_AX, BOOL_CASES_AX, SELECT_AX] []
|- (∀p m x. x ∈ p ⇒ (RES_ABSTRACT p m x = m x)) ∧
∀p m1 m2.
(∀x. x ∈ p ⇒ (m1 x = m2 x)) ⇒
(RES_ABSTRACT p m1 = RES_ABSTRACT p m2)
[RES_EXISTS_DEF] Definition
|- RES_EXISTS = (λp m. ∃x. x ∈ p ∧ m x)
[RES_EXISTS_UNIQUE_DEF] Definition
|- RES_EXISTS_UNIQUE =
(λp m. (∃x::p. m x) ∧ ∀x y::p. m x ∧ m y ⇒ (x = y))
[RES_FORALL_DEF] Definition
|- RES_FORALL = (λp m. ∀x. x ∈ p ⇒ m x)
[RES_SELECT_DEF] Definition
|- RES_SELECT = (λp m. @x. x ∈ p ∧ m x)
[TYPE_DEFINITION] Definition
|- TYPE_DEFINITION =
(λP rep.
(∀x' x''. (rep x' = rep x'') ⇒ (x' = x'')) ∧
∀x. P x ⇔ ∃x'. x = rep x')
[T_DEF] Definition
|- T ⇔ ((λx. x) = (λx. x))
[itself_TY_DEF] Definition
[oracles: ] [axioms: BOOL_CASES_AX] []
|- ∃rep. TYPE_DEFINITION ($= ARB) rep
[itself_case_thm] Definition
|- ∀b. itself_case (:α) b = b
[literal_case_DEF] Definition
|- literal_case = (λf x. f x)
[ABS_REP_THM] Theorem
[oracles: ] [axioms: BOOL_CASES_AX, SELECT_AX] []
|- ∀P.
(∃rep. TYPE_DEFINITION P rep) ⇒
∃rep abs. (∀a. abs (rep a) = a) ∧ ∀r. P r ⇔ (rep (abs r) = r)
[ABS_SIMP] Theorem
|- ∀t1 t2. (λx. t1) t2 = t1
[AND1_THM] Theorem
|- ∀t1 t2. t1 ∧ t2 ⇒ t1
[AND2_THM] Theorem
|- ∀t1 t2. t1 ∧ t2 ⇒ t2
[AND_CLAUSES] Theorem
[oracles: ] [axioms: BOOL_CASES_AX] []
|- ∀t.
(T ∧ t ⇔ t) ∧ (t ∧ T ⇔ t) ∧ (F ∧ t ⇔ F) ∧ (t ∧ F ⇔ F) ∧
(t ∧ t ⇔ t)
[AND_CONG] Theorem
[oracles: ] [axioms: BOOL_CASES_AX] []
|- ∀P P' Q Q'. (Q ⇒ (P ⇔ P')) ∧ (P' ⇒ (Q ⇔ Q')) ⇒ (P ∧ Q ⇔ P' ∧ Q')
[AND_IMP_INTRO] Theorem
[oracles: ] [axioms: BOOL_CASES_AX] []
|- ∀t1 t2 t3. t1 ⇒ t2 ⇒ t3 ⇔ t1 ∧ t2 ⇒ t3
[AND_INTRO_THM] Theorem
|- ∀t1 t2. t1 ⇒ t2 ⇒ t1 ∧ t2
[BETA_THM] Theorem
|- ∀f y. (λx. f x) y = f y
[BOOL_EQ_DISTINCT] Theorem
|- (T ⇎ F) ∧ (F ⇎ T)
[BOOL_FUN_CASES_THM] Theorem
[oracles: ] [axioms: BOOL_CASES_AX, ETA_AX] []
|- ∀f. (f = (λb. T)) ∨ (f = (λb. F)) ∨ (f = (λb. b)) ∨ (f = (λb. ¬b))
[BOOL_FUN_INDUCT] Theorem
[oracles: ] [axioms: ETA_AX, BOOL_CASES_AX] []
|- ∀P. P (λb. T) ∧ P (λb. F) ∧ P (λb. b) ∧ P (λb. ¬b) ⇒ ∀f. P f
[BOTH_EXISTS_AND_THM] Theorem
[oracles: ] [axioms: BOOL_CASES_AX] []
|- ∀P Q. (∃x. P ∧ Q) ⇔ (∃x. P) ∧ ∃x. Q
[BOTH_EXISTS_IMP_THM] Theorem
[oracles: ] [axioms: BOOL_CASES_AX] []
|- ∀P Q. (∃x. P ⇒ Q) ⇔ (∀x. P) ⇒ ∃x. Q
[BOTH_FORALL_IMP_THM] Theorem
[oracles: ] [axioms: BOOL_CASES_AX] []
|- ∀P Q. (∀x. P ⇒ Q) ⇔ (∃x. P) ⇒ ∀x. Q
[BOTH_FORALL_OR_THM] Theorem
[oracles: ] [axioms: BOOL_CASES_AX] []
|- ∀P Q. (∀x. P ∨ Q) ⇔ (∀x. P) ∨ ∀x. Q
[BOUNDED_THM] Theorem
|- ∀v. BOUNDED v ⇔ T
[COND_ABS] Theorem
[oracles: ] [axioms: SELECT_AX, BOOL_CASES_AX, ETA_AX] []
|- ∀b f g. (λx. if b then f x else g x) = if b then f else g
[COND_CLAUSES] Theorem
[oracles: ] [axioms: BOOL_CASES_AX, SELECT_AX] []
|- ∀t1 t2.
((if T then t1 else t2) = t1) ∧ ((if F then t1 else t2) = t2)
[COND_CONG] Theorem
[oracles: ] [axioms: BOOL_CASES_AX, SELECT_AX] []
|- ∀P Q x x' y y'.
(P ⇔ Q) ∧ (Q ⇒ (x = x')) ∧ (¬Q ⇒ (y = y')) ⇒
((if P then x else y) = if Q then x' else y')
[COND_EXPAND] Theorem
[oracles: ] [axioms: SELECT_AX, BOOL_CASES_AX] []
|- ∀b t1 t2. (if b then t1 else t2) ⇔ (¬b ∨ t1) ∧ (b ∨ t2)
[COND_EXPAND_IMP] Theorem
[oracles: ] [axioms: SELECT_AX, BOOL_CASES_AX] []
|- ∀b t1 t2. (if b then t1 else t2) ⇔ (b ⇒ t1) ∧ (¬b ⇒ t2)
[COND_EXPAND_OR] Theorem
[oracles: ] [axioms: SELECT_AX, BOOL_CASES_AX] []
|- ∀b t1 t2. (if b then t1 else t2) ⇔ b ∧ t1 ∨ ¬b ∧ t2
[COND_ID] Theorem
[oracles: ] [axioms: BOOL_CASES_AX, SELECT_AX] []
|- ∀b t. (if b then t else t) = t
[COND_RAND] Theorem
[oracles: ] [axioms: BOOL_CASES_AX, SELECT_AX] []
|- ∀f b x y. f (if b then x else y) = if b then f x else f y
[COND_RATOR] Theorem
[oracles: ] [axioms: BOOL_CASES_AX, SELECT_AX] []
|- ∀b f g x. (if b then f else g) x = if b then f x else g x
[CONJ_ASSOC] Theorem
[oracles: ] [axioms: BOOL_CASES_AX] []
|- ∀t1 t2 t3. t1 ∧ t2 ∧ t3 ⇔ (t1 ∧ t2) ∧ t3
[CONJ_COMM] Theorem
[oracles: ] [axioms: BOOL_CASES_AX] [] |- ∀t1 t2. t1 ∧ t2 ⇔ t2 ∧ t1
[CONJ_SYM] Theorem
[oracles: ] [axioms: BOOL_CASES_AX] [] |- ∀t1 t2. t1 ∧ t2 ⇔ t2 ∧ t1
[DATATYPE_BOOL] Theorem
|- DATATYPE (bool T F) ⇔ T
[DATATYPE_TAG_THM] Theorem
|- ∀x. DATATYPE x ⇔ T
[DE_MORGAN_THM] Theorem
[oracles: ] [axioms: BOOL_CASES_AX] []
|- ∀A B. (¬(A ∧ B) ⇔ ¬A ∨ ¬B) ∧ (¬(A ∨ B) ⇔ ¬A ∧ ¬B)
[DISJ_ASSOC] Theorem
[oracles: ] [axioms: BOOL_CASES_AX] []
|- ∀A B C. A ∨ B ∨ C ⇔ (A ∨ B) ∨ C
[DISJ_COMM] Theorem
[oracles: ] [axioms: BOOL_CASES_AX] [] |- ∀A B. A ∨ B ⇔ B ∨ A
[DISJ_IMP_THM] Theorem
[oracles: ] [axioms: BOOL_CASES_AX] []
|- ∀P Q R. P ∨ Q ⇒ R ⇔ (P ⇒ R) ∧ (Q ⇒ R)
[DISJ_SYM] Theorem
[oracles: ] [axioms: BOOL_CASES_AX] [] |- ∀A B. A ∨ B ⇔ B ∨ A
[EQ_CLAUSES] Theorem
[oracles: ] [axioms: BOOL_CASES_AX] []
|- ∀t.
((T ⇔ t) ⇔ t) ∧ ((t ⇔ T) ⇔ t) ∧ ((F ⇔ t) ⇔ ¬t) ∧ ((t ⇔ F) ⇔ ¬t)
[EQ_EXPAND] Theorem
[oracles: ] [axioms: BOOL_CASES_AX] []
|- ∀t1 t2. (t1 ⇔ t2) ⇔ t1 ∧ t2 ∨ ¬t1 ∧ ¬t2
[EQ_EXT] Theorem
[oracles: ] [axioms: ETA_AX] [] |- ∀f g. (∀x. f x = g x) ⇒ (f = g)
[EQ_IMP_THM] Theorem
[oracles: ] [axioms: BOOL_CASES_AX] []
|- ∀t1 t2. (t1 ⇔ t2) ⇔ (t1 ⇒ t2) ∧ (t2 ⇒ t1)
[EQ_REFL] Theorem
|- ∀x. x = x
[EQ_SYM] Theorem
|- ∀x y. (x = y) ⇒ (y = x)
[EQ_SYM_EQ] Theorem
[oracles: ] [axioms: BOOL_CASES_AX] [] |- ∀x y. (x = y) ⇔ (y = x)
[EQ_TRANS] Theorem
|- ∀x y z. (x = y) ∧ (y = z) ⇒ (x = z)
[ETA_THM] Theorem
[oracles: ] [axioms: ETA_AX] [] |- ∀M. (λx. M x) = M
[EXCLUDED_MIDDLE] Theorem
[oracles: ] [axioms: BOOL_CASES_AX] [] |- ∀t. t ∨ ¬t
[EXISTS_OR_THM] Theorem
[oracles: ] [axioms: BOOL_CASES_AX] []
|- ∀P Q. (∃x. P x ∨ Q x) ⇔ (∃x. P x) ∨ ∃x. Q x
[EXISTS_REFL] Theorem
|- ∀a. ∃x. x = a
[EXISTS_SIMP] Theorem
[oracles: ] [axioms: BOOL_CASES_AX] [] |- ∀t. (∃x. t) ⇔ t
[EXISTS_THM] Theorem
[oracles: ] [axioms: ETA_AX] [] |- $? f ⇔ ∃x. f x
[EXISTS_UNIQUE_REFL] Theorem
|- ∀a. ∃!x. x = a
[EXISTS_UNIQUE_THM] Theorem
|- (∃!x. P x) ⇔ (∃x. P x) ∧ ∀x y. P x ∧ P y ⇒ (x = y)
[FALSITY] Theorem
|- ∀t. F ⇒ t
[FORALL_AND_THM] Theorem
[oracles: ] [axioms: BOOL_CASES_AX] []
|- ∀P Q. (∀x. P x ∧ Q x) ⇔ (∀x. P x) ∧ ∀x. Q x
[FORALL_BOOL] Theorem
[oracles: ] [axioms: BOOL_CASES_AX] [] |- (∀b. P b) ⇔ P T ∧ P F
[FORALL_SIMP] Theorem
[oracles: ] [axioms: BOOL_CASES_AX] [] |- ∀t. (∀x. t) ⇔ t
[FORALL_THM] Theorem
[oracles: ] [axioms: ETA_AX] [] |- $! f ⇔ ∀x. f x
[FUN_EQ_THM] Theorem
[oracles: ] [axioms: BOOL_CASES_AX, ETA_AX] []
|- ∀f g. (f = g) ⇔ ∀x. f x = g x
[F_IMP] Theorem
|- ∀t. ¬t ⇒ t ⇒ F
[IMP_ANTISYM_AX] Theorem
[oracles: ] [axioms: BOOL_CASES_AX] []
|- ∀t1 t2. (t1 ⇒ t2) ⇒ (t2 ⇒ t1) ⇒ (t1 ⇔ t2)
[IMP_CLAUSES] Theorem
[oracles: ] [axioms: BOOL_CASES_AX] []
|- ∀t.
(T ⇒ t ⇔ t) ∧ (t ⇒ T ⇔ T) ∧ (F ⇒ t ⇔ T) ∧ (t ⇒ t ⇔ T) ∧
(t ⇒ F ⇔ ¬t)
[IMP_CONG] Theorem
[oracles: ] [axioms: BOOL_CASES_AX] []
|- ∀x x' y y'. (x ⇔ x') ∧ (x' ⇒ (y ⇔ y')) ⇒ (x ⇒ y ⇔ x' ⇒ y')
[IMP_CONJ_THM] Theorem
[oracles: ] [axioms: BOOL_CASES_AX] []
|- ∀P Q R. P ⇒ Q ∧ R ⇔ (P ⇒ Q) ∧ (P ⇒ R)
[IMP_DISJ_THM] Theorem
[oracles: ] [axioms: BOOL_CASES_AX] [] |- ∀A B. A ⇒ B ⇔ ¬A ∨ B
[IMP_F] Theorem
|- ∀t. (t ⇒ F) ⇒ ¬t
[IMP_F_EQ_F] Theorem
[oracles: ] [axioms: BOOL_CASES_AX] [] |- ∀t. t ⇒ F ⇔ (t ⇔ F)
[ITSELF_UNIQUE] Theorem
[oracles: ] [axioms: BOOL_CASES_AX] [] |- ∀i. i = (:α)
[JRH_INDUCT_UTIL] Theorem
[oracles: ] [axioms: ETA_AX] [] |- ∀P t. (∀x. (x = t) ⇒ P x) ⇒ $? P
[LCOMM_THM] Theorem
|- ∀f.
(∀x y z. f x (f y z) = f (f x y) z) ⇒
(∀x y. f x y = f y x) ⇒
∀x y z. f x (f y z) = f y (f x z)
[LEFT_AND_CONG] Theorem
[oracles: ] [axioms: BOOL_CASES_AX] []
|- ∀P P' Q Q'. (P ⇔ P') ∧ (P' ⇒ (Q ⇔ Q')) ⇒ (P ∧ Q ⇔ P' ∧ Q')
[LEFT_AND_FORALL_THM] Theorem
[oracles: ] [axioms: BOOL_CASES_AX] []
|- ∀P Q. (∀x. P x) ∧ Q ⇔ ∀x. P x ∧ Q
[LEFT_AND_OVER_OR] Theorem
[oracles: ] [axioms: BOOL_CASES_AX] []
|- ∀A B C. A ∧ (B ∨ C) ⇔ A ∧ B ∨ A ∧ C
[LEFT_EXISTS_AND_THM] Theorem
[oracles: ] [axioms: BOOL_CASES_AX] []
|- ∀P Q. (∃x. P x ∧ Q) ⇔ (∃x. P x) ∧ Q
[LEFT_EXISTS_IMP_THM] Theorem
[oracles: ] [axioms: BOOL_CASES_AX] []
|- ∀P Q. (∃x. P x ⇒ Q) ⇔ (∀x. P x) ⇒ Q
[LEFT_FORALL_IMP_THM] Theorem
[oracles: ] [axioms: BOOL_CASES_AX] []
|- ∀P Q. (∀x. P x ⇒ Q) ⇔ (∃x. P x) ⇒ Q
[LEFT_FORALL_OR_THM] Theorem
[oracles: ] [axioms: BOOL_CASES_AX] []
|- ∀Q P. (∀x. P x ∨ Q) ⇔ (∀x. P x) ∨ Q
[LEFT_OR_CONG] Theorem
[oracles: ] [axioms: BOOL_CASES_AX] []
|- ∀P P' Q Q'. (P ⇔ P') ∧ (¬P' ⇒ (Q ⇔ Q')) ⇒ (P ∨ Q ⇔ P' ∨ Q')
[LEFT_OR_EXISTS_THM] Theorem
[oracles: ] [axioms: BOOL_CASES_AX] []
|- ∀P Q. (∃x. P x) ∨ Q ⇔ ∃x. P x ∨ Q
[LEFT_OR_OVER_AND] Theorem
[oracles: ] [axioms: BOOL_CASES_AX] []
|- ∀A B C. A ∨ B ∧ C ⇔ (A ∨ B) ∧ (A ∨ C)
[LET_CONG] Theorem
[oracles: ] [axioms: BOOL_CASES_AX] []
|- ∀f g M N.
(M = N) ∧ (∀x. (x = N) ⇒ (f x = g x)) ⇒ (LET f M = LET g N)
[LET_RAND] Theorem
|- P (let x = M in N x) ⇔ (let x = M in P (N x))
[LET_RATOR] Theorem
|- (let x = M in N x) b = (let x = M in N x b)
[LET_THM] Theorem
|- ∀f x. LET f x = f x
[MONO_ALL] Theorem
|- (∀x. P x ⇒ Q x) ⇒ (∀x. P x) ⇒ ∀x. Q x
[MONO_AND] Theorem
[oracles: ] [axioms: BOOL_CASES_AX] []
|- (x ⇒ y) ∧ (z ⇒ w) ⇒ x ∧ z ⇒ y ∧ w
[MONO_COND] Theorem
[oracles: ] [axioms: BOOL_CASES_AX, SELECT_AX] []
|- (x ⇒ y) ⇒ (z ⇒ w) ⇒ (if b then x else z) ⇒ if b then y else w
[MONO_EXISTS] Theorem
|- (∀x. P x ⇒ Q x) ⇒ (∃x. P x) ⇒ ∃x. Q x
[MONO_IMP] Theorem
[oracles: ] [axioms: BOOL_CASES_AX] []
|- (y ⇒ x) ∧ (z ⇒ w) ⇒ (x ⇒ z) ⇒ y ⇒ w
[MONO_NOT] Theorem
|- (y ⇒ x) ⇒ ¬x ⇒ ¬y
[MONO_NOT_EQ] Theorem
[oracles: ] [axioms: BOOL_CASES_AX] [] |- y ⇒ x ⇔ ¬x ⇒ ¬y
[MONO_OR] Theorem
[oracles: ] [axioms: BOOL_CASES_AX] []
|- (x ⇒ y) ∧ (z ⇒ w) ⇒ x ∨ z ⇒ y ∨ w
[NOT_AND] Theorem
|- ¬(t ∧ ¬t)
[NOT_CLAUSES] Theorem
[oracles: ] [axioms: BOOL_CASES_AX] []
|- (∀t. ¬ ¬t ⇔ t) ∧ (¬T ⇔ F) ∧ (¬F ⇔ T)
[NOT_EXISTS_THM] Theorem
[oracles: ] [axioms: BOOL_CASES_AX] [] |- ∀P. ¬(∃x. P x) ⇔ ∀x. ¬P x
[NOT_F] Theorem
[oracles: ] [axioms: BOOL_CASES_AX] [] |- ∀t. ¬t ⇒ (t ⇔ F)
[NOT_FORALL_THM] Theorem
[oracles: ] [axioms: BOOL_CASES_AX] [] |- ∀P. ¬(∀x. P x) ⇔ ∃x. ¬P x
[NOT_IMP] Theorem
[oracles: ] [axioms: BOOL_CASES_AX] [] |- ∀A B. ¬(A ⇒ B) ⇔ A ∧ ¬B
[ONE_ONE_THM] Theorem
|- ∀f. ONE_ONE f ⇔ ∀x1 x2. (f x1 = f x2) ⇒ (x1 = x2)
[ONTO_THM] Theorem
|- ∀f. ONTO f ⇔ ∀y. ∃x. y = f x
[OR_CLAUSES] Theorem
[oracles: ] [axioms: BOOL_CASES_AX] []
|- ∀t.
(T ∨ t ⇔ T) ∧ (t ∨ T ⇔ T) ∧ (F ∨ t ⇔ t) ∧ (t ∨ F ⇔ t) ∧
(t ∨ t ⇔ t)
[OR_CONG] Theorem
[oracles: ] [axioms: BOOL_CASES_AX] []
|- ∀P P' Q Q'. (¬Q ⇒ (P ⇔ P')) ∧ (¬P' ⇒ (Q ⇔ Q')) ⇒ (P ∨ Q ⇔ P' ∨ Q')
[OR_ELIM_THM] Theorem
|- ∀t t1 t2. t1 ∨ t2 ⇒ (t1 ⇒ t) ⇒ (t2 ⇒ t) ⇒ t
[OR_IMP_THM] Theorem
[oracles: ] [axioms: BOOL_CASES_AX] [] |- ∀A B. (A ⇔ B ∨ A) ⇔ B ⇒ A
[OR_INTRO_THM1] Theorem
|- ∀t1 t2. t1 ⇒ t1 ∨ t2
[OR_INTRO_THM2] Theorem
|- ∀t1 t2. t2 ⇒ t1 ∨ t2
[PEIRCE] Theorem
[oracles: ] [axioms: BOOL_CASES_AX] [] |- ((P ⇒ Q) ⇒ P) ⇒ P
[PULL_EXISTS] Theorem
[oracles: ] [axioms: BOOL_CASES_AX] []
|- ∀P Q.
((∃x. P x) ⇒ Q ⇔ ∀x. P x ⇒ Q) ∧ ((∃x. P x) ∧ Q ⇔ ∃x. P x ∧ Q) ∧
(Q ∧ (∃x. P x) ⇔ ∃x. Q ∧ P x)
[PULL_FORALL] Theorem
[oracles: ] [axioms: BOOL_CASES_AX] []
|- ∀P Q.
(Q ⇒ (∀x. P x) ⇔ ∀x. Q ⇒ P x) ∧ ((∀x. P x) ∧ Q ⇔ ∀x. P x ∧ Q) ∧
(Q ∧ (∀x. P x) ⇔ ∀x. Q ∧ P x)
[REFL_CLAUSE] Theorem
[oracles: ] [axioms: BOOL_CASES_AX] [] |- ∀x. (x = x) ⇔ T
[RES_EXISTS_CONG] Theorem
[oracles: ] [axioms: BOOL_CASES_AX] []
|- (P = Q) ⇒
(∀x. x ∈ Q ⇒ (f x ⇔ g x)) ⇒
(RES_EXISTS P f ⇔ RES_EXISTS Q g)
[RES_EXISTS_FALSE] Theorem
[oracles: ] [axioms: BOOL_CASES_AX] [] |- (∃x::P. F) ⇔ F
[RES_EXISTS_THM] Theorem
|- ∀P f. RES_EXISTS P f ⇔ ∃x. x ∈ P ∧ f x
[RES_EXISTS_UNIQUE_THM] Theorem
|- ∀P f.
RES_EXISTS_UNIQUE P f ⇔
(∃x::P. f x) ∧ ∀x y::P. f x ∧ f y ⇒ (x = y)
[RES_FORALL_CONG] Theorem
[oracles: ] [axioms: BOOL_CASES_AX] []
|- (P = Q) ⇒
(∀x. x ∈ Q ⇒ (f x ⇔ g x)) ⇒
(RES_FORALL P f ⇔ RES_FORALL Q g)
[RES_FORALL_THM] Theorem
|- ∀P f. RES_FORALL P f ⇔ ∀x. x ∈ P ⇒ f x
[RES_FORALL_TRUE] Theorem
[oracles: ] [axioms: BOOL_CASES_AX] [] |- (∀x::P. T) ⇔ T
[RES_SELECT_THM] Theorem
|- ∀P f. RES_SELECT P f = @x. x ∈ P ∧ f x
[RIGHT_AND_FORALL_THM] Theorem
[oracles: ] [axioms: BOOL_CASES_AX] []
|- ∀P Q. P ∧ (∀x. Q x) ⇔ ∀x. P ∧ Q x
[RIGHT_AND_OVER_OR] Theorem
[oracles: ] [axioms: BOOL_CASES_AX] []
|- ∀A B C. (B ∨ C) ∧ A ⇔ B ∧ A ∨ C ∧ A
[RIGHT_EXISTS_AND_THM] Theorem
[oracles: ] [axioms: BOOL_CASES_AX] []
|- ∀P Q. (∃x. P ∧ Q x) ⇔ P ∧ ∃x. Q x
[RIGHT_EXISTS_IMP_THM] Theorem
[oracles: ] [axioms: BOOL_CASES_AX] []
|- ∀P Q. (∃x. P ⇒ Q x) ⇔ P ⇒ ∃x. Q x
[RIGHT_FORALL_IMP_THM] Theorem
[oracles: ] [axioms: BOOL_CASES_AX] []
|- ∀P Q. (∀x. P ⇒ Q x) ⇔ P ⇒ ∀x. Q x
[RIGHT_FORALL_OR_THM] Theorem
[oracles: ] [axioms: BOOL_CASES_AX] []
|- ∀P Q. (∀x. P ∨ Q x) ⇔ P ∨ ∀x. Q x
[RIGHT_OR_EXISTS_THM] Theorem
[oracles: ] [axioms: BOOL_CASES_AX] []
|- ∀P Q. P ∨ (∃x. Q x) ⇔ ∃x. P ∨ Q x
[RIGHT_OR_OVER_AND] Theorem
[oracles: ] [axioms: BOOL_CASES_AX] []
|- ∀A B C. B ∧ C ∨ A ⇔ (B ∨ A) ∧ (C ∨ A)
[SELECT_ELIM_THM] Theorem
[oracles: ] [axioms: SELECT_AX] []
|- ∀P Q. (∃x. P x) ∧ (∀x. P x ⇒ Q x) ⇒ Q ($@ P)
[SELECT_REFL] Theorem
[oracles: ] [axioms: SELECT_AX] [] |- ∀x. (@y. y = x) = x
[SELECT_REFL_2] Theorem
[oracles: ] [axioms: SELECT_AX] [] |- ∀x. (@y. x = y) = x
[SELECT_THM] Theorem
|- ∀P. P (@x. P x) ⇔ ∃x. P x
[SELECT_UNIQUE] Theorem
[oracles: ] [axioms: ETA_AX, BOOL_CASES_AX, SELECT_AX] []
|- ∀P x. (∀y. P y ⇔ (y = x)) ⇒ ($@ P = x)
[SKOLEM_THM] Theorem
[oracles: ] [axioms: BOOL_CASES_AX, SELECT_AX] []
|- ∀P. (∀x. ∃y. P x y) ⇔ ∃f. ∀x. P x (f x)
[SWAP_EXISTS_THM] Theorem
[oracles: ] [axioms: BOOL_CASES_AX] []
|- ∀P. (∃x y. P x y) ⇔ ∃y x. P x y
[SWAP_FORALL_THM] Theorem
[oracles: ] [axioms: BOOL_CASES_AX] []
|- ∀P. (∀x y. P x y) ⇔ ∀y x. P x y
[TRUTH] Theorem
|- T
[TYPE_DEFINITION_THM] Theorem
|- ∀P rep.
TYPE_DEFINITION P rep ⇔
(∀x' x''. (rep x' = rep x'') ⇒ (x' = x'')) ∧
∀x. P x ⇔ ∃x'. x = rep x'
[UEXISTS_OR_THM] Theorem
[oracles: ] [axioms: BOOL_CASES_AX] []
|- ∀P Q. (∃!x. P x ∨ Q x) ⇒ (∃!x. P x) ∨ ∃!x. Q x
[UEXISTS_SIMP] Theorem
[oracles: ] [axioms: BOOL_CASES_AX] [] |- (∃!x. t) ⇔ t ∧ ∀x y. x = y
[UNWIND_FORALL_THM1] Theorem
[oracles: ] [axioms: BOOL_CASES_AX] []
|- ∀f v. (∀x. (v = x) ⇒ f x) ⇔ f v
[UNWIND_FORALL_THM2] Theorem
[oracles: ] [axioms: BOOL_CASES_AX] []
|- ∀f v. (∀x. (x = v) ⇒ f x) ⇔ f v
[UNWIND_THM1] Theorem
[oracles: ] [axioms: BOOL_CASES_AX] []
|- ∀P a. (∃x. (a = x) ∧ P x) ⇔ P a
[UNWIND_THM2] Theorem
[oracles: ] [axioms: BOOL_CASES_AX] []
|- ∀P a. (∃x. (x = a) ∧ P x) ⇔ P a
[boolAxiom] Theorem
[oracles: ] [axioms: BOOL_CASES_AX, SELECT_AX] []
|- ∀t1 t2. ∃fn. (fn T = t1) ∧ (fn F = t2)
[bool_INDUCT] Theorem
[oracles: ] [axioms: BOOL_CASES_AX] [] |- ∀P. P T ∧ P F ⇒ ∀b. P b
[bool_case_CONG] Theorem
[oracles: ] [axioms: BOOL_CASES_AX, SELECT_AX] []
|- ∀P Q x x' y y'.
(P ⇔ Q) ∧ (Q ⇒ (x = x')) ∧ (¬Q ⇒ (y = y')) ⇒
((if P then x else y) = if Q then x' else y')
[bool_case_ID] Theorem
[oracles: ] [axioms: BOOL_CASES_AX, SELECT_AX] []
|- ∀b t. (if b then t else t) = t
[bool_case_thm] Theorem
[oracles: ] [axioms: BOOL_CASES_AX, SELECT_AX] []
|- (∀t1 t2. (if T then t1 else t2) = t1) ∧
∀t1 t2. (if F then t1 else t2) = t2
[itself_Axiom] Theorem
|- ∀e. ∃f. f (:β) = e
[itself_induction] Theorem
[oracles: ] [axioms: BOOL_CASES_AX] [] |- ∀P. P (:α) ⇒ ∀i. P i
[literal_case_CONG] Theorem
[oracles: ] [axioms: BOOL_CASES_AX] []
|- ∀f g M N.
(M = N) ∧ (∀x. (x = N) ⇒ (f x = g x)) ⇒
(literal_case f M = literal_case g N)
[literal_case_RAND] Theorem
|- P (literal_case (λx. N x) M) ⇔ literal_case (λx. P (N x)) M
[literal_case_RATOR] Theorem
|- literal_case (λx. N x) M b = literal_case (λx. N x b) M
[literal_case_THM] Theorem
|- ∀f x. literal_case f x = f x
[literal_case_id] Theorem
[oracles: ] [axioms: BOOL_CASES_AX, SELECT_AX] []
|- literal_case (λx. if x = a then t else u) a = t
*)
end
HOL 4, Kananaskis-10