Structure containerTheory
signature containerTheory =
sig
type thm = Thm.thm
(* Definitions *)
val BAG_OF_FMAP_def : thm
val BAG_TO_LIST_primitive_def : thm
val LIST_TO_BAG_def : thm
(* Theorems *)
val BAG_IN_BAG_OF_FMAP : thm
val BAG_IN_MEM : thm
val BAG_OF_FMAP_THM : thm
val BAG_TO_LIST_CARD : thm
val BAG_TO_LIST_EQ_NIL : thm
val BAG_TO_LIST_IND : thm
val BAG_TO_LIST_INV : thm
val BAG_TO_LIST_THM : thm
val CARD_LIST_TO_BAG : thm
val EVERY_LIST_TO_BAG : thm
val FINITE_BAG_OF_FMAP : thm
val FINITE_LIST_TO_BAG : thm
val FINITE_LIST_TO_SET : thm
val IN_LIST_TO_BAG : thm
val LIST_ELEM_COUNT_LIST_TO_BAG : thm
val LIST_TO_BAG_APPEND : thm
val LIST_TO_BAG_EQ_EMPTY : thm
val LIST_TO_SET_APPEND : thm
val LIST_TO_SET_THM : thm
val MEM_BAG_TO_LIST : thm
val MEM_SET_TO_LIST : thm
val PERM_LIST_TO_BAG : thm
val SET_TO_LIST_CARD : thm
val SET_TO_LIST_IND : thm
val SET_TO_LIST_INV : thm
val SET_TO_LIST_IN_MEM : thm
val SET_TO_LIST_SING : thm
val SET_TO_LIST_THM : thm
val UNION_APPEND : thm
val container_grammars : type_grammar.grammar * term_grammar.grammar
(*
[bag] Parent theory of "container"
[finite_map] Parent theory of "container"
[BAG_OF_FMAP_def] Definition
|- ∀f b.
BAG_OF_FMAP f b =
(λx. CARD (λk. k ∈ FDOM b ∧ (x = f k (b ' k))))
[BAG_TO_LIST_primitive_def] Definition
|- BAG_TO_LIST =
WFREC
(@R.
WF R ∧
∀bag. FINITE_BAG bag ∧ bag ≠ {||} ⇒ R (BAG_REST bag) bag)
(λBAG_TO_LIST bag.
I
(if FINITE_BAG bag then
if bag = {||} then []
else BAG_CHOICE bag::BAG_TO_LIST (BAG_REST bag)
else ARB))
[LIST_TO_BAG_def] Definition
|- (LIST_TO_BAG [] = {||}) ∧
∀h t. LIST_TO_BAG (h::t) = BAG_INSERT h (LIST_TO_BAG t)
[BAG_IN_BAG_OF_FMAP] Theorem
|- ∀x f b. x ⋲ BAG_OF_FMAP f b ⇔ ∃k. k ∈ FDOM b ∧ (x = f k (b ' k))
[BAG_IN_MEM] Theorem
|- ∀b. FINITE_BAG b ⇒ ∀x. x ⋲ b ⇔ MEM x (BAG_TO_LIST b)
[BAG_OF_FMAP_THM] Theorem
|- (∀f. BAG_OF_FMAP f FEMPTY = {||}) ∧
∀f b k v.
BAG_OF_FMAP f (b |+ (k,v)) =
BAG_INSERT (f k v) (BAG_OF_FMAP f (b \\ k))
[BAG_TO_LIST_CARD] Theorem
|- ∀b. FINITE_BAG b ⇒ (LENGTH (BAG_TO_LIST b) = BAG_CARD b)
[BAG_TO_LIST_EQ_NIL] Theorem
|- FINITE_BAG b ⇒
(([] = BAG_TO_LIST b) ⇔ (b = {||})) ∧
((BAG_TO_LIST b = []) ⇔ (b = {||}))
[BAG_TO_LIST_IND] Theorem
|- ∀P.
(∀bag.
(FINITE_BAG bag ∧ bag ≠ {||} ⇒ P (BAG_REST bag)) ⇒ P bag) ⇒
∀v. P v
[BAG_TO_LIST_INV] Theorem
|- ∀b. FINITE_BAG b ⇒ (LIST_TO_BAG (BAG_TO_LIST b) = b)
[BAG_TO_LIST_THM] Theorem
|- FINITE_BAG bag ⇒
(BAG_TO_LIST bag =
if bag = {||} then []
else BAG_CHOICE bag::BAG_TO_LIST (BAG_REST bag))
[CARD_LIST_TO_BAG] Theorem
|- BAG_CARD (LIST_TO_BAG ls) = LENGTH ls
[EVERY_LIST_TO_BAG] Theorem
|- BAG_EVERY P (LIST_TO_BAG ls) ⇔ EVERY P ls
[FINITE_BAG_OF_FMAP] Theorem
|- ∀f b. FINITE_BAG (BAG_OF_FMAP f b)
[FINITE_LIST_TO_BAG] Theorem
|- FINITE_BAG (LIST_TO_BAG ls)
[FINITE_LIST_TO_SET] Theorem
|- ∀l. FINITE (set l)
[IN_LIST_TO_BAG] Theorem
|- ∀h l. h ⋲ LIST_TO_BAG l ⇔ MEM h l
[LIST_ELEM_COUNT_LIST_TO_BAG] Theorem
|- LIST_ELEM_COUNT e ls = LIST_TO_BAG ls e
[LIST_TO_BAG_APPEND] Theorem
|- ∀l1 l2. LIST_TO_BAG (l1 ++ l2) = LIST_TO_BAG l1 ⊎ LIST_TO_BAG l2
[LIST_TO_BAG_EQ_EMPTY] Theorem
|- ∀l. (LIST_TO_BAG l = {||}) ⇔ (l = [])
[LIST_TO_SET_APPEND] Theorem
|- ∀l1 l2. set (l1 ++ l2) = set l1 ∪ set l2
[LIST_TO_SET_THM] Theorem
|- (set [] = ∅) ∧ (set (h::t) = h INSERT set t)
[MEM_BAG_TO_LIST] Theorem
|- ∀b. FINITE_BAG b ⇒ ∀x. MEM x (BAG_TO_LIST b) ⇔ x ⋲ b
[MEM_SET_TO_LIST] Theorem
|- ∀s. FINITE s ⇒ ∀x. MEM x (SET_TO_LIST s) ⇔ x ∈ s
[PERM_LIST_TO_BAG] Theorem
|- ∀l1 l2. (LIST_TO_BAG l1 = LIST_TO_BAG l2) ⇔ PERM l1 l2
[SET_TO_LIST_CARD] Theorem
|- ∀s. FINITE s ⇒ (LENGTH (SET_TO_LIST s) = CARD s)
[SET_TO_LIST_IND] Theorem
|- ∀P. (∀s. (FINITE s ∧ s ≠ ∅ ⇒ P (REST s)) ⇒ P s) ⇒ ∀v. P v
[SET_TO_LIST_INV] Theorem
|- ∀s. FINITE s ⇒ (set (SET_TO_LIST s) = s)
[SET_TO_LIST_IN_MEM] Theorem
|- ∀s. FINITE s ⇒ ∀x. x ∈ s ⇔ MEM x (SET_TO_LIST s)
[SET_TO_LIST_SING] Theorem
|- SET_TO_LIST {x} = [x]
[SET_TO_LIST_THM] Theorem
|- FINITE s ⇒
(SET_TO_LIST s =
if s = ∅ then [] else CHOICE s::SET_TO_LIST (REST s))
[UNION_APPEND] Theorem
|- ∀l1 l2. set l1 ∪ set l2 = set (l1 ++ l2)
*)
end
HOL 4, Kananaskis-10