Structure hratTheory
signature hratTheory =
sig
type thm = Thm.thm
(* Definitions *)
val hrat_1 : thm
val hrat_ABS_def : thm
val hrat_REP_def : thm
val hrat_TY_DEF : thm
val hrat_add : thm
val hrat_bijections : thm
val hrat_inv : thm
val hrat_mul : thm
val hrat_sucint : thm
val trat_1 : thm
val trat_add : thm
val trat_eq : thm
val trat_inv : thm
val trat_mul : thm
val trat_sucint : thm
(* Theorems *)
val HRAT_ADD_ASSOC : thm
val HRAT_ADD_SYM : thm
val HRAT_ADD_TOTAL : thm
val HRAT_ARCH : thm
val HRAT_LDISTRIB : thm
val HRAT_MUL_ASSOC : thm
val HRAT_MUL_LID : thm
val HRAT_MUL_LINV : thm
val HRAT_MUL_SYM : thm
val HRAT_NOZERO : thm
val HRAT_SUCINT : thm
val TRAT_ADD_ASSOC : thm
val TRAT_ADD_SYM : thm
val TRAT_ADD_SYM_EQ : thm
val TRAT_ADD_TOTAL : thm
val TRAT_ADD_WELLDEFINED : thm
val TRAT_ADD_WELLDEFINED2 : thm
val TRAT_ARCH : thm
val TRAT_EQ_AP : thm
val TRAT_EQ_EQUIV : thm
val TRAT_EQ_REFL : thm
val TRAT_EQ_SYM : thm
val TRAT_EQ_TRANS : thm
val TRAT_INV_WELLDEFINED : thm
val TRAT_LDISTRIB : thm
val TRAT_MUL_ASSOC : thm
val TRAT_MUL_LID : thm
val TRAT_MUL_LINV : thm
val TRAT_MUL_SYM : thm
val TRAT_MUL_SYM_EQ : thm
val TRAT_MUL_WELLDEFINED : thm
val TRAT_MUL_WELLDEFINED2 : thm
val TRAT_NOZERO : thm
val TRAT_SUCINT : thm
val TRAT_SUCINT_0 : thm
val hrat_ABS_REP_CLASS : thm
val hrat_QUOTIENT : thm
val hrat_grammars : type_grammar.grammar * term_grammar.grammar
(*
[quotient_list] Parent theory of "hrat"
[quotient_option] Parent theory of "hrat"
[quotient_pair] Parent theory of "hrat"
[quotient_sum] Parent theory of "hrat"
[hrat_1] Definition
|- hrat_1 = hrat_ABS trat_1
[hrat_ABS_def] Definition
|- ∀r. hrat_ABS r = hrat_ABS_CLASS ($trat_eq r)
[hrat_REP_def] Definition
|- ∀a. hrat_REP a = $@ (hrat_REP_CLASS a)
[hrat_TY_DEF] Definition
|- ∃rep. TYPE_DEFINITION (λc. ∃r. r trat_eq r ∧ (c = $trat_eq r)) rep
[hrat_add] Definition
|- ∀T1 T2.
T1 hrat_add T2 = hrat_ABS (hrat_REP T1 trat_add hrat_REP T2)
[hrat_bijections] Definition
|- (∀a. hrat_ABS_CLASS (hrat_REP_CLASS a) = a) ∧
∀r.
(λc. ∃r. r trat_eq r ∧ (c = $trat_eq r)) r ⇔
(hrat_REP_CLASS (hrat_ABS_CLASS r) = r)
[hrat_inv] Definition
|- ∀T1. hrat_inv T1 = hrat_ABS (trat_inv (hrat_REP T1))
[hrat_mul] Definition
|- ∀T1 T2.
T1 hrat_mul T2 = hrat_ABS (hrat_REP T1 trat_mul hrat_REP T2)
[hrat_sucint] Definition
|- ∀T1. hrat_sucint T1 = hrat_ABS (trat_sucint T1)
[trat_1] Definition
|- trat_1 = (0,0)
[trat_add] Definition
|- ∀x y x' y'.
(x,y) trat_add (x',y') =
(PRE (SUC x * SUC y' + SUC x' * SUC y),PRE (SUC y * SUC y'))
[trat_eq] Definition
|- ∀x y x' y'.
(x,y) trat_eq (x',y') ⇔ (SUC x * SUC y' = SUC x' * SUC y)
[trat_inv] Definition
|- ∀x y. trat_inv (x,y) = (y,x)
[trat_mul] Definition
|- ∀x y x' y'.
(x,y) trat_mul (x',y') =
(PRE (SUC x * SUC x'),PRE (SUC y * SUC y'))
[trat_sucint] Definition
|- (trat_sucint 0 = trat_1) ∧
∀n. trat_sucint (SUC n) = trat_sucint n trat_add trat_1
[HRAT_ADD_ASSOC] Theorem
|- ∀h i j. h hrat_add (i hrat_add j) = h hrat_add i hrat_add j
[HRAT_ADD_SYM] Theorem
|- ∀h i. h hrat_add i = i hrat_add h
[HRAT_ADD_TOTAL] Theorem
|- ∀h i. (h = i) ∨ (∃d. h = i hrat_add d) ∨ ∃d. i = h hrat_add d
[HRAT_ARCH] Theorem
|- ∀h. ∃n d. hrat_sucint n = h hrat_add d
[HRAT_LDISTRIB] Theorem
|- ∀h i j.
h hrat_mul (i hrat_add j) = h hrat_mul i hrat_add h hrat_mul j
[HRAT_MUL_ASSOC] Theorem
|- ∀h i j. h hrat_mul (i hrat_mul j) = h hrat_mul i hrat_mul j
[HRAT_MUL_LID] Theorem
|- ∀h. hrat_1 hrat_mul h = h
[HRAT_MUL_LINV] Theorem
|- ∀h. hrat_inv h hrat_mul h = hrat_1
[HRAT_MUL_SYM] Theorem
|- ∀h i. h hrat_mul i = i hrat_mul h
[HRAT_NOZERO] Theorem
|- ∀h i. h hrat_add i ≠ h
[HRAT_SUCINT] Theorem
|- (hrat_sucint 0 = hrat_1) ∧
∀n. hrat_sucint (SUC n) = hrat_sucint n hrat_add hrat_1
[TRAT_ADD_ASSOC] Theorem
|- ∀h i j. h trat_add (i trat_add j) trat_eq h trat_add i trat_add j
[TRAT_ADD_SYM] Theorem
|- ∀h i. h trat_add i trat_eq i trat_add h
[TRAT_ADD_SYM_EQ] Theorem
|- ∀h i. h trat_add i = i trat_add h
[TRAT_ADD_TOTAL] Theorem
|- ∀h i.
h trat_eq i ∨ (∃d. h trat_eq i trat_add d) ∨
∃d. i trat_eq h trat_add d
[TRAT_ADD_WELLDEFINED] Theorem
|- ∀p q r. p trat_eq q ⇒ p trat_add r trat_eq q trat_add r
[TRAT_ADD_WELLDEFINED2] Theorem
|- ∀p1 p2 q1 q2.
p1 trat_eq p2 ∧ q1 trat_eq q2 ⇒
p1 trat_add q1 trat_eq p2 trat_add q2
[TRAT_ARCH] Theorem
|- ∀h. ∃n d. trat_sucint n trat_eq h trat_add d
[TRAT_EQ_AP] Theorem
|- ∀p q. (p = q) ⇒ p trat_eq q
[TRAT_EQ_EQUIV] Theorem
|- ∀p q. p trat_eq q ⇔ ($trat_eq p = $trat_eq q)
[TRAT_EQ_REFL] Theorem
|- ∀p. p trat_eq p
[TRAT_EQ_SYM] Theorem
|- ∀p q. p trat_eq q ⇔ q trat_eq p
[TRAT_EQ_TRANS] Theorem
|- ∀p q r. p trat_eq q ∧ q trat_eq r ⇒ p trat_eq r
[TRAT_INV_WELLDEFINED] Theorem
|- ∀p q. p trat_eq q ⇒ trat_inv p trat_eq trat_inv q
[TRAT_LDISTRIB] Theorem
|- ∀h i j.
h trat_mul (i trat_add j) trat_eq
h trat_mul i trat_add h trat_mul j
[TRAT_MUL_ASSOC] Theorem
|- ∀h i j. h trat_mul (i trat_mul j) trat_eq h trat_mul i trat_mul j
[TRAT_MUL_LID] Theorem
|- ∀h. trat_1 trat_mul h trat_eq h
[TRAT_MUL_LINV] Theorem
|- ∀h. trat_inv h trat_mul h trat_eq trat_1
[TRAT_MUL_SYM] Theorem
|- ∀h i. h trat_mul i trat_eq i trat_mul h
[TRAT_MUL_SYM_EQ] Theorem
|- ∀h i. h trat_mul i = i trat_mul h
[TRAT_MUL_WELLDEFINED] Theorem
|- ∀p q r. p trat_eq q ⇒ p trat_mul r trat_eq q trat_mul r
[TRAT_MUL_WELLDEFINED2] Theorem
|- ∀p1 p2 q1 q2.
p1 trat_eq p2 ∧ q1 trat_eq q2 ⇒
p1 trat_mul q1 trat_eq p2 trat_mul q2
[TRAT_NOZERO] Theorem
|- ∀h i. ¬(h trat_add i trat_eq h)
[TRAT_SUCINT] Theorem
|- trat_sucint 0 trat_eq trat_1 ∧
∀n. trat_sucint (SUC n) trat_eq trat_sucint n trat_add trat_1
[TRAT_SUCINT_0] Theorem
|- ∀n. trat_sucint n trat_eq (n,0)
[hrat_ABS_REP_CLASS] Theorem
|- (∀a. hrat_ABS_CLASS (hrat_REP_CLASS a) = a) ∧
∀c.
(∃r. r trat_eq r ∧ (c = $trat_eq r)) ⇔
(hrat_REP_CLASS (hrat_ABS_CLASS c) = c)
[hrat_QUOTIENT] Theorem
|- QUOTIENT $trat_eq hrat_ABS hrat_REP
*)
end
HOL 4, Kananaskis-10