Structure hrealTheory
signature hrealTheory =
sig
type thm = Thm.thm
(* Definitions *)
val cut_of_hrat : thm
val hrat_lt : thm
val hreal_1 : thm
val hreal_TY_DEF : thm
val hreal_add : thm
val hreal_inv : thm
val hreal_lt : thm
val hreal_mul : thm
val hreal_sub : thm
val hreal_sup : thm
val hreal_tybij : thm
val isacut : thm
(* Theorems *)
val CUT_BOUNDED : thm
val CUT_DOWN : thm
val CUT_ISACUT : thm
val CUT_NEARTOP_ADD : thm
val CUT_NEARTOP_MUL : thm
val CUT_NONEMPTY : thm
val CUT_STRADDLE : thm
val CUT_UBOUND : thm
val CUT_UP : thm
val EQUAL_CUTS : thm
val HRAT_DOWN : thm
val HRAT_DOWN2 : thm
val HRAT_EQ_LADD : thm
val HRAT_EQ_LMUL : thm
val HRAT_GT_L1 : thm
val HRAT_GT_LMUL1 : thm
val HRAT_INV_MUL : thm
val HRAT_LT_ADD2 : thm
val HRAT_LT_ADDL : thm
val HRAT_LT_ADDR : thm
val HRAT_LT_ANTISYM : thm
val HRAT_LT_GT : thm
val HRAT_LT_L1 : thm
val HRAT_LT_LADD : thm
val HRAT_LT_LMUL : thm
val HRAT_LT_LMUL1 : thm
val HRAT_LT_MUL2 : thm
val HRAT_LT_NE : thm
val HRAT_LT_R1 : thm
val HRAT_LT_RADD : thm
val HRAT_LT_REFL : thm
val HRAT_LT_RMUL : thm
val HRAT_LT_RMUL1 : thm
val HRAT_LT_TOTAL : thm
val HRAT_LT_TRANS : thm
val HRAT_MEAN : thm
val HRAT_MUL_RID : thm
val HRAT_MUL_RINV : thm
val HRAT_RDISTRIB : thm
val HRAT_UP : thm
val HREAL_ADD_ASSOC : thm
val HREAL_ADD_ISACUT : thm
val HREAL_ADD_SYM : thm
val HREAL_ADD_TOTAL : thm
val HREAL_INV_ISACUT : thm
val HREAL_LDISTRIB : thm
val HREAL_LT : thm
val HREAL_LT_LEMMA : thm
val HREAL_LT_TOTAL : thm
val HREAL_MUL_ASSOC : thm
val HREAL_MUL_ISACUT : thm
val HREAL_MUL_LID : thm
val HREAL_MUL_LINV : thm
val HREAL_MUL_SYM : thm
val HREAL_NOZERO : thm
val HREAL_SUB_ADD : thm
val HREAL_SUB_ISACUT : thm
val HREAL_SUP : thm
val HREAL_SUP_ISACUT : thm
val ISACUT_HRAT : thm
val hreal_grammars : type_grammar.grammar * term_grammar.grammar
(*
[hrat] Parent theory of "hreal"
[cut_of_hrat] Definition
|- ∀x. cut_of_hrat x = (λy. y hrat_lt x)
[hrat_lt] Definition
|- ∀x y. x hrat_lt y ⇔ ∃d. y = x hrat_add d
[hreal_1] Definition
|- hreal_1 = hreal (cut_of_hrat hrat_1)
[hreal_TY_DEF] Definition
|- ∃rep. TYPE_DEFINITION isacut rep
[hreal_add] Definition
|- ∀X Y.
X hreal_add Y =
hreal (λw. ∃x y. (w = x hrat_add y) ∧ cut X x ∧ cut Y y)
[hreal_inv] Definition
|- ∀X.
hreal_inv X =
hreal
(λw.
∃d.
d hrat_lt hrat_1 ∧ ∀x. cut X x ⇒ w hrat_mul x hrat_lt d)
[hreal_lt] Definition
|- ∀X Y. X hreal_lt Y ⇔ X ≠ Y ∧ ∀x. cut X x ⇒ cut Y x
[hreal_mul] Definition
|- ∀X Y.
X hreal_mul Y =
hreal (λw. ∃x y. (w = x hrat_mul y) ∧ cut X x ∧ cut Y y)
[hreal_sub] Definition
|- ∀Y X.
Y hreal_sub X = hreal (λw. ∃x. ¬cut X x ∧ cut Y (x hrat_add w))
[hreal_sup] Definition
|- ∀P. hreal_sup P = hreal (λw. ∃X. P X ∧ cut X w)
[hreal_tybij] Definition
|- (∀a. hreal (cut a) = a) ∧ ∀r. isacut r ⇔ (cut (hreal r) = r)
[isacut] Definition
|- ∀C.
isacut C ⇔
(∃x. C x) ∧ (∃x. ¬C x) ∧ (∀x y. C x ∧ y hrat_lt x ⇒ C y) ∧
∀x. C x ⇒ ∃y. C y ∧ x hrat_lt y
[CUT_BOUNDED] Theorem
|- ∀X. ∃x. ¬cut X x
[CUT_DOWN] Theorem
|- ∀X x y. cut X x ∧ y hrat_lt x ⇒ cut X y
[CUT_ISACUT] Theorem
|- ∀X. isacut (cut X)
[CUT_NEARTOP_ADD] Theorem
|- ∀X e. ∃x. cut X x ∧ ¬cut X (x hrat_add e)
[CUT_NEARTOP_MUL] Theorem
|- ∀X u. hrat_1 hrat_lt u ⇒ ∃x. cut X x ∧ ¬cut X (u hrat_mul x)
[CUT_NONEMPTY] Theorem
|- ∀X. ∃x. cut X x
[CUT_STRADDLE] Theorem
|- ∀X x y. cut X x ∧ ¬cut X y ⇒ x hrat_lt y
[CUT_UBOUND] Theorem
|- ∀X x y. ¬cut X x ∧ x hrat_lt y ⇒ ¬cut X y
[CUT_UP] Theorem
|- ∀X x. cut X x ⇒ ∃y. cut X y ∧ x hrat_lt y
[EQUAL_CUTS] Theorem
|- ∀X Y. (cut X = cut Y) ⇒ (X = Y)
[HRAT_DOWN] Theorem
|- ∀x. ∃y. y hrat_lt x
[HRAT_DOWN2] Theorem
|- ∀x y. ∃z. z hrat_lt x ∧ z hrat_lt y
[HRAT_EQ_LADD] Theorem
|- ∀x y z. (x hrat_add y = x hrat_add z) ⇔ (y = z)
[HRAT_EQ_LMUL] Theorem
|- ∀x y z. (x hrat_mul y = x hrat_mul z) ⇔ (y = z)
[HRAT_GT_L1] Theorem
|- ∀x y. hrat_1 hrat_lt hrat_inv x hrat_mul y ⇔ x hrat_lt y
[HRAT_GT_LMUL1] Theorem
|- ∀x y. y hrat_lt x hrat_mul y ⇔ hrat_1 hrat_lt x
[HRAT_INV_MUL] Theorem
|- ∀x y. hrat_inv (x hrat_mul y) = hrat_inv x hrat_mul hrat_inv y
[HRAT_LT_ADD2] Theorem
|- ∀u v x y.
u hrat_lt x ∧ v hrat_lt y ⇒ u hrat_add v hrat_lt x hrat_add y
[HRAT_LT_ADDL] Theorem
|- ∀x y. x hrat_lt x hrat_add y
[HRAT_LT_ADDR] Theorem
|- ∀x y. y hrat_lt x hrat_add y
[HRAT_LT_ANTISYM] Theorem
|- ∀x y. ¬(x hrat_lt y ∧ y hrat_lt x)
[HRAT_LT_GT] Theorem
|- ∀x y. x hrat_lt y ⇒ ¬(y hrat_lt x)
[HRAT_LT_L1] Theorem
|- ∀x y. hrat_inv x hrat_mul y hrat_lt hrat_1 ⇔ y hrat_lt x
[HRAT_LT_LADD] Theorem
|- ∀x y z. z hrat_add x hrat_lt z hrat_add y ⇔ x hrat_lt y
[HRAT_LT_LMUL] Theorem
|- ∀x y z. z hrat_mul x hrat_lt z hrat_mul y ⇔ x hrat_lt y
[HRAT_LT_LMUL1] Theorem
|- ∀x y. x hrat_mul y hrat_lt y ⇔ x hrat_lt hrat_1
[HRAT_LT_MUL2] Theorem
|- ∀u v x y.
u hrat_lt x ∧ v hrat_lt y ⇒ u hrat_mul v hrat_lt x hrat_mul y
[HRAT_LT_NE] Theorem
|- ∀x y. x hrat_lt y ⇒ x ≠ y
[HRAT_LT_R1] Theorem
|- ∀x y. x hrat_mul hrat_inv y hrat_lt hrat_1 ⇔ x hrat_lt y
[HRAT_LT_RADD] Theorem
|- ∀x y z. x hrat_add z hrat_lt y hrat_add z ⇔ x hrat_lt y
[HRAT_LT_REFL] Theorem
|- ∀x. ¬(x hrat_lt x)
[HRAT_LT_RMUL] Theorem
|- ∀x y z. x hrat_mul z hrat_lt y hrat_mul z ⇔ x hrat_lt y
[HRAT_LT_RMUL1] Theorem
|- ∀x y. x hrat_mul y hrat_lt x ⇔ y hrat_lt hrat_1
[HRAT_LT_TOTAL] Theorem
|- ∀x y. (x = y) ∨ x hrat_lt y ∨ y hrat_lt x
[HRAT_LT_TRANS] Theorem
|- ∀x y z. x hrat_lt y ∧ y hrat_lt z ⇒ x hrat_lt z
[HRAT_MEAN] Theorem
|- ∀x y. x hrat_lt y ⇒ ∃z. x hrat_lt z ∧ z hrat_lt y
[HRAT_MUL_RID] Theorem
|- ∀x. x hrat_mul hrat_1 = x
[HRAT_MUL_RINV] Theorem
|- ∀x. x hrat_mul hrat_inv x = hrat_1
[HRAT_RDISTRIB] Theorem
|- ∀x y z.
(x hrat_add y) hrat_mul z = x hrat_mul z hrat_add y hrat_mul z
[HRAT_UP] Theorem
|- ∀x. ∃y. x hrat_lt y
[HREAL_ADD_ASSOC] Theorem
|- ∀X Y Z. X hreal_add (Y hreal_add Z) = X hreal_add Y hreal_add Z
[HREAL_ADD_ISACUT] Theorem
|- ∀X Y. isacut (λw. ∃x y. (w = x hrat_add y) ∧ cut X x ∧ cut Y y)
[HREAL_ADD_SYM] Theorem
|- ∀X Y. X hreal_add Y = Y hreal_add X
[HREAL_ADD_TOTAL] Theorem
|- ∀X Y. (X = Y) ∨ (∃D. Y = X hreal_add D) ∨ ∃D. X = Y hreal_add D
[HREAL_INV_ISACUT] Theorem
|- ∀X.
isacut
(λw.
∃d.
d hrat_lt hrat_1 ∧ ∀x. cut X x ⇒ w hrat_mul x hrat_lt d)
[HREAL_LDISTRIB] Theorem
|- ∀X Y Z.
X hreal_mul (Y hreal_add Z) =
X hreal_mul Y hreal_add X hreal_mul Z
[HREAL_LT] Theorem
|- ∀X Y. X hreal_lt Y ⇔ ∃D. Y = X hreal_add D
[HREAL_LT_LEMMA] Theorem
|- ∀X Y. X hreal_lt Y ⇒ ∃x. ¬cut X x ∧ cut Y x
[HREAL_LT_TOTAL] Theorem
|- ∀X Y. (X = Y) ∨ X hreal_lt Y ∨ Y hreal_lt X
[HREAL_MUL_ASSOC] Theorem
|- ∀X Y Z. X hreal_mul (Y hreal_mul Z) = X hreal_mul Y hreal_mul Z
[HREAL_MUL_ISACUT] Theorem
|- ∀X Y. isacut (λw. ∃x y. (w = x hrat_mul y) ∧ cut X x ∧ cut Y y)
[HREAL_MUL_LID] Theorem
|- ∀X. hreal_1 hreal_mul X = X
[HREAL_MUL_LINV] Theorem
|- ∀X. hreal_inv X hreal_mul X = hreal_1
[HREAL_MUL_SYM] Theorem
|- ∀X Y. X hreal_mul Y = Y hreal_mul X
[HREAL_NOZERO] Theorem
|- ∀X Y. X hreal_add Y ≠ X
[HREAL_SUB_ADD] Theorem
|- ∀X Y. X hreal_lt Y ⇒ (Y hreal_sub X hreal_add X = Y)
[HREAL_SUB_ISACUT] Theorem
|- ∀X Y.
X hreal_lt Y ⇒ isacut (λw. ∃x. ¬cut X x ∧ cut Y (x hrat_add w))
[HREAL_SUP] Theorem
|- ∀P.
(∃X. P X) ∧ (∃Y. ∀X. P X ⇒ X hreal_lt Y) ⇒
∀Y. (∃X. P X ∧ Y hreal_lt X) ⇔ Y hreal_lt hreal_sup P
[HREAL_SUP_ISACUT] Theorem
|- ∀P.
(∃X. P X) ∧ (∃Y. ∀X. P X ⇒ X hreal_lt Y) ⇒
isacut (λw. ∃X. P X ∧ cut X w)
[ISACUT_HRAT] Theorem
|- ∀h. isacut (cut_of_hrat h)
*)
end
HOL 4, Kananaskis-10