Structure ieeeTheory


Source File Identifier index Theory binding index

signature ieeeTheory =
sig
  type thm = Thm.thm

  (*  Definitions  *)
    val Exponent : thm
    val Finite : thm
    val Float : thm
    val Fraction : thm
    val Infinity : thm
    val Isdenormal : thm
    val Isintegral : thm
    val Isnan : thm
    val Isnormal : thm
    val Iszero : thm
    val Minus_infinity : thm
    val Minus_zero : thm
    val Plus_infinity : thm
    val Plus_zero : thm
    val ROUNDFLOAT : thm
    val Sign : thm
    val Ulp : thm
    val Val : thm
    val bias : thm
    val bottomfloat : thm
    val ccode_BIJ : thm
    val ccode_CASE : thm
    val ccode_TY_DEF : thm
    val ccode_size_def : thm
    val closest : thm
    val emax : thm
    val encoding : thm
    val exponent : thm
    val expwidth : thm
    val fadd : thm
    val fcompare : thm
    val fdiv : thm
    val feq : thm
    val fge : thm
    val fgt : thm
    val fintrnd : thm
    val fle : thm
    val float_TY_DEF : thm
    val float_abs : thm
    val float_add : thm
    val float_div : thm
    val float_eq : thm
    val float_format : thm
    val float_ge : thm
    val float_gt : thm
    val float_le : thm
    val float_lt : thm
    val float_mul : thm
    val float_neg : thm
    val float_rem : thm
    val float_sqrt : thm
    val float_sub : thm
    val float_tybij : thm
    val flt : thm
    val fmul : thm
    val fneg : thm
    val fraction : thm
    val fracwidth : thm
    val frem : thm
    val fsqrt : thm
    val fsub : thm
    val intround_def : thm
    val is_closest : thm
    val is_denormal : thm
    val is_double : thm
    val is_double_extended : thm
    val is_finite : thm
    val is_infinity : thm
    val is_integral : thm
    val is_nan : thm
    val is_normal : thm
    val is_single : thm
    val is_single_extended : thm
    val is_valid : thm
    val is_zero : thm
    val largest : thm
    val minus : thm
    val minus_infinity : thm
    val minus_zero : thm
    val plus_infinity : thm
    val plus_zero : thm
    val rem : thm
    val round_def : thm
    val roundmode_BIJ : thm
    val roundmode_CASE : thm
    val roundmode_TY_DEF : thm
    val roundmode_size_def : thm
    val sign : thm
    val some_nan : thm
    val threshold : thm
    val topfloat : thm
    val ulp : thm
    val valof : thm
    val wordlength : thm
    val zerosign : thm

  (*  Theorems  *)
    val ccode2num_11 : thm
    val ccode2num_ONTO : thm
    val ccode2num_num2ccode : thm
    val ccode2num_thm : thm
    val ccode_Axiom : thm
    val ccode_EQ_ccode : thm
    val ccode_case_cong : thm
    val ccode_case_def : thm
    val ccode_distinct : thm
    val ccode_induction : thm
    val ccode_nchotomy : thm
    val datatype_ccode : thm
    val datatype_roundmode : thm
    val num2ccode_11 : thm
    val num2ccode_ONTO : thm
    val num2ccode_ccode2num : thm
    val num2ccode_thm : thm
    val num2roundmode_11 : thm
    val num2roundmode_ONTO : thm
    val num2roundmode_roundmode2num : thm
    val num2roundmode_thm : thm
    val roundmode2num_11 : thm
    val roundmode2num_ONTO : thm
    val roundmode2num_num2roundmode : thm
    val roundmode2num_thm : thm
    val roundmode_Axiom : thm
    val roundmode_EQ_roundmode : thm
    val roundmode_case_cong : thm
    val roundmode_case_def : thm
    val roundmode_distinct : thm
    val roundmode_induction : thm
    val roundmode_nchotomy : thm

  val ieee_grammars : type_grammar.grammar * term_grammar.grammar
(*
   [transc] Parent theory of "ieee"

   [Exponent]  Definition

      |- ∀a. Exponent a = exponent (defloat a)

   [Finite]  Definition

      |- ∀a. Finite a ⇔ Isnormal a ∨ Isdenormal a ∨ Iszero a

   [Float]  Definition

      |- ∀x. Float x = float (round float_format To_nearest x)

   [Fraction]  Definition

      |- ∀a. Fraction a = fraction (defloat a)

   [Infinity]  Definition

      |- ∀a. Infinity a ⇔ is_infinity float_format (defloat a)

   [Isdenormal]  Definition

      |- ∀a. Isdenormal a ⇔ is_denormal float_format (defloat a)

   [Isintegral]  Definition

      |- ∀a. Isintegral a ⇔ is_integral float_format (defloat a)

   [Isnan]  Definition

      |- ∀a. Isnan a ⇔ is_nan float_format (defloat a)

   [Isnormal]  Definition

      |- ∀a. Isnormal a ⇔ is_normal float_format (defloat a)

   [Iszero]  Definition

      |- ∀a. Iszero a ⇔ is_zero float_format (defloat a)

   [Minus_infinity]  Definition

      |- Minus_infinity = float (minus_infinity float_format)

   [Minus_zero]  Definition

      |- Minus_zero = float (minus_zero float_format)

   [Plus_infinity]  Definition

      |- Plus_infinity = float (plus_infinity float_format)

   [Plus_zero]  Definition

      |- Plus_zero = float (plus_zero float_format)

   [ROUNDFLOAT]  Definition

      |- ∀a.
           ROUNDFLOAT a =
           float (fintrnd float_format To_nearest (defloat a))

   [Sign]  Definition

      |- ∀a. Sign a = sign (defloat a)

   [Ulp]  Definition

      |- ∀a. Ulp a = ulp float_format (defloat a)

   [Val]  Definition

      |- ∀a. Val a = valof float_format (defloat a)

   [bias]  Definition

      |- ∀X. bias X = 2 ** (expwidth X − 1) − 1

   [bottomfloat]  Definition

      |- ∀X. bottomfloat X = (1,emax X − 1,2 ** fracwidth X − 1)

   [ccode_BIJ]  Definition

      |- (∀a. num2ccode (ccode2num a) = a) ∧
         ∀r. (λn. n < 4) r ⇔ (ccode2num (num2ccode r) = r)

   [ccode_CASE]  Definition

      |- ∀x v0 v1 v2 v3.
           (case x of Gt => v0 | Lt => v1 | Eq => v2 | Un => v3) =
           (λm.
              if m < 1 then v0
              else if m < 2 then v1
              else if m = 2 then v2
              else v3) (ccode2num x)

   [ccode_TY_DEF]  Definition

      |- ∃rep. TYPE_DEFINITION (λn. n < 4) rep

   [ccode_size_def]  Definition

      |- ∀x. ccode_size x = 0

   [closest]  Definition

      |- ∀v p s x.
           closest v p s x =
           @a. is_closest v s x a ∧ ((∃b. is_closest v s x b ∧ p b) ⇒ p a)

   [emax]  Definition

      |- ∀X. emax X = 2 ** expwidth X − 1

   [encoding]  Definition

      |- ∀X s e f.
           encoding X (s,e,f) =
           s * 2 ** (wordlength X − 1) + e * 2 ** fracwidth X + f

   [exponent]  Definition

      |- ∀s e f. exponent (s,e,f) = e

   [expwidth]  Definition

      |- ∀ew fw. expwidth (ew,fw) = ew

   [fadd]  Definition

      |- ∀X m a b.
           fadd X m a b =
           if
             is_nan X a ∨ is_nan X b ∨
             is_infinity X a ∧ is_infinity X b ∧ sign a ≠ sign b
           then
             some_nan X
           else if is_infinity X a then a
           else if is_infinity X b then b
           else
             zerosign X
               (if is_zero X a ∧ is_zero X b ∧ (sign a = sign b) then
                  sign a
                else if m = To_ninfinity then 1
                else 0) (round X m (valof X a + valof X b))

   [fcompare]  Definition

      |- ∀X a b.
           fcompare X a b =
           if is_nan X a ∨ is_nan X b then Un
           else if is_infinity X a ∧ (sign a = 1) then
             if is_infinity X b ∧ (sign b = 1) then Eq else Lt
           else if is_infinity X a ∧ (sign a = 0) then
             if is_infinity X b ∧ (sign b = 0) then Eq else Gt
           else if is_infinity X b ∧ (sign b = 1) then Gt
           else if is_infinity X b ∧ (sign b = 0) then Lt
           else if valof X a < valof X b then Lt
           else if valof X a = valof X b then Eq
           else Gt

   [fdiv]  Definition

      |- ∀X m a b.
           fdiv X m a b =
           if
             is_nan X a ∨ is_nan X b ∨ is_zero X a ∧ is_zero X b ∨
             is_infinity X a ∧ is_infinity X b
           then
             some_nan X
           else if is_infinity X a ∨ is_zero X b then
             if sign a = sign b then plus_infinity X else minus_infinity X
           else if is_infinity X b then
             if sign a = sign b then plus_zero X else minus_zero X
           else
             zerosign X (if sign a = sign b then 0 else 1)
               (round X m (valof X a / valof X b))

   [feq]  Definition

      |- ∀X a b. feq X a b ⇔ (fcompare X a b = Eq)

   [fge]  Definition

      |- ∀X a b. fge X a b ⇔ (fcompare X a b = Gt) ∨ (fcompare X a b = Eq)

   [fgt]  Definition

      |- ∀X a b. fgt X a b ⇔ (fcompare X a b = Gt)

   [fintrnd]  Definition

      |- ∀X m a.
           fintrnd X m a =
           if is_nan X a then some_nan X
           else if is_infinity X a then a
           else zerosign X (sign a) (intround X m (valof X a))

   [fle]  Definition

      |- ∀X a b. fle X a b ⇔ (fcompare X a b = Lt) ∨ (fcompare X a b = Eq)

   [float_TY_DEF]  Definition

      |- ∃rep. TYPE_DEFINITION (is_valid float_format) rep

   [float_abs]  Definition

      |- ∀a. float_abs a = if a ≥ Plus_zero then a else ¬a

   [float_add]  Definition

      |- ∀a b.
           a + b =
           float (fadd float_format To_nearest (defloat a) (defloat b))

   [float_div]  Definition

      |- ∀a b.
           a / b =
           float (fdiv float_format To_nearest (defloat a) (defloat b))

   [float_eq]  Definition

      |- ∀a b. a == b ⇔ feq float_format (defloat a) (defloat b)

   [float_format]  Definition

      |- float_format = (8,23)

   [float_ge]  Definition

      |- ∀a b. a ≥ b ⇔ fge float_format (defloat a) (defloat b)

   [float_gt]  Definition

      |- ∀a b. a > b ⇔ fgt float_format (defloat a) (defloat b)

   [float_le]  Definition

      |- ∀a b. a ≤ b ⇔ fle float_format (defloat a) (defloat b)

   [float_lt]  Definition

      |- ∀a b. a < b ⇔ flt float_format (defloat a) (defloat b)

   [float_mul]  Definition

      |- ∀a b.
           a * b =
           float (fmul float_format To_nearest (defloat a) (defloat b))

   [float_neg]  Definition

      |- ∀a. ¬a = float (fneg float_format To_nearest (defloat a))

   [float_rem]  Definition

      |- ∀a b.
           a float_rem b =
           float (frem float_format To_nearest (defloat a) (defloat b))

   [float_sqrt]  Definition

      |- ∀a.
           float_sqrt a = float (fsqrt float_format To_nearest (defloat a))

   [float_sub]  Definition

      |- ∀a b.
           a − b =
           float (fsub float_format To_nearest (defloat a) (defloat b))

   [float_tybij]  Definition

      |- (∀a. float (defloat a) = a) ∧
         ∀r. is_valid float_format r ⇔ (defloat (float r) = r)

   [flt]  Definition

      |- ∀X a b. flt X a b ⇔ (fcompare X a b = Lt)

   [fmul]  Definition

      |- ∀X m a b.
           fmul X m a b =
           if
             is_nan X a ∨ is_nan X b ∨ is_zero X a ∧ is_infinity X b ∨
             is_infinity X a ∧ is_zero X b
           then
             some_nan X
           else if is_infinity X a ∨ is_infinity X b then
             if sign a = sign b then plus_infinity X else minus_infinity X
           else
             zerosign X (if sign a = sign b then 0 else 1)
               (round X m (valof X a * valof X b))

   [fneg]  Definition

      |- ∀X m a. fneg X m a = (1 − sign a,exponent a,fraction a)

   [fraction]  Definition

      |- ∀s e f. fraction (s,e,f) = f

   [fracwidth]  Definition

      |- ∀ew fw. fracwidth (ew,fw) = fw

   [frem]  Definition

      |- ∀X m a b.
           frem X m a b =
           if is_nan X a ∨ is_nan X b ∨ is_infinity X a ∨ is_zero X b then
             some_nan X
           else if is_infinity X b then a
           else zerosign X (sign a) (round X m (valof X a rem valof X b))

   [fsqrt]  Definition

      |- ∀X m a.
           fsqrt X m a =
           if is_nan X a then some_nan X
           else if is_zero X a ∨ is_infinity X a ∧ (sign a = 0) then a
           else if sign a = 1 then some_nan X
           else zerosign X (sign a) (round X m (sqrt (valof X a)))

   [fsub]  Definition

      |- ∀X m a b.
           fsub X m a b =
           if
             is_nan X a ∨ is_nan X b ∨
             is_infinity X a ∧ is_infinity X b ∧ (sign a = sign b)
           then
             some_nan X
           else if is_infinity X a then a
           else if is_infinity X b then minus X b
           else
             zerosign X
               (if is_zero X a ∧ is_zero X b ∧ sign a ≠ sign b then sign a
                else if m = To_ninfinity then 1
                else 0) (round X m (valof X a − valof X b))

   [intround_def]  Definition

      |- (∀X x.
            intround X To_nearest x =
            if x ≤ -threshold X then minus_infinity X
            else if x ≥ threshold X then plus_infinity X
            else
              closest (valof X) (λa. ∃n. EVEN n ∧ (abs (valof X a) = &n))
                {a | is_integral X a} x) ∧
         (∀X x.
            intround X float_To_zero x =
            if x < -largest X then bottomfloat X
            else if x > largest X then topfloat X
            else
              closest (valof X) (λx. T)
                {a | is_integral X a ∧ abs (valof X a) ≤ abs x} x) ∧
         (∀X x.
            intround X To_pinfinity x =
            if x < -largest X then bottomfloat X
            else if x > largest X then plus_infinity X
            else
              closest (valof X) (λx. T)
                {a | is_integral X a ∧ valof X a ≥ x} x) ∧
         ∀X x.
           intround X To_ninfinity x =
           if x < -largest X then minus_infinity X
           else if x > largest X then topfloat X
           else
             closest (valof X) (λx. T)
               {a | is_integral X a ∧ valof X a ≤ x} x

   [is_closest]  Definition

      |- ∀v s x a.
           is_closest v s x a ⇔
           a ∈ s ∧ ∀b. b ∈ s ⇒ abs (v a − x) ≤ abs (v b − x)

   [is_denormal]  Definition

      |- ∀X a. is_denormal X a ⇔ (exponent a = 0) ∧ fraction a ≠ 0

   [is_double]  Definition

      |- ∀X. is_double X ⇔ (expwidth X = 11) ∧ (wordlength X = 64)

   [is_double_extended]  Definition

      |- ∀X. is_double_extended X ⇔ expwidth X ≥ 15 ∧ wordlength X ≥ 79

   [is_finite]  Definition

      |- ∀X a.
           is_finite X a ⇔
           is_valid X a ∧ (is_normal X a ∨ is_denormal X a ∨ is_zero X a)

   [is_infinity]  Definition

      |- ∀X a. is_infinity X a ⇔ (exponent a = emax X) ∧ (fraction a = 0)

   [is_integral]  Definition

      |- ∀X a. is_integral X a ⇔ is_finite X a ∧ ∃n. abs (valof X a) = &n

   [is_nan]  Definition

      |- ∀X a. is_nan X a ⇔ (exponent a = emax X) ∧ fraction a ≠ 0

   [is_normal]  Definition

      |- ∀X a. is_normal X a ⇔ 0 < exponent a ∧ exponent a < emax X

   [is_single]  Definition

      |- ∀X. is_single X ⇔ (expwidth X = 8) ∧ (wordlength X = 32)

   [is_single_extended]  Definition

      |- ∀X. is_single_extended X ⇔ expwidth X ≥ 11 ∧ wordlength X ≥ 43

   [is_valid]  Definition

      |- ∀X s e f.
           is_valid X (s,e,f) ⇔
           s < SUC (SUC 0) ∧ e < 2 ** expwidth X ∧ f < 2 ** fracwidth X

   [is_zero]  Definition

      |- ∀X a. is_zero X a ⇔ (exponent a = 0) ∧ (fraction a = 0)

   [largest]  Definition

      |- ∀X.
           largest X =
           2 pow (emax X − 1) / 2 pow bias X *
           (2 − inv (2 pow fracwidth X))

   [minus]  Definition

      |- ∀X a. minus X a = (1 − sign a,exponent a,fraction a)

   [minus_infinity]  Definition

      |- ∀X. minus_infinity X = (1,emax X,0)

   [minus_zero]  Definition

      |- ∀X. minus_zero X = (1,0,0)

   [plus_infinity]  Definition

      |- ∀X. plus_infinity X = (0,emax X,0)

   [plus_zero]  Definition

      |- ∀X. plus_zero X = (0,0,0)

   [rem]  Definition

      |- ∀x y.
           x rem y =
           (let n =
                  closest I (λx. ∃n. EVEN n ∧ (abs x = &n))
                    {x | ∃n. abs x = &n} (x / y)
            in
              x − n * y)

   [round_def]  Definition

      |- (∀X x.
            round X To_nearest x =
            if x ≤ -threshold X then minus_infinity X
            else if x ≥ threshold X then plus_infinity X
            else
              closest (valof X) (λa. EVEN (fraction a)) {a | is_finite X a}
                x) ∧
         (∀X x.
            round X float_To_zero x =
            if x < -largest X then bottomfloat X
            else if x > largest X then topfloat X
            else
              closest (valof X) (λx. T)
                {a | is_finite X a ∧ abs (valof X a) ≤ abs x} x) ∧
         (∀X x.
            round X To_pinfinity x =
            if x < -largest X then bottomfloat X
            else if x > largest X then plus_infinity X
            else
              closest (valof X) (λx. T) {a | is_finite X a ∧ valof X a ≥ x}
                x) ∧
         ∀X x.
           round X To_ninfinity x =
           if x < -largest X then minus_infinity X
           else if x > largest X then topfloat X
           else
             closest (valof X) (λx. T) {a | is_finite X a ∧ valof X a ≤ x}
               x

   [roundmode_BIJ]  Definition

      |- (∀a. num2roundmode (roundmode2num a) = a) ∧
         ∀r. (λn. n < 4) r ⇔ (roundmode2num (num2roundmode r) = r)

   [roundmode_CASE]  Definition

      |- ∀x v0 v1 v2 v3.
           (case x of
              To_nearest => v0
            | float_To_zero => v1
            | To_pinfinity => v2
            | To_ninfinity => v3) =
           (λm.
              if m < 1 then v0
              else if m < 2 then v1
              else if m = 2 then v2
              else v3) (roundmode2num x)

   [roundmode_TY_DEF]  Definition

      |- ∃rep. TYPE_DEFINITION (λn. n < 4) rep

   [roundmode_size_def]  Definition

      |- ∀x. roundmode_size x = 0

   [sign]  Definition

      |- ∀s e f. sign (s,e,f) = s

   [some_nan]  Definition

      |- ∀X. some_nan X = @a. is_nan X a

   [threshold]  Definition

      |- ∀X.
           threshold X =
           2 pow (emax X − 1) / 2 pow bias X *
           (2 − inv (2 pow SUC (fracwidth X)))

   [topfloat]  Definition

      |- ∀X. topfloat X = (0,emax X − 1,2 ** fracwidth X − 1)

   [ulp]  Definition

      |- ∀X a.
           ulp X a = valof X (0,exponent a,1) − valof X (0,exponent a,0)

   [valof]  Definition

      |- ∀X s e f.
           valof X (s,e,f) =
           if e = 0 then
             -1 pow s * (2 / 2 pow bias X) * (&f / 2 pow fracwidth X)
           else
             -1 pow s * (2 pow e / 2 pow bias X) *
             (1 + &f / 2 pow fracwidth X)

   [wordlength]  Definition

      |- ∀X. wordlength X = expwidth X + fracwidth X + 1

   [zerosign]  Definition

      |- ∀X s a.
           zerosign X s a =
           if is_zero X a then if s = 0 then plus_zero X else minus_zero X
           else a

   [ccode2num_11]  Theorem

      |- ∀a a'. (ccode2num a = ccode2num a') ⇔ (a = a')

   [ccode2num_ONTO]  Theorem

      |- ∀r. r < 4 ⇔ ∃a. r = ccode2num a

   [ccode2num_num2ccode]  Theorem

      |- ∀r. r < 4 ⇔ (ccode2num (num2ccode r) = r)

   [ccode2num_thm]  Theorem

      |- (ccode2num Gt = 0) ∧ (ccode2num Lt = 1) ∧ (ccode2num Eq = 2) ∧
         (ccode2num Un = 3)

   [ccode_Axiom]  Theorem

      |- ∀x0 x1 x2 x3.
           ∃f. (f Gt = x0) ∧ (f Lt = x1) ∧ (f Eq = x2) ∧ (f Un = x3)

   [ccode_EQ_ccode]  Theorem

      |- ∀a a'. (a = a') ⇔ (ccode2num a = ccode2num a')

   [ccode_case_cong]  Theorem

      |- ∀M M' v0 v1 v2 v3.
           (M = M') ∧ ((M' = Gt) ⇒ (v0 = v0')) ∧ ((M' = Lt) ⇒ (v1 = v1')) ∧
           ((M' = Eq) ⇒ (v2 = v2')) ∧ ((M' = Un) ⇒ (v3 = v3')) ⇒
           ((case M of Gt => v0 | Lt => v1 | Eq => v2 | Un => v3) =
            case M' of Gt => v0' | Lt => v1' | Eq => v2' | Un => v3')

   [ccode_case_def]  Theorem

      |- (∀v0 v1 v2 v3.
            (case Gt of Gt => v0 | Lt => v1 | Eq => v2 | Un => v3) = v0) ∧
         (∀v0 v1 v2 v3.
            (case Lt of Gt => v0 | Lt => v1 | Eq => v2 | Un => v3) = v1) ∧
         (∀v0 v1 v2 v3.
            (case Eq of Gt => v0 | Lt => v1 | Eq => v2 | Un => v3) = v2) ∧
         ∀v0 v1 v2 v3.
           (case Un of Gt => v0 | Lt => v1 | Eq => v2 | Un => v3) = v3

   [ccode_distinct]  Theorem

      |- Gt ≠ Lt ∧ Gt ≠ Eq ∧ Gt ≠ Un ∧ Lt ≠ Eq ∧ Lt ≠ Un ∧ Eq ≠ Un

   [ccode_induction]  Theorem

      |- ∀P. P Eq ∧ P Gt ∧ P Lt ∧ P Un ⇒ ∀a. P a

   [ccode_nchotomy]  Theorem

      |- ∀a. (a = Gt) ∨ (a = Lt) ∨ (a = Eq) ∨ (a = Un)

   [datatype_ccode]  Theorem

      |- DATATYPE (ccode Gt Lt Eq Un)

   [datatype_roundmode]  Theorem

      |- DATATYPE
           (roundmode To_nearest float_To_zero To_pinfinity To_ninfinity)

   [num2ccode_11]  Theorem

      |- ∀r r'. r < 4 ⇒ r' < 4 ⇒ ((num2ccode r = num2ccode r') ⇔ (r = r'))

   [num2ccode_ONTO]  Theorem

      |- ∀a. ∃r. (a = num2ccode r) ∧ r < 4

   [num2ccode_ccode2num]  Theorem

      |- ∀a. num2ccode (ccode2num a) = a

   [num2ccode_thm]  Theorem

      |- (num2ccode 0 = Gt) ∧ (num2ccode 1 = Lt) ∧ (num2ccode 2 = Eq) ∧
         (num2ccode 3 = Un)

   [num2roundmode_11]  Theorem

      |- ∀r r'.
           r < 4 ⇒
           r' < 4 ⇒
           ((num2roundmode r = num2roundmode r') ⇔ (r = r'))

   [num2roundmode_ONTO]  Theorem

      |- ∀a. ∃r. (a = num2roundmode r) ∧ r < 4

   [num2roundmode_roundmode2num]  Theorem

      |- ∀a. num2roundmode (roundmode2num a) = a

   [num2roundmode_thm]  Theorem

      |- (num2roundmode 0 = To_nearest) ∧
         (num2roundmode 1 = float_To_zero) ∧
         (num2roundmode 2 = To_pinfinity) ∧
         (num2roundmode 3 = To_ninfinity)

   [roundmode2num_11]  Theorem

      |- ∀a a'. (roundmode2num a = roundmode2num a') ⇔ (a = a')

   [roundmode2num_ONTO]  Theorem

      |- ∀r. r < 4 ⇔ ∃a. r = roundmode2num a

   [roundmode2num_num2roundmode]  Theorem

      |- ∀r. r < 4 ⇔ (roundmode2num (num2roundmode r) = r)

   [roundmode2num_thm]  Theorem

      |- (roundmode2num To_nearest = 0) ∧
         (roundmode2num float_To_zero = 1) ∧
         (roundmode2num To_pinfinity = 2) ∧
         (roundmode2num To_ninfinity = 3)

   [roundmode_Axiom]  Theorem

      |- ∀x0 x1 x2 x3.
           ∃f.
             (f To_nearest = x0) ∧ (f float_To_zero = x1) ∧
             (f To_pinfinity = x2) ∧ (f To_ninfinity = x3)

   [roundmode_EQ_roundmode]  Theorem

      |- ∀a a'. (a = a') ⇔ (roundmode2num a = roundmode2num a')

   [roundmode_case_cong]  Theorem

      |- ∀M M' v0 v1 v2 v3.
           (M = M') ∧ ((M' = To_nearest) ⇒ (v0 = v0')) ∧
           ((M' = float_To_zero) ⇒ (v1 = v1')) ∧
           ((M' = To_pinfinity) ⇒ (v2 = v2')) ∧
           ((M' = To_ninfinity) ⇒ (v3 = v3')) ⇒
           ((case M of
               To_nearest => v0
             | float_To_zero => v1
             | To_pinfinity => v2
             | To_ninfinity => v3) =
            case M' of
              To_nearest => v0'
            | float_To_zero => v1'
            | To_pinfinity => v2'
            | To_ninfinity => v3')

   [roundmode_case_def]  Theorem

      |- (∀v0 v1 v2 v3.
            (case To_nearest of
               To_nearest => v0
             | float_To_zero => v1
             | To_pinfinity => v2
             | To_ninfinity => v3) =
            v0) ∧
         (∀v0 v1 v2 v3.
            (case float_To_zero of
               To_nearest => v0
             | float_To_zero => v1
             | To_pinfinity => v2
             | To_ninfinity => v3) =
            v1) ∧
         (∀v0 v1 v2 v3.
            (case To_pinfinity of
               To_nearest => v0
             | float_To_zero => v1
             | To_pinfinity => v2
             | To_ninfinity => v3) =
            v2) ∧
         ∀v0 v1 v2 v3.
           (case To_ninfinity of
              To_nearest => v0
            | float_To_zero => v1
            | To_pinfinity => v2
            | To_ninfinity => v3) =
           v3

   [roundmode_distinct]  Theorem

      |- To_nearest ≠ float_To_zero ∧ To_nearest ≠ To_pinfinity ∧
         To_nearest ≠ To_ninfinity ∧ float_To_zero ≠ To_pinfinity ∧
         float_To_zero ≠ To_ninfinity ∧ To_pinfinity ≠ To_ninfinity

   [roundmode_induction]  Theorem

      |- ∀P.
           P To_nearest ∧ P To_ninfinity ∧ P To_pinfinity ∧
           P float_To_zero ⇒
           ∀a. P a

   [roundmode_nchotomy]  Theorem

      |- ∀a.
           (a = To_nearest) ∨ (a = float_To_zero) ∨ (a = To_pinfinity) ∨
           (a = To_ninfinity)


*)
end


Source File Identifier index Theory binding index

HOL 4, Kananaskis-10