Structure integerTheory


Source File Identifier index Theory binding index

signature integerTheory =
sig
  type thm = Thm.thm

  (*  Definitions  *)
    val INT_ABS : thm
    val INT_DIVIDES : thm
    val INT_MAX : thm
    val INT_MIN : thm
    val LEAST_INT_DEF : thm
    val Num : thm
    val int_0 : thm
    val int_1 : thm
    val int_ABS_def : thm
    val int_REP_def : thm
    val int_TY_DEF : thm
    val int_add : thm
    val int_bijections : thm
    val int_div : thm
    val int_exp : thm
    val int_ge : thm
    val int_gt : thm
    val int_le : thm
    val int_lt : thm
    val int_mod : thm
    val int_mul : thm
    val int_neg : thm
    val int_quot : thm
    val int_rem : thm
    val int_sub : thm
    val tint_0 : thm
    val tint_1 : thm
    val tint_add : thm
    val tint_eq : thm
    val tint_lt : thm
    val tint_mul : thm
    val tint_neg : thm
    val tint_of_num : thm

  (*  Theorems  *)
    val EQ_ADDL : thm
    val EQ_LADD : thm
    val INFINITE_INT_UNIV : thm
    val INT : thm
    val INT_0 : thm
    val INT_1 : thm
    val INT_10 : thm
    val INT_ABS_ABS : thm
    val INT_ABS_EQ : thm
    val INT_ABS_EQ0 : thm
    val INT_ABS_EQ_ID : thm
    val INT_ABS_LE : thm
    val INT_ABS_LE0 : thm
    val INT_ABS_LT : thm
    val INT_ABS_LT0 : thm
    val INT_ABS_MUL : thm
    val INT_ABS_NEG : thm
    val INT_ABS_NUM : thm
    val INT_ABS_POS : thm
    val INT_ABS_QUOT : thm
    val INT_ADD : thm
    val INT_ADD2_SUB2 : thm
    val INT_ADD_ASSOC : thm
    val INT_ADD_CALCULATE : thm
    val INT_ADD_COMM : thm
    val INT_ADD_DIV : thm
    val INT_ADD_LID : thm
    val INT_ADD_LID_UNIQ : thm
    val INT_ADD_LINV : thm
    val INT_ADD_REDUCE : thm
    val INT_ADD_RID : thm
    val INT_ADD_RID_UNIQ : thm
    val INT_ADD_RINV : thm
    val INT_ADD_SUB : thm
    val INT_ADD_SUB2 : thm
    val INT_ADD_SYM : thm
    val INT_DIFFSQ : thm
    val INT_DISCRETE : thm
    val INT_DIV : thm
    val INT_DIVIDES_0 : thm
    val INT_DIVIDES_1 : thm
    val INT_DIVIDES_LADD : thm
    val INT_DIVIDES_LMUL : thm
    val INT_DIVIDES_LSUB : thm
    val INT_DIVIDES_MOD0 : thm
    val INT_DIVIDES_MUL : thm
    val INT_DIVIDES_MUL_BOTH : thm
    val INT_DIVIDES_NEG : thm
    val INT_DIVIDES_RADD : thm
    val INT_DIVIDES_REDUCE : thm
    val INT_DIVIDES_REFL : thm
    val INT_DIVIDES_RMUL : thm
    val INT_DIVIDES_RSUB : thm
    val INT_DIVIDES_TRANS : thm
    val INT_DIVISION : thm
    val INT_DIV_0 : thm
    val INT_DIV_1 : thm
    val INT_DIV_CALCULATE : thm
    val INT_DIV_FORALL_P : thm
    val INT_DIV_ID : thm
    val INT_DIV_LMUL : thm
    val INT_DIV_MUL_ID : thm
    val INT_DIV_NEG : thm
    val INT_DIV_P : thm
    val INT_DIV_REDUCE : thm
    val INT_DIV_RMUL : thm
    val INT_DIV_UNIQUE : thm
    val INT_DOUBLE : thm
    val INT_ENTIRE : thm
    val INT_EQ_CALCULATE : thm
    val INT_EQ_IMP_LE : thm
    val INT_EQ_LADD : thm
    val INT_EQ_LMUL : thm
    val INT_EQ_LMUL2 : thm
    val INT_EQ_LMUL_IMP : thm
    val INT_EQ_NEG : thm
    val INT_EQ_RADD : thm
    val INT_EQ_REDUCE : thm
    val INT_EQ_RMUL : thm
    val INT_EQ_RMUL_IMP : thm
    val INT_EQ_SUB_LADD : thm
    val INT_EQ_SUB_RADD : thm
    val INT_EXP : thm
    val INT_EXP_ADD_EXPONENTS : thm
    val INT_EXP_CALCULATE : thm
    val INT_EXP_EQ0 : thm
    val INT_EXP_MOD : thm
    val INT_EXP_MULTIPLY_EXPONENTS : thm
    val INT_EXP_NEG : thm
    val INT_EXP_REDUCE : thm
    val INT_EXP_SUBTRACT_EXPONENTS : thm
    val INT_GE_CALCULATE : thm
    val INT_GE_REDUCE : thm
    val INT_GT_CALCULATE : thm
    val INT_GT_REDUCE : thm
    val INT_INJ : thm
    val INT_LDISTRIB : thm
    val INT_LE : thm
    val INT_LESS_MOD : thm
    val INT_LET_ADD : thm
    val INT_LET_ADD2 : thm
    val INT_LET_ANTISYM : thm
    val INT_LET_TOTAL : thm
    val INT_LET_TRANS : thm
    val INT_LE_01 : thm
    val INT_LE_ADD : thm
    val INT_LE_ADD2 : thm
    val INT_LE_ADDL : thm
    val INT_LE_ADDR : thm
    val INT_LE_ANTISYM : thm
    val INT_LE_CALCULATE : thm
    val INT_LE_DOUBLE : thm
    val INT_LE_LADD : thm
    val INT_LE_LT : thm
    val INT_LE_LT1 : thm
    val INT_LE_MONO : thm
    val INT_LE_MUL : thm
    val INT_LE_NEG : thm
    val INT_LE_NEGL : thm
    val INT_LE_NEGR : thm
    val INT_LE_NEGTOTAL : thm
    val INT_LE_RADD : thm
    val INT_LE_REDUCE : thm
    val INT_LE_REFL : thm
    val INT_LE_SQUARE : thm
    val INT_LE_SUB_LADD : thm
    val INT_LE_SUB_RADD : thm
    val INT_LE_TOTAL : thm
    val INT_LE_TRANS : thm
    val INT_LNEG_UNIQ : thm
    val INT_LT : thm
    val INT_LTE_ADD : thm
    val INT_LTE_ADD2 : thm
    val INT_LTE_ANTSYM : thm
    val INT_LTE_TOTAL : thm
    val INT_LTE_TRANS : thm
    val INT_LT_01 : thm
    val INT_LT_ADD : thm
    val INT_LT_ADD1 : thm
    val INT_LT_ADD2 : thm
    val INT_LT_ADDL : thm
    val INT_LT_ADDNEG : thm
    val INT_LT_ADDNEG2 : thm
    val INT_LT_ADDR : thm
    val INT_LT_ADD_SUB : thm
    val INT_LT_ANTISYM : thm
    val INT_LT_CALCULATE : thm
    val INT_LT_GT : thm
    val INT_LT_IMP_LE : thm
    val INT_LT_IMP_NE : thm
    val INT_LT_LADD : thm
    val INT_LT_LADD_IMP : thm
    val INT_LT_LE : thm
    val INT_LT_LE1 : thm
    val INT_LT_MONO : thm
    val INT_LT_MUL : thm
    val INT_LT_MUL2 : thm
    val INT_LT_NEG : thm
    val INT_LT_NEGTOTAL : thm
    val INT_LT_NZ : thm
    val INT_LT_RADD : thm
    val INT_LT_REDUCE : thm
    val INT_LT_REFL : thm
    val INT_LT_SUB_LADD : thm
    val INT_LT_SUB_RADD : thm
    val INT_LT_TOTAL : thm
    val INT_LT_TRANS : thm
    val INT_MAX_LT : thm
    val INT_MAX_NUM : thm
    val INT_MIN_LT : thm
    val INT_MIN_NUM : thm
    val INT_MOD : thm
    val INT_MOD0 : thm
    val INT_MOD_1 : thm
    val INT_MOD_ADD_MULTIPLES : thm
    val INT_MOD_BOUNDS : thm
    val INT_MOD_CALCULATE : thm
    val INT_MOD_COMMON_FACTOR : thm
    val INT_MOD_EQ0 : thm
    val INT_MOD_FORALL_P : thm
    val INT_MOD_ID : thm
    val INT_MOD_MINUS1 : thm
    val INT_MOD_MOD : thm
    val INT_MOD_NEG : thm
    val INT_MOD_NEG_NUMERATOR : thm
    val INT_MOD_P : thm
    val INT_MOD_PLUS : thm
    val INT_MOD_REDUCE : thm
    val INT_MOD_SUB : thm
    val INT_MOD_UNIQUE : thm
    val INT_MUL : thm
    val INT_MUL_ASSOC : thm
    val INT_MUL_CALCULATE : thm
    val INT_MUL_COMM : thm
    val INT_MUL_DIV : thm
    val INT_MUL_EQ_1 : thm
    val INT_MUL_LID : thm
    val INT_MUL_LZERO : thm
    val INT_MUL_QUOT : thm
    val INT_MUL_REDUCE : thm
    val INT_MUL_RID : thm
    val INT_MUL_RZERO : thm
    val INT_MUL_SIGN_CASES : thm
    val INT_MUL_SYM : thm
    val INT_NEGNEG : thm
    val INT_NEG_0 : thm
    val INT_NEG_ADD : thm
    val INT_NEG_EQ : thm
    val INT_NEG_EQ0 : thm
    val INT_NEG_GE0 : thm
    val INT_NEG_GT0 : thm
    val INT_NEG_LE0 : thm
    val INT_NEG_LMUL : thm
    val INT_NEG_LT0 : thm
    val INT_NEG_MINUS1 : thm
    val INT_NEG_MUL2 : thm
    val INT_NEG_RMUL : thm
    val INT_NEG_SAME_EQ : thm
    val INT_NEG_SUB : thm
    val INT_NOT_LE : thm
    val INT_NOT_LT : thm
    val INT_NUM_CASES : thm
    val INT_NZ_IMP_LT : thm
    val INT_OF_NUM : thm
    val INT_POASQ : thm
    val INT_POS : thm
    val INT_POS_NZ : thm
    val INT_QUOT : thm
    val INT_QUOT_0 : thm
    val INT_QUOT_1 : thm
    val INT_QUOT_CALCULATE : thm
    val INT_QUOT_ID : thm
    val INT_QUOT_NEG : thm
    val INT_QUOT_REDUCE : thm
    val INT_QUOT_UNIQUE : thm
    val INT_RDISTRIB : thm
    val INT_REM : thm
    val INT_REM0 : thm
    val INT_REMQUOT : thm
    val INT_REM_CALCULATE : thm
    val INT_REM_COMMON_FACTOR : thm
    val INT_REM_EQ0 : thm
    val INT_REM_EQ_MOD : thm
    val INT_REM_ID : thm
    val INT_REM_NEG : thm
    val INT_REM_REDUCE : thm
    val INT_REM_UNIQUE : thm
    val INT_RNEG_UNIQ : thm
    val INT_SUB : thm
    val INT_SUB_0 : thm
    val INT_SUB_ADD : thm
    val INT_SUB_ADD2 : thm
    val INT_SUB_CALCULATE : thm
    val INT_SUB_LDISTRIB : thm
    val INT_SUB_LE : thm
    val INT_SUB_LNEG : thm
    val INT_SUB_LT : thm
    val INT_SUB_LZERO : thm
    val INT_SUB_NEG2 : thm
    val INT_SUB_RDISTRIB : thm
    val INT_SUB_REDUCE : thm
    val INT_SUB_REFL : thm
    val INT_SUB_RNEG : thm
    val INT_SUB_RZERO : thm
    val INT_SUB_SUB : thm
    val INT_SUB_SUB2 : thm
    val INT_SUB_TRIANGLE : thm
    val INT_SUMSQ : thm
    val LE_NUM_OF_INT : thm
    val LT_ADD2 : thm
    val LT_ADDL : thm
    val LT_ADDR : thm
    val LT_LADD : thm
    val NUM_NEGINT_EXISTS : thm
    val NUM_OF_INT : thm
    val NUM_POSINT : thm
    val NUM_POSINT_EX : thm
    val NUM_POSINT_EXISTS : thm
    val NUM_POSTINT_EX : thm
    val TINT_10 : thm
    val TINT_ADD_ASSOC : thm
    val TINT_ADD_LID : thm
    val TINT_ADD_LINV : thm
    val TINT_ADD_SYM : thm
    val TINT_ADD_WELLDEF : thm
    val TINT_ADD_WELLDEFR : thm
    val TINT_EQ_AP : thm
    val TINT_EQ_EQUIV : thm
    val TINT_EQ_REFL : thm
    val TINT_EQ_SYM : thm
    val TINT_EQ_TRANS : thm
    val TINT_INJ : thm
    val TINT_LDISTRIB : thm
    val TINT_LT_ADD : thm
    val TINT_LT_MUL : thm
    val TINT_LT_REFL : thm
    val TINT_LT_TOTAL : thm
    val TINT_LT_TRANS : thm
    val TINT_LT_WELLDEF : thm
    val TINT_LT_WELLDEFL : thm
    val TINT_LT_WELLDEFR : thm
    val TINT_MUL_ASSOC : thm
    val TINT_MUL_LID : thm
    val TINT_MUL_SYM : thm
    val TINT_MUL_WELLDEF : thm
    val TINT_MUL_WELLDEFR : thm
    val TINT_NEG_WELLDEF : thm
    val int_ABS_REP_CLASS : thm
    val int_QUOTIENT : thm
    val int_of_num : thm
    val tint_of_num_eq : thm

  val integer_grammars : type_grammar.grammar * term_grammar.grammar
(*
   [divides] Parent theory of "integer"

   [quotient_list] Parent theory of "integer"

   [quotient_option] Parent theory of "integer"

   [quotient_pair] Parent theory of "integer"

   [quotient_sum] Parent theory of "integer"

   [INT_ABS]  Definition

      |- ∀n. ABS n = if n < 0 then -n else n

   [INT_DIVIDES]  Definition

      |- ∀p q. p int_divides q ⇔ ∃m. m * p = q

   [INT_MAX]  Definition

      |- ∀x y. int_max x y = if x < y then y else x

   [INT_MIN]  Definition

      |- ∀x y. int_min x y = if x < y then x else y

   [LEAST_INT_DEF]  Definition

      |- ∀P. $LEAST_INT P = @i. P i ∧ ∀j. j < i ⇒ ¬P j

   [Num]  Definition

      |- ∀i. Num i = @n. i = &n

   [int_0]  Definition

      |- int_0 = int_ABS tint_0

   [int_1]  Definition

      |- int_1 = int_ABS tint_1

   [int_ABS_def]  Definition

      |- ∀r. int_ABS r = int_ABS_CLASS ($tint_eq r)

   [int_REP_def]  Definition

      |- ∀a. int_REP a = $@ (int_REP_CLASS a)

   [int_TY_DEF]  Definition

      |- ∃rep. TYPE_DEFINITION (λc. ∃r. r tint_eq r ∧ (c = $tint_eq r)) rep

   [int_add]  Definition

      |- ∀T1 T2. T1 + T2 = int_ABS (int_REP T1 tint_add int_REP T2)

   [int_bijections]  Definition

      |- (∀a. int_ABS_CLASS (int_REP_CLASS a) = a) ∧
         ∀r.
           (λc. ∃r. r tint_eq r ∧ (c = $tint_eq r)) r ⇔
           (int_REP_CLASS (int_ABS_CLASS r) = r)

   [int_div]  Definition

      |- ∀i j.
           j ≠ 0 ⇒
           (i / j =
            if 0 < j then
              if 0 ≤ i then &(Num i DIV Num j)
              else
                -&(Num (-i) DIV Num j) +
                if Num (-i) MOD Num j = 0 then 0 else -1
            else if 0 ≤ i then
              -&(Num i DIV Num (-j)) +
              if Num i MOD Num (-j) = 0 then 0 else -1
            else &(Num (-i) DIV Num (-j)))

   [int_exp]  Definition

      |- (∀p. p ** 0 = 1) ∧ ∀p n. p ** SUC n = p * p ** n

   [int_ge]  Definition

      |- ∀x y. x ≥ y ⇔ y ≤ x

   [int_gt]  Definition

      |- ∀x y. x > y ⇔ y < x

   [int_le]  Definition

      |- ∀x y. x ≤ y ⇔ ¬(y < x)

   [int_lt]  Definition

      |- ∀T1 T2. T1 < T2 ⇔ int_REP T1 tint_lt int_REP T2

   [int_mod]  Definition

      |- ∀i j. j ≠ 0 ⇒ (i % j = i − i / j * j)

   [int_mul]  Definition

      |- ∀T1 T2. T1 * T2 = int_ABS (int_REP T1 tint_mul int_REP T2)

   [int_neg]  Definition

      |- ∀T1. -T1 = int_ABS (tint_neg (int_REP T1))

   [int_quot]  Definition

      |- ∀i j.
           j ≠ 0 ⇒
           (i quot j =
            if 0 < j then
              if 0 ≤ i then &(Num i DIV Num j) else -&(Num (-i) DIV Num j)
            else if 0 ≤ i then -&(Num i DIV Num (-j))
            else &(Num (-i) DIV Num (-j)))

   [int_rem]  Definition

      |- ∀i j. j ≠ 0 ⇒ (i rem j = i − i quot j * j)

   [int_sub]  Definition

      |- ∀x y. x − y = x + -y

   [tint_0]  Definition

      |- tint_0 = (1,1)

   [tint_1]  Definition

      |- tint_1 = (1 + 1,1)

   [tint_add]  Definition

      |- ∀x1 y1 x2 y2. (x1,y1) tint_add (x2,y2) = (x1 + x2,y1 + y2)

   [tint_eq]  Definition

      |- ∀x1 y1 x2 y2. (x1,y1) tint_eq (x2,y2) ⇔ (x1 + y2 = x2 + y1)

   [tint_lt]  Definition

      |- ∀x1 y1 x2 y2. (x1,y1) tint_lt (x2,y2) ⇔ x1 + y2 < x2 + y1

   [tint_mul]  Definition

      |- ∀x1 y1 x2 y2.
           (x1,y1) tint_mul (x2,y2) = (x1 * x2 + y1 * y2,x1 * y2 + y1 * x2)

   [tint_neg]  Definition

      |- ∀x y. tint_neg (x,y) = (y,x)

   [tint_of_num]  Definition

      |- (tint_of_num 0 = tint_0) ∧
         ∀n. tint_of_num (SUC n) = tint_of_num n tint_add tint_1

   [EQ_ADDL]  Theorem

      |- ∀x y. (x = x + y) ⇔ (y = 0)

   [EQ_LADD]  Theorem

      |- ∀x y z. (x + y = x + z) ⇔ (y = z)

   [INFINITE_INT_UNIV]  Theorem

      |- INFINITE 𝕌(:int)

   [INT]  Theorem

      |- ∀n. &SUC n = &n + 1

   [INT_0]  Theorem

      |- int_0 = 0

   [INT_1]  Theorem

      |- int_1 = 1

   [INT_10]  Theorem

      |- int_1 ≠ int_0

   [INT_ABS_ABS]  Theorem

      |- ∀p. ABS (ABS p) = ABS p

   [INT_ABS_EQ]  Theorem

      |- ∀p q.
           ((ABS p = q) ⇔ (p = q) ∧ 0 < q ∨ (p = -q) ∧ 0 ≤ q) ∧
           ((q = ABS p) ⇔ (p = q) ∧ 0 < q ∨ (p = -q) ∧ 0 ≤ q)

   [INT_ABS_EQ0]  Theorem

      |- ∀p. (ABS p = 0) ⇔ (p = 0)

   [INT_ABS_EQ_ID]  Theorem

      |- ∀p. (ABS p = p) ⇔ 0 ≤ p

   [INT_ABS_LE]  Theorem

      |- ∀p q.
           (ABS p ≤ q ⇔ p ≤ q ∧ -q ≤ p) ∧ (q ≤ ABS p ⇔ q ≤ p ∨ p ≤ -q) ∧
           (-ABS p ≤ q ⇔ -q ≤ p ∨ p ≤ q) ∧ (q ≤ -ABS p ⇔ p ≤ -q ∧ q ≤ p)

   [INT_ABS_LE0]  Theorem

      |- ∀p. ABS p ≤ 0 ⇔ (p = 0)

   [INT_ABS_LT]  Theorem

      |- ∀p q.
           (ABS p < q ⇔ p < q ∧ -q < p) ∧ (q < ABS p ⇔ q < p ∨ p < -q) ∧
           (-ABS p < q ⇔ -q < p ∨ p < q) ∧ (q < -ABS p ⇔ p < -q ∧ q < p)

   [INT_ABS_LT0]  Theorem

      |- ∀p. ¬(ABS p < 0)

   [INT_ABS_MUL]  Theorem

      |- ∀p q. ABS p * ABS q = ABS (p * q)

   [INT_ABS_NEG]  Theorem

      |- ∀p. ABS (-p) = ABS p

   [INT_ABS_NUM]  Theorem

      |- ∀n. ABS (&n) = &n

   [INT_ABS_POS]  Theorem

      |- ∀p. 0 ≤ ABS p

   [INT_ABS_QUOT]  Theorem

      |- ∀p q. q ≠ 0 ⇒ ABS (p quot q * q) ≤ ABS p

   [INT_ADD]  Theorem

      |- ∀m n. &m + &n = &(m + n)

   [INT_ADD2_SUB2]  Theorem

      |- ∀a b c d. a + b − (c + d) = a − c + (b − d)

   [INT_ADD_ASSOC]  Theorem

      |- ∀z y x. x + (y + z) = x + y + z

   [INT_ADD_CALCULATE]  Theorem

      |- ∀p n m.
           (0 + p = p) ∧ (p + 0 = p) ∧ (&n + &m = &(n + m)) ∧
           (&n + -&m = if m ≤ n then &(n − m) else -&(m − n)) ∧
           (-&n + &m = if n ≤ m then &(m − n) else -&(n − m)) ∧
           (-&n + -&m = -&(n + m))

   [INT_ADD_COMM]  Theorem

      |- ∀y x. x + y = y + x

   [INT_ADD_DIV]  Theorem

      |- ∀i j k.
           k ≠ 0 ∧ ((i % k = 0) ∨ (j % k = 0)) ⇒
           ((i + j) / k = i / k + j / k)

   [INT_ADD_LID]  Theorem

      |- ∀x. 0 + x = x

   [INT_ADD_LID_UNIQ]  Theorem

      |- ∀x y. (x + y = y) ⇔ (x = 0)

   [INT_ADD_LINV]  Theorem

      |- ∀x. -x + x = 0

   [INT_ADD_REDUCE]  Theorem

      |- ∀p n m.
           (0 + p = p) ∧ (p + 0 = p) ∧ (-0 = 0) ∧ (--p = p) ∧
           (&NUMERAL n + &NUMERAL m = &NUMERAL (numeral$iZ (n + m))) ∧
           (&NUMERAL n + -&NUMERAL m =
            if m ≤ n then &NUMERAL (n − m) else -&NUMERAL (m − n)) ∧
           (-&NUMERAL n + &NUMERAL m =
            if n ≤ m then &NUMERAL (m − n) else -&NUMERAL (n − m)) ∧
           (-&NUMERAL n + -&NUMERAL m = -&NUMERAL (numeral$iZ (n + m)))

   [INT_ADD_RID]  Theorem

      |- ∀x. x + 0 = x

   [INT_ADD_RID_UNIQ]  Theorem

      |- ∀x y. (x + y = x) ⇔ (y = 0)

   [INT_ADD_RINV]  Theorem

      |- ∀x. x + -x = 0

   [INT_ADD_SUB]  Theorem

      |- ∀x y. x + y − x = y

   [INT_ADD_SUB2]  Theorem

      |- ∀x y. x − (x + y) = -y

   [INT_ADD_SYM]  Theorem

      |- ∀y x. x + y = y + x

   [INT_DIFFSQ]  Theorem

      |- ∀x y. (x + y) * (x − y) = x * x − y * y

   [INT_DISCRETE]  Theorem

      |- ∀x y. ¬(x < y ∧ y < x + 1)

   [INT_DIV]  Theorem

      |- ∀n m. m ≠ 0 ⇒ (&n / &m = &(n DIV m))

   [INT_DIVIDES_0]  Theorem

      |- (∀x. x int_divides 0) ∧ ∀x. 0 int_divides x ⇔ (x = 0)

   [INT_DIVIDES_1]  Theorem

      |- ∀x. 1 int_divides x ∧ (x int_divides 1 ⇔ (x = 1) ∨ (x = -1))

   [INT_DIVIDES_LADD]  Theorem

      |- ∀p q r. p int_divides q ⇒ (p int_divides q + r ⇔ p int_divides r)

   [INT_DIVIDES_LMUL]  Theorem

      |- ∀p q r. p int_divides q ⇒ p int_divides q * r

   [INT_DIVIDES_LSUB]  Theorem

      |- ∀p q r. p int_divides q ⇒ (p int_divides q − r ⇔ p int_divides r)

   [INT_DIVIDES_MOD0]  Theorem

      |- ∀p q. p int_divides q ⇔ (q % p = 0) ∧ p ≠ 0 ∨ (p = 0) ∧ (q = 0)

   [INT_DIVIDES_MUL]  Theorem

      |- ∀p q. p int_divides p * q ∧ p int_divides q * p

   [INT_DIVIDES_MUL_BOTH]  Theorem

      |- ∀p q r. p ≠ 0 ⇒ (p * q int_divides p * r ⇔ q int_divides r)

   [INT_DIVIDES_NEG]  Theorem

      |- ∀p q.
           (p int_divides -q ⇔ p int_divides q) ∧
           (-p int_divides q ⇔ p int_divides q)

   [INT_DIVIDES_RADD]  Theorem

      |- ∀p q r. p int_divides q ⇒ (p int_divides r + q ⇔ p int_divides r)

   [INT_DIVIDES_REDUCE]  Theorem

      |- ∀n m p.
           (0 int_divides 0 ⇔ T) ∧ (0 int_divides &NUMERAL (BIT1 n) ⇔ F) ∧
           (0 int_divides &NUMERAL (BIT2 n) ⇔ F) ∧ (p int_divides 0 ⇔ T) ∧
           (&NUMERAL (BIT1 n) int_divides &NUMERAL m ⇔
            (NUMERAL m MOD NUMERAL (BIT1 n) = 0)) ∧
           (&NUMERAL (BIT2 n) int_divides &NUMERAL m ⇔
            (NUMERAL m MOD NUMERAL (BIT2 n) = 0)) ∧
           (&NUMERAL (BIT1 n) int_divides -&NUMERAL m ⇔
            (NUMERAL m MOD NUMERAL (BIT1 n) = 0)) ∧
           (&NUMERAL (BIT2 n) int_divides -&NUMERAL m ⇔
            (NUMERAL m MOD NUMERAL (BIT2 n) = 0)) ∧
           (-&NUMERAL (BIT1 n) int_divides &NUMERAL m ⇔
            (NUMERAL m MOD NUMERAL (BIT1 n) = 0)) ∧
           (-&NUMERAL (BIT2 n) int_divides &NUMERAL m ⇔
            (NUMERAL m MOD NUMERAL (BIT2 n) = 0)) ∧
           (-&NUMERAL (BIT1 n) int_divides -&NUMERAL m ⇔
            (NUMERAL m MOD NUMERAL (BIT1 n) = 0)) ∧
           (-&NUMERAL (BIT2 n) int_divides -&NUMERAL m ⇔
            (NUMERAL m MOD NUMERAL (BIT2 n) = 0))

   [INT_DIVIDES_REFL]  Theorem

      |- ∀x. x int_divides x

   [INT_DIVIDES_RMUL]  Theorem

      |- ∀p q r. p int_divides q ⇒ p int_divides r * q

   [INT_DIVIDES_RSUB]  Theorem

      |- ∀p q r. p int_divides q ⇒ (p int_divides r − q ⇔ p int_divides r)

   [INT_DIVIDES_TRANS]  Theorem

      |- ∀x y z. x int_divides y ∧ y int_divides z ⇒ x int_divides z

   [INT_DIVISION]  Theorem

      |- ∀q.
           q ≠ 0 ⇒
           ∀p.
             (p = p / q * q + p % q) ∧
             if q < 0 then q < p % q ∧ p % q ≤ 0 else 0 ≤ p % q ∧ p % q < q

   [INT_DIV_0]  Theorem

      |- ∀q. q ≠ 0 ⇒ (0 / q = 0)

   [INT_DIV_1]  Theorem

      |- ∀p. p / 1 = p

   [INT_DIV_CALCULATE]  Theorem

      |- (∀n m. m ≠ 0 ⇒ (&n / &m = &(n DIV m))) ∧
         (∀p q. q ≠ 0 ⇒ (p / -q = -p / q)) ∧ (∀m n. (&m = &n) ⇔ (m = n)) ∧
         (∀x. (-x = 0) ⇔ (x = 0)) ∧ ∀x. --x = x

   [INT_DIV_FORALL_P]  Theorem

      |- ∀P x c.
           c ≠ 0 ⇒
           (P (x / c) ⇔
            ∀k r.
              (x = k * c + r) ∧
              (c < 0 ∧ c < r ∧ r ≤ 0 ∨ ¬(c < 0) ∧ 0 ≤ r ∧ r < c) ⇒
              P k)

   [INT_DIV_ID]  Theorem

      |- ∀p. p ≠ 0 ⇒ (p / p = 1)

   [INT_DIV_LMUL]  Theorem

      |- ∀i j. i ≠ 0 ⇒ (i * j / i = j)

   [INT_DIV_MUL_ID]  Theorem

      |- ∀p q. q ≠ 0 ∧ (p % q = 0) ⇒ (p / q * q = p)

   [INT_DIV_NEG]  Theorem

      |- ∀p q. q ≠ 0 ⇒ (p / -q = -p / q)

   [INT_DIV_P]  Theorem

      |- ∀P x c.
           c ≠ 0 ⇒
           (P (x / c) ⇔
            ∃k r.
              (x = k * c + r) ∧
              (c < 0 ∧ c < r ∧ r ≤ 0 ∨ ¬(c < 0) ∧ 0 ≤ r ∧ r < c) ∧ P k)

   [INT_DIV_REDUCE]  Theorem

      |- ∀m n.
           (0 / &NUMERAL (BIT1 n) = 0) ∧ (0 / &NUMERAL (BIT2 n) = 0) ∧
           (&NUMERAL m / &NUMERAL (BIT1 n) =
            &(NUMERAL m DIV NUMERAL (BIT1 n))) ∧
           (&NUMERAL m / &NUMERAL (BIT2 n) =
            &(NUMERAL m DIV NUMERAL (BIT2 n))) ∧
           (-&NUMERAL m / &NUMERAL (BIT1 n) =
            -&(NUMERAL m DIV NUMERAL (BIT1 n)) +
            if NUMERAL m MOD NUMERAL (BIT1 n) = 0 then 0 else -1) ∧
           (-&NUMERAL m / &NUMERAL (BIT2 n) =
            -&(NUMERAL m DIV NUMERAL (BIT2 n)) +
            if NUMERAL m MOD NUMERAL (BIT2 n) = 0 then 0 else -1) ∧
           (&NUMERAL m / -&NUMERAL (BIT1 n) =
            -&(NUMERAL m DIV NUMERAL (BIT1 n)) +
            if NUMERAL m MOD NUMERAL (BIT1 n) = 0 then 0 else -1) ∧
           (&NUMERAL m / -&NUMERAL (BIT2 n) =
            -&(NUMERAL m DIV NUMERAL (BIT2 n)) +
            if NUMERAL m MOD NUMERAL (BIT2 n) = 0 then 0 else -1) ∧
           (-&NUMERAL m / -&NUMERAL (BIT1 n) =
            &(NUMERAL m DIV NUMERAL (BIT1 n))) ∧
           (-&NUMERAL m / -&NUMERAL (BIT2 n) =
            &(NUMERAL m DIV NUMERAL (BIT2 n)))

   [INT_DIV_RMUL]  Theorem

      |- ∀i j. i ≠ 0 ⇒ (j * i / i = j)

   [INT_DIV_UNIQUE]  Theorem

      |- ∀i j q.
           (∃r.
              (i = q * j + r) ∧
              if j < 0 then j < r ∧ r ≤ 0 else 0 ≤ r ∧ r < j) ⇒
           (i / j = q)

   [INT_DOUBLE]  Theorem

      |- ∀x. x + x = 2 * x

   [INT_ENTIRE]  Theorem

      |- ∀x y. (x * y = 0) ⇔ (x = 0) ∨ (y = 0)

   [INT_EQ_CALCULATE]  Theorem

      |- (∀m n. (&m = &n) ⇔ (m = n)) ∧ (∀x y. (-x = -y) ⇔ (x = y)) ∧
         ∀n m.
           ((&n = -&m) ⇔ (n = 0) ∧ (m = 0)) ∧
           ((-&n = &m) ⇔ (n = 0) ∧ (m = 0))

   [INT_EQ_IMP_LE]  Theorem

      |- ∀x y. (x = y) ⇒ x ≤ y

   [INT_EQ_LADD]  Theorem

      |- ∀x y z. (x + y = x + z) ⇔ (y = z)

   [INT_EQ_LMUL]  Theorem

      |- ∀x y z. (x * y = x * z) ⇔ (x = 0) ∨ (y = z)

   [INT_EQ_LMUL2]  Theorem

      |- ∀x y z. x ≠ 0 ⇒ ((y = z) ⇔ (x * y = x * z))

   [INT_EQ_LMUL_IMP]  Theorem

      |- ∀x y z. x ≠ 0 ∧ (x * y = x * z) ⇒ (y = z)

   [INT_EQ_NEG]  Theorem

      |- ∀x y. (-x = -y) ⇔ (x = y)

   [INT_EQ_RADD]  Theorem

      |- ∀x y z. (x + z = y + z) ⇔ (x = y)

   [INT_EQ_REDUCE]  Theorem

      |- ∀n m.
           ((0 = 0) ⇔ T) ∧ ((0 = &NUMERAL (BIT1 n)) ⇔ F) ∧
           ((0 = &NUMERAL (BIT2 n)) ⇔ F) ∧ ((0 = -&NUMERAL (BIT1 n)) ⇔ F) ∧
           ((0 = -&NUMERAL (BIT2 n)) ⇔ F) ∧ ((&NUMERAL (BIT1 n) = 0) ⇔ F) ∧
           ((&NUMERAL (BIT2 n) = 0) ⇔ F) ∧ ((-&NUMERAL (BIT1 n) = 0) ⇔ F) ∧
           ((-&NUMERAL (BIT2 n) = 0) ⇔ F) ∧
           ((&NUMERAL n = &NUMERAL m) ⇔ (n = m)) ∧
           ((&NUMERAL (BIT1 n) = -&NUMERAL m) ⇔ F) ∧
           ((&NUMERAL (BIT2 n) = -&NUMERAL m) ⇔ F) ∧
           ((-&NUMERAL (BIT1 n) = &NUMERAL m) ⇔ F) ∧
           ((-&NUMERAL (BIT2 n) = &NUMERAL m) ⇔ F) ∧
           ((-&NUMERAL n = -&NUMERAL m) ⇔ (n = m))

   [INT_EQ_RMUL]  Theorem

      |- ∀x y z. (x * z = y * z) ⇔ (z = 0) ∨ (x = y)

   [INT_EQ_RMUL_IMP]  Theorem

      |- ∀x y z. z ≠ 0 ∧ (x * z = y * z) ⇒ (x = y)

   [INT_EQ_SUB_LADD]  Theorem

      |- ∀x y z. (x = y − z) ⇔ (x + z = y)

   [INT_EQ_SUB_RADD]  Theorem

      |- ∀x y z. (x − y = z) ⇔ (x = z + y)

   [INT_EXP]  Theorem

      |- ∀n m. &n ** m = &(n ** m)

   [INT_EXP_ADD_EXPONENTS]  Theorem

      |- ∀n m p. p ** n * p ** m = p ** (n + m)

   [INT_EXP_CALCULATE]  Theorem

      |- ∀p n m.
           (p ** 0 = 1) ∧ (&n ** m = &(n ** m)) ∧
           (-&n ** NUMERAL (BIT1 m) = -&NUMERAL (n ** NUMERAL (BIT1 m))) ∧
           (-&n ** NUMERAL (BIT2 m) = &NUMERAL (n ** NUMERAL (BIT2 m)))

   [INT_EXP_EQ0]  Theorem

      |- ∀p n. (p ** n = 0) ⇔ (p = 0) ∧ n ≠ 0

   [INT_EXP_MOD]  Theorem

      |- ∀m n p. n ≤ m ∧ p ≠ 0 ⇒ (p ** m % p ** n = 0)

   [INT_EXP_MULTIPLY_EXPONENTS]  Theorem

      |- ∀m n p. (p ** n) ** m = p ** (n * m)

   [INT_EXP_NEG]  Theorem

      |- ∀n m.
           (EVEN n ⇒ (-&m ** n = &(m ** n))) ∧
           (ODD n ⇒ (-&m ** n = -&(m ** n)))

   [INT_EXP_REDUCE]  Theorem

      |- ∀n m p.
           (p ** 0 = 1) ∧ (&NUMERAL n ** NUMERAL m = &NUMERAL (n ** m)) ∧
           (-&NUMERAL n ** NUMERAL (BIT1 m) = -&NUMERAL (n ** BIT1 m)) ∧
           (-&NUMERAL n ** NUMERAL (BIT2 m) = &NUMERAL (n ** BIT2 m))

   [INT_EXP_SUBTRACT_EXPONENTS]  Theorem

      |- ∀m n p. n ≤ m ∧ p ≠ 0 ⇒ (p ** m / p ** n = p ** (m − n))

   [INT_GE_CALCULATE]  Theorem

      |- ∀x y. x ≥ y ⇔ y ≤ x

   [INT_GE_REDUCE]  Theorem

      |- ∀n m.
           (0 ≥ 0 ⇔ T) ∧ (&NUMERAL n ≥ 0 ⇔ T) ∧
           (-&NUMERAL (BIT1 n) ≥ 0 ⇔ F) ∧ (-&NUMERAL (BIT2 n) ≥ 0 ⇔ F) ∧
           (0 ≥ &NUMERAL (BIT1 n) ⇔ F) ∧ (0 ≥ &NUMERAL (BIT2 n) ⇔ F) ∧
           (0 ≥ -&NUMERAL (BIT1 n) ⇔ T) ∧ (0 ≥ -&NUMERAL (BIT2 n) ⇔ T) ∧
           (&NUMERAL m ≥ &NUMERAL n ⇔ n ≤ m) ∧
           (-&NUMERAL (BIT1 m) ≥ &NUMERAL n ⇔ F) ∧
           (-&NUMERAL (BIT2 m) ≥ &NUMERAL n ⇔ F) ∧
           (&NUMERAL m ≥ -&NUMERAL n ⇔ T) ∧
           (-&NUMERAL m ≥ -&NUMERAL n ⇔ m ≤ n)

   [INT_GT_CALCULATE]  Theorem

      |- ∀x y. x > y ⇔ y < x

   [INT_GT_REDUCE]  Theorem

      |- ∀n m.
           (&NUMERAL (BIT1 n) > 0 ⇔ T) ∧ (&NUMERAL (BIT2 n) > 0 ⇔ T) ∧
           (0 > 0 ⇔ F) ∧ (-&NUMERAL n > 0 ⇔ F) ∧ (0 > &NUMERAL n ⇔ F) ∧
           (0 > -&NUMERAL (BIT1 n) ⇔ T) ∧ (0 > -&NUMERAL (BIT2 n) ⇔ T) ∧
           (&NUMERAL m > &NUMERAL n ⇔ n < m) ∧
           (&NUMERAL m > -&NUMERAL (BIT1 n) ⇔ T) ∧
           (&NUMERAL m > -&NUMERAL (BIT2 n) ⇔ T) ∧
           (-&NUMERAL m > &NUMERAL n ⇔ F) ∧
           (-&NUMERAL m > -&NUMERAL n ⇔ m < n)

   [INT_INJ]  Theorem

      |- ∀m n. (&m = &n) ⇔ (m = n)

   [INT_LDISTRIB]  Theorem

      |- ∀z y x. x * (y + z) = x * y + x * z

   [INT_LE]  Theorem

      |- ∀m n. &m ≤ &n ⇔ m ≤ n

   [INT_LESS_MOD]  Theorem

      |- ∀i j. 0 ≤ i ∧ i < j ⇒ (i % j = i)

   [INT_LET_ADD]  Theorem

      |- ∀x y. 0 ≤ x ∧ 0 < y ⇒ 0 < x + y

   [INT_LET_ADD2]  Theorem

      |- ∀w x y z. w ≤ x ∧ y < z ⇒ w + y < x + z

   [INT_LET_ANTISYM]  Theorem

      |- ∀x y. ¬(x < y ∧ y ≤ x)

   [INT_LET_TOTAL]  Theorem

      |- ∀x y. x ≤ y ∨ y < x

   [INT_LET_TRANS]  Theorem

      |- ∀x y z. x ≤ y ∧ y < z ⇒ x < z

   [INT_LE_01]  Theorem

      |- 0 ≤ 1

   [INT_LE_ADD]  Theorem

      |- ∀x y. 0 ≤ x ∧ 0 ≤ y ⇒ 0 ≤ x + y

   [INT_LE_ADD2]  Theorem

      |- ∀w x y z. w ≤ x ∧ y ≤ z ⇒ w + y ≤ x + z

   [INT_LE_ADDL]  Theorem

      |- ∀x y. y ≤ x + y ⇔ 0 ≤ x

   [INT_LE_ADDR]  Theorem

      |- ∀x y. x ≤ x + y ⇔ 0 ≤ y

   [INT_LE_ANTISYM]  Theorem

      |- ∀x y. x ≤ y ∧ y ≤ x ⇔ (x = y)

   [INT_LE_CALCULATE]  Theorem

      |- ∀x y. x ≤ y ⇔ x < y ∨ (x = y)

   [INT_LE_DOUBLE]  Theorem

      |- ∀x. 0 ≤ x + x ⇔ 0 ≤ x

   [INT_LE_LADD]  Theorem

      |- ∀x y z. x + y ≤ x + z ⇔ y ≤ z

   [INT_LE_LT]  Theorem

      |- ∀x y. x ≤ y ⇔ x < y ∨ (x = y)

   [INT_LE_LT1]  Theorem

      |- x ≤ y ⇔ x < y + 1

   [INT_LE_MONO]  Theorem

      |- ∀x y z. 0 < x ⇒ (x * y ≤ x * z ⇔ y ≤ z)

   [INT_LE_MUL]  Theorem

      |- ∀x y. 0 ≤ x ∧ 0 ≤ y ⇒ 0 ≤ x * y

   [INT_LE_NEG]  Theorem

      |- ∀x y. -x ≤ -y ⇔ y ≤ x

   [INT_LE_NEGL]  Theorem

      |- ∀x. -x ≤ x ⇔ 0 ≤ x

   [INT_LE_NEGR]  Theorem

      |- ∀x. x ≤ -x ⇔ x ≤ 0

   [INT_LE_NEGTOTAL]  Theorem

      |- ∀x. 0 ≤ x ∨ 0 ≤ -x

   [INT_LE_RADD]  Theorem

      |- ∀x y z. x + z ≤ y + z ⇔ x ≤ y

   [INT_LE_REDUCE]  Theorem

      |- ∀n m.
           (0 ≤ 0 ⇔ T) ∧ (0 ≤ &NUMERAL n ⇔ T) ∧
           (0 ≤ -&NUMERAL (BIT1 n) ⇔ F) ∧ (0 ≤ -&NUMERAL (BIT2 n) ⇔ F) ∧
           (&NUMERAL (BIT1 n) ≤ 0 ⇔ F) ∧ (&NUMERAL (BIT2 n) ≤ 0 ⇔ F) ∧
           (-&NUMERAL (BIT1 n) ≤ 0 ⇔ T) ∧ (-&NUMERAL (BIT2 n) ≤ 0 ⇔ T) ∧
           (&NUMERAL n ≤ &NUMERAL m ⇔ n ≤ m) ∧
           (&NUMERAL n ≤ -&NUMERAL (BIT1 m) ⇔ F) ∧
           (&NUMERAL n ≤ -&NUMERAL (BIT2 m) ⇔ F) ∧
           (-&NUMERAL n ≤ &NUMERAL m ⇔ T) ∧
           (-&NUMERAL n ≤ -&NUMERAL m ⇔ m ≤ n)

   [INT_LE_REFL]  Theorem

      |- ∀x. x ≤ x

   [INT_LE_SQUARE]  Theorem

      |- ∀x. 0 ≤ x * x

   [INT_LE_SUB_LADD]  Theorem

      |- ∀x y z. x ≤ y − z ⇔ x + z ≤ y

   [INT_LE_SUB_RADD]  Theorem

      |- ∀x y z. x − y ≤ z ⇔ x ≤ z + y

   [INT_LE_TOTAL]  Theorem

      |- ∀x y. x ≤ y ∨ y ≤ x

   [INT_LE_TRANS]  Theorem

      |- ∀x y z. x ≤ y ∧ y ≤ z ⇒ x ≤ z

   [INT_LNEG_UNIQ]  Theorem

      |- ∀x y. (x + y = 0) ⇔ (x = -y)

   [INT_LT]  Theorem

      |- ∀m n. &m < &n ⇔ m < n

   [INT_LTE_ADD]  Theorem

      |- ∀x y. 0 < x ∧ 0 ≤ y ⇒ 0 < x + y

   [INT_LTE_ADD2]  Theorem

      |- ∀w x y z. w < x ∧ y ≤ z ⇒ w + y < x + z

   [INT_LTE_ANTSYM]  Theorem

      |- ∀x y. ¬(x ≤ y ∧ y < x)

   [INT_LTE_TOTAL]  Theorem

      |- ∀x y. x < y ∨ y ≤ x

   [INT_LTE_TRANS]  Theorem

      |- ∀x y z. x < y ∧ y ≤ z ⇒ x < z

   [INT_LT_01]  Theorem

      |- 0 < 1

   [INT_LT_ADD]  Theorem

      |- ∀x y. 0 < x ∧ 0 < y ⇒ 0 < x + y

   [INT_LT_ADD1]  Theorem

      |- ∀x y. x ≤ y ⇒ x < y + 1

   [INT_LT_ADD2]  Theorem

      |- ∀w x y z. w < x ∧ y < z ⇒ w + y < x + z

   [INT_LT_ADDL]  Theorem

      |- ∀x y. y < x + y ⇔ 0 < x

   [INT_LT_ADDNEG]  Theorem

      |- ∀x y z. y < x + -z ⇔ y + z < x

   [INT_LT_ADDNEG2]  Theorem

      |- ∀x y z. x + -y < z ⇔ x < z + y

   [INT_LT_ADDR]  Theorem

      |- ∀x y. x < x + y ⇔ 0 < y

   [INT_LT_ADD_SUB]  Theorem

      |- ∀x y z. x + y < z ⇔ x < z − y

   [INT_LT_ANTISYM]  Theorem

      |- ∀x y. ¬(x < y ∧ y < x)

   [INT_LT_CALCULATE]  Theorem

      |- ∀n m.
           (&n < &m ⇔ n < m) ∧ (-&n < -&m ⇔ m < n) ∧
           (-&n < &m ⇔ n ≠ 0 ∨ m ≠ 0) ∧ (&n < -&m ⇔ F)

   [INT_LT_GT]  Theorem

      |- ∀x y. x < y ⇒ ¬(y < x)

   [INT_LT_IMP_LE]  Theorem

      |- ∀x y. x < y ⇒ x ≤ y

   [INT_LT_IMP_NE]  Theorem

      |- ∀x y. x < y ⇒ x ≠ y

   [INT_LT_LADD]  Theorem

      |- ∀x y z. x + y < x + z ⇔ y < z

   [INT_LT_LADD_IMP]  Theorem

      |- ∀x y z. y < z ⇒ x + y < x + z

   [INT_LT_LE]  Theorem

      |- ∀x y. x < y ⇔ x ≤ y ∧ x ≠ y

   [INT_LT_LE1]  Theorem

      |- x < y ⇔ x + 1 ≤ y

   [INT_LT_MONO]  Theorem

      |- ∀x y z. 0 < x ⇒ (x * y < x * z ⇔ y < z)

   [INT_LT_MUL]  Theorem

      |- ∀x y. int_0 < x ∧ int_0 < y ⇒ int_0 < x * y

   [INT_LT_MUL2]  Theorem

      |- ∀x1 x2 y1 y2.
           0 ≤ x1 ∧ 0 ≤ y1 ∧ x1 < x2 ∧ y1 < y2 ⇒ x1 * y1 < x2 * y2

   [INT_LT_NEG]  Theorem

      |- ∀x y. -x < -y ⇔ y < x

   [INT_LT_NEGTOTAL]  Theorem

      |- ∀x. (x = 0) ∨ 0 < x ∨ 0 < -x

   [INT_LT_NZ]  Theorem

      |- ∀n. &n ≠ 0 ⇔ 0 < &n

   [INT_LT_RADD]  Theorem

      |- ∀x y z. x + z < y + z ⇔ x < y

   [INT_LT_REDUCE]  Theorem

      |- ∀n m.
           (0 < &NUMERAL (BIT1 n) ⇔ T) ∧ (0 < &NUMERAL (BIT2 n) ⇔ T) ∧
           (0 < 0 ⇔ F) ∧ (0 < -&NUMERAL n ⇔ F) ∧ (&NUMERAL n < 0 ⇔ F) ∧
           (-&NUMERAL (BIT1 n) < 0 ⇔ T) ∧ (-&NUMERAL (BIT2 n) < 0 ⇔ T) ∧
           (&NUMERAL n < &NUMERAL m ⇔ n < m) ∧
           (-&NUMERAL (BIT1 n) < &NUMERAL m ⇔ T) ∧
           (-&NUMERAL (BIT2 n) < &NUMERAL m ⇔ T) ∧
           (&NUMERAL n < -&NUMERAL m ⇔ F) ∧
           (-&NUMERAL n < -&NUMERAL m ⇔ m < n)

   [INT_LT_REFL]  Theorem

      |- ∀x. ¬(x < x)

   [INT_LT_SUB_LADD]  Theorem

      |- ∀x y z. x < y − z ⇔ x + z < y

   [INT_LT_SUB_RADD]  Theorem

      |- ∀x y z. x − y < z ⇔ x < z + y

   [INT_LT_TOTAL]  Theorem

      |- ∀x y. (x = y) ∨ x < y ∨ y < x

   [INT_LT_TRANS]  Theorem

      |- ∀x y z. x < y ∧ y < z ⇒ x < z

   [INT_MAX_LT]  Theorem

      |- ∀x y z. int_max x y < z ⇒ x < z ∧ y < z

   [INT_MAX_NUM]  Theorem

      |- ∀m n. int_max (&m) (&n) = &MAX m n

   [INT_MIN_LT]  Theorem

      |- ∀x y z. x < int_min y z ⇒ x < y ∧ x < z

   [INT_MIN_NUM]  Theorem

      |- ∀m n. int_min (&m) (&n) = &MIN m n

   [INT_MOD]  Theorem

      |- ∀n m. m ≠ 0 ⇒ (&n % &m = &(n MOD m))

   [INT_MOD0]  Theorem

      |- ∀p. p ≠ 0 ⇒ (0 % p = 0)

   [INT_MOD_1]  Theorem

      |- ∀i. i % 1 = 0

   [INT_MOD_ADD_MULTIPLES]  Theorem

      |- k ≠ 0 ⇒ ((q * k + r) % k = r % k)

   [INT_MOD_BOUNDS]  Theorem

      |- ∀p q.
           q ≠ 0 ⇒
           if q < 0 then q < p % q ∧ p % q ≤ 0 else 0 ≤ p % q ∧ p % q < q

   [INT_MOD_CALCULATE]  Theorem

      |- (∀n m. m ≠ 0 ⇒ (&n % &m = &(n MOD m))) ∧
         (∀p q. q ≠ 0 ⇒ (p % -q = -(-p % q))) ∧ (∀x. --x = x) ∧
         (∀m n. (&m = &n) ⇔ (m = n)) ∧ ∀x. (-x = 0) ⇔ (x = 0)

   [INT_MOD_COMMON_FACTOR]  Theorem

      |- ∀p. p ≠ 0 ⇒ ∀q. (q * p) % p = 0

   [INT_MOD_EQ0]  Theorem

      |- ∀q. q ≠ 0 ⇒ ∀p. (p % q = 0) ⇔ ∃k. p = k * q

   [INT_MOD_FORALL_P]  Theorem

      |- ∀P x c.
           c ≠ 0 ⇒
           (P (x % c) ⇔
            ∀q r.
              (x = q * c + r) ∧
              (c < 0 ∧ c < r ∧ r ≤ 0 ∨ ¬(c < 0) ∧ 0 ≤ r ∧ r < c) ⇒
              P r)

   [INT_MOD_ID]  Theorem

      |- ∀i. i ≠ 0 ⇒ (i % i = 0)

   [INT_MOD_MINUS1]  Theorem

      |- ∀n. 0 < n ⇒ (-1 % n = n − 1)

   [INT_MOD_MOD]  Theorem

      |- k ≠ 0 ⇒ (j % k % k = j % k)

   [INT_MOD_NEG]  Theorem

      |- ∀p q. q ≠ 0 ⇒ (p % -q = -(-p % q))

   [INT_MOD_NEG_NUMERATOR]  Theorem

      |- k ≠ 0 ⇒ (-x % k = (k − x) % k)

   [INT_MOD_P]  Theorem

      |- ∀P x c.
           c ≠ 0 ⇒
           (P (x % c) ⇔
            ∃k r.
              (x = k * c + r) ∧
              (c < 0 ∧ c < r ∧ r ≤ 0 ∨ ¬(c < 0) ∧ 0 ≤ r ∧ r < c) ∧ P r)

   [INT_MOD_PLUS]  Theorem

      |- k ≠ 0 ⇒ ((i % k + j % k) % k = (i + j) % k)

   [INT_MOD_REDUCE]  Theorem

      |- ∀m n.
           (0 % &NUMERAL (BIT1 n) = 0) ∧ (0 % &NUMERAL (BIT2 n) = 0) ∧
           (&NUMERAL m % &NUMERAL (BIT1 n) =
            &(NUMERAL m MOD NUMERAL (BIT1 n))) ∧
           (&NUMERAL m % &NUMERAL (BIT2 n) =
            &(NUMERAL m MOD NUMERAL (BIT2 n))) ∧
           (x % &NUMERAL (BIT1 n) =
            x − x / &NUMERAL (BIT1 n) * &NUMERAL (BIT1 n)) ∧
           (x % &NUMERAL (BIT2 n) =
            x − x / &NUMERAL (BIT2 n) * &NUMERAL (BIT2 n))

   [INT_MOD_SUB]  Theorem

      |- k ≠ 0 ⇒ ((i % k − j % k) % k = (i − j) % k)

   [INT_MOD_UNIQUE]  Theorem

      |- ∀i j m.
           (∃q.
              (i = q * j + m) ∧
              if j < 0 then j < m ∧ m ≤ 0 else 0 ≤ m ∧ m < j) ⇒
           (i % j = m)

   [INT_MUL]  Theorem

      |- ∀m n. &m * &n = &(m * n)

   [INT_MUL_ASSOC]  Theorem

      |- ∀z y x. x * (y * z) = x * y * z

   [INT_MUL_CALCULATE]  Theorem

      |- (∀m n. &m * &n = &(m * n)) ∧ (∀x y. -x * y = -(x * y)) ∧
         (∀x y. x * -y = -(x * y)) ∧ ∀x. --x = x

   [INT_MUL_COMM]  Theorem

      |- ∀y x. x * y = y * x

   [INT_MUL_DIV]  Theorem

      |- ∀p q k. q ≠ 0 ∧ (p % q = 0) ⇒ (k * p / q = k * (p / q))

   [INT_MUL_EQ_1]  Theorem

      |- ∀x y. (x * y = 1) ⇔ (x = 1) ∧ (y = 1) ∨ (x = -1) ∧ (y = -1)

   [INT_MUL_LID]  Theorem

      |- ∀x. 1 * x = x

   [INT_MUL_LZERO]  Theorem

      |- ∀x. 0 * x = 0

   [INT_MUL_QUOT]  Theorem

      |- ∀p q k. q ≠ 0 ∧ (p rem q = 0) ⇒ (k * p quot q = k * (p quot q))

   [INT_MUL_REDUCE]  Theorem

      |- ∀m n p.
           (p * 0 = 0) ∧ (0 * p = 0) ∧
           (&NUMERAL m * &NUMERAL n = &NUMERAL (m * n)) ∧
           (-&NUMERAL m * &NUMERAL n = -&NUMERAL (m * n)) ∧
           (&NUMERAL m * -&NUMERAL n = -&NUMERAL (m * n)) ∧
           (-&NUMERAL m * -&NUMERAL n = &NUMERAL (m * n))

   [INT_MUL_RID]  Theorem

      |- ∀x. x * 1 = x

   [INT_MUL_RZERO]  Theorem

      |- ∀x. x * 0 = 0

   [INT_MUL_SIGN_CASES]  Theorem

      |- ∀p q.
           (0 < p * q ⇔ 0 < p ∧ 0 < q ∨ p < 0 ∧ q < 0) ∧
           (p * q < 0 ⇔ 0 < p ∧ q < 0 ∨ p < 0 ∧ 0 < q)

   [INT_MUL_SYM]  Theorem

      |- ∀y x. x * y = y * x

   [INT_NEGNEG]  Theorem

      |- ∀x. --x = x

   [INT_NEG_0]  Theorem

      |- -0 = 0

   [INT_NEG_ADD]  Theorem

      |- ∀x y. -(x + y) = -x + -y

   [INT_NEG_EQ]  Theorem

      |- ∀x y. (-x = y) ⇔ (x = -y)

   [INT_NEG_EQ0]  Theorem

      |- ∀x. (-x = 0) ⇔ (x = 0)

   [INT_NEG_GE0]  Theorem

      |- ∀x. 0 ≤ -x ⇔ x ≤ 0

   [INT_NEG_GT0]  Theorem

      |- ∀x. 0 < -x ⇔ x < 0

   [INT_NEG_LE0]  Theorem

      |- ∀x. -x ≤ 0 ⇔ 0 ≤ x

   [INT_NEG_LMUL]  Theorem

      |- ∀x y. -(x * y) = -x * y

   [INT_NEG_LT0]  Theorem

      |- ∀x. -x < 0 ⇔ 0 < x

   [INT_NEG_MINUS1]  Theorem

      |- ∀x. -x = -1 * x

   [INT_NEG_MUL2]  Theorem

      |- ∀x y. -x * -y = x * y

   [INT_NEG_RMUL]  Theorem

      |- ∀x y. -(x * y) = x * -y

   [INT_NEG_SAME_EQ]  Theorem

      |- ∀p. (p = -p) ⇔ (p = 0)

   [INT_NEG_SUB]  Theorem

      |- ∀x y. -(x − y) = y − x

   [INT_NOT_LE]  Theorem

      |- ∀x y. ¬(x ≤ y) ⇔ y < x

   [INT_NOT_LT]  Theorem

      |- ∀x y. ¬(x < y) ⇔ y ≤ x

   [INT_NUM_CASES]  Theorem

      |- ∀p. (∃n. (p = &n) ∧ n ≠ 0) ∨ (∃n. (p = -&n) ∧ n ≠ 0) ∨ (p = 0)

   [INT_NZ_IMP_LT]  Theorem

      |- ∀n. n ≠ 0 ⇒ 0 < &n

   [INT_OF_NUM]  Theorem

      |- ∀i. (&Num i = i) ⇔ 0 ≤ i

   [INT_POASQ]  Theorem

      |- ∀x. 0 < x * x ⇔ x ≠ 0

   [INT_POS]  Theorem

      |- ∀n. 0 ≤ &n

   [INT_POS_NZ]  Theorem

      |- ∀x. 0 < x ⇒ x ≠ 0

   [INT_QUOT]  Theorem

      |- ∀p q. q ≠ 0 ⇒ (&p quot &q = &(p DIV q))

   [INT_QUOT_0]  Theorem

      |- ∀q. q ≠ 0 ⇒ (0 quot q = 0)

   [INT_QUOT_1]  Theorem

      |- ∀p. p quot 1 = p

   [INT_QUOT_CALCULATE]  Theorem

      |- (∀p q. q ≠ 0 ⇒ (&p quot &q = &(p DIV q))) ∧
         (∀p q.
            q ≠ 0 ⇒
            (-p quot q = -(p quot q)) ∧ (p quot -q = -(p quot q))) ∧
         (∀m n. (&m = &n) ⇔ (m = n)) ∧ (∀x. (-x = 0) ⇔ (x = 0)) ∧
         ∀x. --x = x

   [INT_QUOT_ID]  Theorem

      |- ∀p. p ≠ 0 ⇒ (p quot p = 1)

   [INT_QUOT_NEG]  Theorem

      |- ∀p q.
           q ≠ 0 ⇒ (-p quot q = -(p quot q)) ∧ (p quot -q = -(p quot q))

   [INT_QUOT_REDUCE]  Theorem

      |- ∀m n.
           (0 quot &NUMERAL (BIT1 n) = 0) ∧
           (0 quot &NUMERAL (BIT2 n) = 0) ∧
           (&NUMERAL m quot &NUMERAL (BIT1 n) =
            &(NUMERAL m DIV NUMERAL (BIT1 n))) ∧
           (&NUMERAL m quot &NUMERAL (BIT2 n) =
            &(NUMERAL m DIV NUMERAL (BIT2 n))) ∧
           (-&NUMERAL m quot &NUMERAL (BIT1 n) =
            -&(NUMERAL m DIV NUMERAL (BIT1 n))) ∧
           (-&NUMERAL m quot &NUMERAL (BIT2 n) =
            -&(NUMERAL m DIV NUMERAL (BIT2 n))) ∧
           (&NUMERAL m quot -&NUMERAL (BIT1 n) =
            -&(NUMERAL m DIV NUMERAL (BIT1 n))) ∧
           (&NUMERAL m quot -&NUMERAL (BIT2 n) =
            -&(NUMERAL m DIV NUMERAL (BIT2 n))) ∧
           (-&NUMERAL m quot -&NUMERAL (BIT1 n) =
            &(NUMERAL m DIV NUMERAL (BIT1 n))) ∧
           (-&NUMERAL m quot -&NUMERAL (BIT2 n) =
            &(NUMERAL m DIV NUMERAL (BIT2 n)))

   [INT_QUOT_UNIQUE]  Theorem

      |- ∀p q k.
           (∃r.
              (p = k * q + r) ∧ (if 0 < p then 0 ≤ r else r ≤ 0) ∧
              ABS r < ABS q) ⇒
           (p quot q = k)

   [INT_RDISTRIB]  Theorem

      |- ∀x y z. (x + y) * z = x * z + y * z

   [INT_REM]  Theorem

      |- ∀p q. q ≠ 0 ⇒ (&p rem &q = &(p MOD q))

   [INT_REM0]  Theorem

      |- ∀q. q ≠ 0 ⇒ (0 rem q = 0)

   [INT_REMQUOT]  Theorem

      |- ∀q.
           q ≠ 0 ⇒
           ∀p.
             (p = p quot q * q + p rem q) ∧
             (if 0 < p then 0 ≤ p rem q else p rem q ≤ 0) ∧
             ABS (p rem q) < ABS q

   [INT_REM_CALCULATE]  Theorem

      |- (∀p q. q ≠ 0 ⇒ (&p rem &q = &(p MOD q))) ∧
         (∀p q. q ≠ 0 ⇒ (-p rem q = -(p rem q)) ∧ (p rem -q = p rem q)) ∧
         (∀x. --x = x) ∧ (∀m n. (&m = &n) ⇔ (m = n)) ∧
         ∀x. (-x = 0) ⇔ (x = 0)

   [INT_REM_COMMON_FACTOR]  Theorem

      |- ∀p. p ≠ 0 ⇒ ∀q. (q * p) rem p = 0

   [INT_REM_EQ0]  Theorem

      |- ∀q. q ≠ 0 ⇒ ∀p. (p rem q = 0) ⇔ ∃k. p = k * q

   [INT_REM_EQ_MOD]  Theorem

      |- ∀i n.
           0 < n ⇒ (i rem n = if i < 0 then (i − 1) % n − n + 1 else i % n)

   [INT_REM_ID]  Theorem

      |- ∀p. p ≠ 0 ⇒ (p rem p = 0)

   [INT_REM_NEG]  Theorem

      |- ∀p q. q ≠ 0 ⇒ (-p rem q = -(p rem q)) ∧ (p rem -q = p rem q)

   [INT_REM_REDUCE]  Theorem

      |- ∀m n.
           (0 rem &NUMERAL (BIT1 n) = 0) ∧ (0 rem &NUMERAL (BIT2 n) = 0) ∧
           (&NUMERAL m rem &NUMERAL (BIT1 n) =
            &(NUMERAL m MOD NUMERAL (BIT1 n))) ∧
           (&NUMERAL m rem &NUMERAL (BIT2 n) =
            &(NUMERAL m MOD NUMERAL (BIT2 n))) ∧
           (-&NUMERAL m rem &NUMERAL (BIT1 n) =
            -&(NUMERAL m MOD NUMERAL (BIT1 n))) ∧
           (-&NUMERAL m rem &NUMERAL (BIT2 n) =
            -&(NUMERAL m MOD NUMERAL (BIT2 n))) ∧
           (&NUMERAL m rem -&NUMERAL (BIT1 n) =
            &(NUMERAL m MOD NUMERAL (BIT1 n))) ∧
           (&NUMERAL m rem -&NUMERAL (BIT2 n) =
            &(NUMERAL m MOD NUMERAL (BIT2 n))) ∧
           (-&NUMERAL m rem -&NUMERAL (BIT1 n) =
            -&(NUMERAL m MOD NUMERAL (BIT1 n))) ∧
           (-&NUMERAL m rem -&NUMERAL (BIT2 n) =
            -&(NUMERAL m MOD NUMERAL (BIT2 n)))

   [INT_REM_UNIQUE]  Theorem

      |- ∀p q r.
           ABS r < ABS q ∧ (if 0 < p then 0 ≤ r else r ≤ 0) ∧
           (∃k. p = k * q + r) ⇒
           (p rem q = r)

   [INT_RNEG_UNIQ]  Theorem

      |- ∀x y. (x + y = 0) ⇔ (y = -x)

   [INT_SUB]  Theorem

      |- ∀n m. m ≤ n ⇒ (&n − &m = &(n − m))

   [INT_SUB_0]  Theorem

      |- ∀x y. (x − y = 0) ⇔ (x = y)

   [INT_SUB_ADD]  Theorem

      |- ∀x y. x − y + y = x

   [INT_SUB_ADD2]  Theorem

      |- ∀x y. y + (x − y) = x

   [INT_SUB_CALCULATE]  Theorem

      |- ∀x y. x − y = x + -y

   [INT_SUB_LDISTRIB]  Theorem

      |- ∀x y z. x * (y − z) = x * y − x * z

   [INT_SUB_LE]  Theorem

      |- ∀x y. 0 ≤ x − y ⇔ y ≤ x

   [INT_SUB_LNEG]  Theorem

      |- ∀x y. -x − y = -(x + y)

   [INT_SUB_LT]  Theorem

      |- ∀x y. 0 < x − y ⇔ y < x

   [INT_SUB_LZERO]  Theorem

      |- ∀x. 0 − x = -x

   [INT_SUB_NEG2]  Theorem

      |- ∀x y. -x − -y = y − x

   [INT_SUB_RDISTRIB]  Theorem

      |- ∀x y z. (x − y) * z = x * z − y * z

   [INT_SUB_REDUCE]  Theorem

      |- ∀m n p.
           (p − 0 = p) ∧ (0 − p = -p) ∧
           (&NUMERAL m − &NUMERAL n = &NUMERAL m + -&NUMERAL n) ∧
           (-&NUMERAL m − &NUMERAL n = -&NUMERAL m + -&NUMERAL n) ∧
           (&NUMERAL m − -&NUMERAL n = &NUMERAL m + &NUMERAL n) ∧
           (-&NUMERAL m − -&NUMERAL n = -&NUMERAL m + &NUMERAL n)

   [INT_SUB_REFL]  Theorem

      |- ∀x. x − x = 0

   [INT_SUB_RNEG]  Theorem

      |- ∀x y. x − -y = x + y

   [INT_SUB_RZERO]  Theorem

      |- ∀x. x − 0 = x

   [INT_SUB_SUB]  Theorem

      |- ∀x y. x − y − x = -y

   [INT_SUB_SUB2]  Theorem

      |- ∀x y. x − (x − y) = y

   [INT_SUB_TRIANGLE]  Theorem

      |- ∀a b c. a − b + (b − c) = a − c

   [INT_SUMSQ]  Theorem

      |- ∀x y. (x * x + y * y = 0) ⇔ (x = 0) ∧ (y = 0)

   [LE_NUM_OF_INT]  Theorem

      |- ∀n i. &n ≤ i ⇒ n ≤ Num i

   [LT_ADD2]  Theorem

      |- ∀x1 x2 y1 y2. x1 < y1 ∧ x2 < y2 ⇒ x1 + x2 < y1 + y2

   [LT_ADDL]  Theorem

      |- ∀x y. x < x + y ⇔ 0 < y

   [LT_ADDR]  Theorem

      |- ∀x y. ¬(x + y < x)

   [LT_LADD]  Theorem

      |- ∀x y z. x + y < x + z ⇔ y < z

   [NUM_NEGINT_EXISTS]  Theorem

      |- ∀i. i ≤ 0 ⇒ ∃n. i = -&n

   [NUM_OF_INT]  Theorem

      |- ∀n. Num (&n) = n

   [NUM_POSINT]  Theorem

      |- ∀i. 0 ≤ i ⇒ ∃!n. i = &n

   [NUM_POSINT_EX]  Theorem

      |- ∀t. ¬(t < int_0) ⇒ ∃n. t = &n

   [NUM_POSINT_EXISTS]  Theorem

      |- ∀i. 0 ≤ i ⇒ ∃n. i = &n

   [NUM_POSTINT_EX]  Theorem

      |- ∀t. ¬(t tint_lt tint_0) ⇒ ∃n. t tint_eq tint_of_num n

   [TINT_10]  Theorem

      |- ¬(tint_1 tint_eq tint_0)

   [TINT_ADD_ASSOC]  Theorem

      |- ∀x y z. x tint_add (y tint_add z) = x tint_add y tint_add z

   [TINT_ADD_LID]  Theorem

      |- ∀x. tint_0 tint_add x tint_eq x

   [TINT_ADD_LINV]  Theorem

      |- ∀x. tint_neg x tint_add x tint_eq tint_0

   [TINT_ADD_SYM]  Theorem

      |- ∀x y. x tint_add y = y tint_add x

   [TINT_ADD_WELLDEF]  Theorem

      |- ∀x1 x2 y1 y2.
           x1 tint_eq x2 ∧ y1 tint_eq y2 ⇒
           x1 tint_add y1 tint_eq x2 tint_add y2

   [TINT_ADD_WELLDEFR]  Theorem

      |- ∀x1 x2 y. x1 tint_eq x2 ⇒ x1 tint_add y tint_eq x2 tint_add y

   [TINT_EQ_AP]  Theorem

      |- ∀p q. (p = q) ⇒ p tint_eq q

   [TINT_EQ_EQUIV]  Theorem

      |- ∀p q. p tint_eq q ⇔ ($tint_eq p = $tint_eq q)

   [TINT_EQ_REFL]  Theorem

      |- ∀x. x tint_eq x

   [TINT_EQ_SYM]  Theorem

      |- ∀x y. x tint_eq y ⇔ y tint_eq x

   [TINT_EQ_TRANS]  Theorem

      |- ∀x y z. x tint_eq y ∧ y tint_eq z ⇒ x tint_eq z

   [TINT_INJ]  Theorem

      |- ∀m n. tint_of_num m tint_eq tint_of_num n ⇔ (m = n)

   [TINT_LDISTRIB]  Theorem

      |- ∀x y z.
           x tint_mul (y tint_add z) = x tint_mul y tint_add x tint_mul z

   [TINT_LT_ADD]  Theorem

      |- ∀x y z. y tint_lt z ⇒ x tint_add y tint_lt x tint_add z

   [TINT_LT_MUL]  Theorem

      |- ∀x y.
           tint_0 tint_lt x ∧ tint_0 tint_lt y ⇒
           tint_0 tint_lt x tint_mul y

   [TINT_LT_REFL]  Theorem

      |- ∀x. ¬(x tint_lt x)

   [TINT_LT_TOTAL]  Theorem

      |- ∀x y. x tint_eq y ∨ x tint_lt y ∨ y tint_lt x

   [TINT_LT_TRANS]  Theorem

      |- ∀x y z. x tint_lt y ∧ y tint_lt z ⇒ x tint_lt z

   [TINT_LT_WELLDEF]  Theorem

      |- ∀x1 x2 y1 y2.
           x1 tint_eq x2 ∧ y1 tint_eq y2 ⇒ (x1 tint_lt y1 ⇔ x2 tint_lt y2)

   [TINT_LT_WELLDEFL]  Theorem

      |- ∀x y1 y2. y1 tint_eq y2 ⇒ (x tint_lt y1 ⇔ x tint_lt y2)

   [TINT_LT_WELLDEFR]  Theorem

      |- ∀x1 x2 y. x1 tint_eq x2 ⇒ (x1 tint_lt y ⇔ x2 tint_lt y)

   [TINT_MUL_ASSOC]  Theorem

      |- ∀x y z. x tint_mul (y tint_mul z) = x tint_mul y tint_mul z

   [TINT_MUL_LID]  Theorem

      |- ∀x. tint_1 tint_mul x tint_eq x

   [TINT_MUL_SYM]  Theorem

      |- ∀x y. x tint_mul y = y tint_mul x

   [TINT_MUL_WELLDEF]  Theorem

      |- ∀x1 x2 y1 y2.
           x1 tint_eq x2 ∧ y1 tint_eq y2 ⇒
           x1 tint_mul y1 tint_eq x2 tint_mul y2

   [TINT_MUL_WELLDEFR]  Theorem

      |- ∀x1 x2 y. x1 tint_eq x2 ⇒ x1 tint_mul y tint_eq x2 tint_mul y

   [TINT_NEG_WELLDEF]  Theorem

      |- ∀x1 x2. x1 tint_eq x2 ⇒ tint_neg x1 tint_eq tint_neg x2

   [int_ABS_REP_CLASS]  Theorem

      |- (∀a. int_ABS_CLASS (int_REP_CLASS a) = a) ∧
         ∀c.
           (∃r. r tint_eq r ∧ (c = $tint_eq r)) ⇔
           (int_REP_CLASS (int_ABS_CLASS c) = c)

   [int_QUOTIENT]  Theorem

      |- QUOTIENT $tint_eq int_ABS int_REP

   [int_of_num]  Theorem

      |- (0 = int_0) ∧ ∀n. &SUC n = &n + int_1

   [tint_of_num_eq]  Theorem

      |- ∀n. FST (tint_of_num n) = SND (tint_of_num n) + n


*)
end


Source File Identifier index Theory binding index

HOL 4, Kananaskis-10