Structure intrealTheory
signature intrealTheory =
sig
type thm = Thm.thm
(* Definitions *)
val INT_CEILING_def : thm
val INT_FLOOR_def : thm
val is_int_def : thm
val real_of_int : thm
val intreal_grammars : type_grammar.grammar * term_grammar.grammar
(*
[integer] Parent theory of "intreal"
[real] Parent theory of "intreal"
[INT_CEILING_def] Definition
|- ∀x. clg x = LEAST_INT i. x ≤ real_of_int i
[INT_FLOOR_def] Definition
|- ∀x. flr x = LEAST_INT i. real_of_int (i + 1) > x
[is_int_def] Definition
|- ∀x. is_int x ⇔ (x = real_of_int (flr x))
[real_of_int] Definition
|- ∀i. real_of_int i = if i < 0 then -&Num (-i) else &Num i
*)
end
HOL 4, Kananaskis-10