Structure lebesgueTheory
signature lebesgueTheory =
sig
type thm = Thm.thm
(* Definitions *)
val RADON_F_def : thm
val RADON_F_integrals_def : thm
val finite_space_integral_def : thm
val fn_seq_def : thm
val fn_seq_integral_def : thm
val integrable_def : thm
val integral_def : thm
val max_fn_seq_def : thm
val measure_absolutely_continuous_def : thm
val negative_set_def : thm
val pos_fn_integral_def : thm
val pos_simple_fn_integral_def : thm
val prod_measure3_def : thm
val prod_measure_def : thm
val prod_measure_space3_def : thm
val prod_measure_space_def : thm
val prod_sets3_def : thm
val psfis_def : thm
val psfs_def : thm
val seq_sup_def : thm
val signed_measure_space_def : thm
(* Theorems *)
val EXTREAL_SUP_FUN_SEQ_IMAGE : thm
val EXTREAL_SUP_FUN_SEQ_MONO_IMAGE : thm
val EXTREAL_SUP_SEQ : thm
val IN_psfis : thm
val IN_psfis_eq : thm
val RN_lemma1 : thm
val RN_lemma2 : thm
val Radon_Nikodym : thm
val Radon_Nikodym2 : thm
val finite_POW_prod_measure_reduce : thm
val finite_POW_prod_measure_reduce3 : thm
val finite_prod_measure_space_POW : thm
val finite_prod_measure_space_POW3 : thm
val finite_space_POW_integral_reduce : thm
val finite_space_integral_reduce : thm
val finite_support_integral_reduce : thm
val integrable_add : thm
val integrable_add_lemma : thm
val integrable_add_pos : thm
val integrable_bounded : thm
val integrable_cmul : thm
val integrable_const : thm
val integrable_fn_minus : thm
val integrable_fn_plus : thm
val integrable_indicator : thm
val integrable_infty : thm
val integrable_infty_null : thm
val integrable_not_infty : thm
val integrable_not_infty_alt : thm
val integrable_not_infty_alt2 : thm
val integrable_not_infty_alt3 : thm
val integrable_plus_minus : thm
val integrable_pos : thm
val integrable_sub : thm
val integrable_zero : thm
val integral_add : thm
val integral_add_lemma : thm
val integral_cmul : thm
val integral_cmul_indicator : thm
val integral_indicator : thm
val integral_mono : thm
val integral_mspace : thm
val integral_pos_fn : thm
val integral_sequence : thm
val integral_zero : thm
val lebesgue_monotone_convergence : thm
val lebesgue_monotone_convergence_lemma : thm
val lebesgue_monotone_convergence_subset : thm
val lemma_fn_1 : thm
val lemma_fn_2 : thm
val lemma_fn_3 : thm
val lemma_fn_4 : thm
val lemma_fn_5 : thm
val lemma_fn_in_psfis : thm
val lemma_fn_mono_increasing : thm
val lemma_fn_sup : thm
val lemma_fn_upper_bounded : thm
val lemma_radon_max_in_F : thm
val lemma_radon_seq_conv_sup : thm
val max_fn_seq_def_compute : thm
val max_fn_seq_mono : thm
val measurable_sequence : thm
val measure_space_finite_prod_measure_POW1 : thm
val measure_space_finite_prod_measure_POW2 : thm
val measure_space_finite_prod_measure_POW3 : thm
val pos_fn_integral_add : thm
val pos_fn_integral_cmul : thm
val pos_fn_integral_cmul_indicator : thm
val pos_fn_integral_cmul_infty : thm
val pos_fn_integral_disjoint_sets : thm
val pos_fn_integral_disjoint_sets_sum : thm
val pos_fn_integral_indicator : thm
val pos_fn_integral_mono : thm
val pos_fn_integral_mono_mspace : thm
val pos_fn_integral_mspace : thm
val pos_fn_integral_pos : thm
val pos_fn_integral_pos_simple_fn : thm
val pos_fn_integral_split : thm
val pos_fn_integral_sum : thm
val pos_fn_integral_sum_cmul_indicator : thm
val pos_fn_integral_suminf : thm
val pos_fn_integral_zero : thm
val pos_simple_fn_add : thm
val pos_simple_fn_add_alt : thm
val pos_simple_fn_cmul : thm
val pos_simple_fn_cmul_alt : thm
val pos_simple_fn_indicator : thm
val pos_simple_fn_indicator_alt : thm
val pos_simple_fn_integral_add : thm
val pos_simple_fn_integral_add_alt : thm
val pos_simple_fn_integral_cmul : thm
val pos_simple_fn_integral_cmul_alt : thm
val pos_simple_fn_integral_indicator : thm
val pos_simple_fn_integral_mono : thm
val pos_simple_fn_integral_not_infty : thm
val pos_simple_fn_integral_present : thm
val pos_simple_fn_integral_sub : thm
val pos_simple_fn_integral_sum : thm
val pos_simple_fn_integral_sum_alt : thm
val pos_simple_fn_integral_unique : thm
val pos_simple_fn_integral_zero : thm
val pos_simple_fn_integral_zero_alt : thm
val pos_simple_fn_le : thm
val pos_simple_fn_max : thm
val pos_simple_fn_not_infty : thm
val pos_simple_fn_thm1 : thm
val psfis_add : thm
val psfis_cmul : thm
val psfis_indicator : thm
val psfis_intro : thm
val psfis_mono : thm
val psfis_not_infty : thm
val psfis_pos : thm
val psfis_present : thm
val psfis_sub : thm
val psfis_sum : thm
val psfis_unique : thm
val psfis_zero : thm
val seq_sup_def_compute : thm
val lebesgue_grammars : type_grammar.grammar * term_grammar.grammar
(*
[measure] Parent theory of "lebesgue"
[RADON_F_def] Definition
|- ∀m v.
RADON_F m v =
{f |
f ∈ measurable (m_space m,measurable_sets m) Borel ∧
(∀x. 0 ≤ f x) ∧
∀A.
A ∈ measurable_sets m ⇒
pos_fn_integral m (λx. f x * indicator_fn A x) ≤
Normal (measure v A)}
[RADON_F_integrals_def] Definition
|- ∀m v.
RADON_F_integrals m v =
{r | ∃f. (r = pos_fn_integral m f) ∧ f ∈ RADON_F m v}
[finite_space_integral_def] Definition
|- ∀m f.
finite_space_integral m f =
SIGMA (λr. r * Normal (measure m (PREIMAGE f {r} ∩ m_space m)))
(IMAGE f (m_space m))
[fn_seq_def] Definition
|- ∀m f.
fn_seq m f =
(λn x.
SIGMA
(λk.
&k / 2 pow n *
indicator_fn
{x |
x ∈ m_space m ∧ &k / 2 pow n ≤ f x ∧
f x < (&k + 1) / 2 pow n} x) (count (4 ** n)) +
2 pow n * indicator_fn {x | x ∈ m_space m ∧ 2 pow n ≤ f x} x)
[fn_seq_integral_def] Definition
|- ∀m f.
fn_seq_integral m f =
(λn.
Normal
(SIGMA
(λk.
&k / 2 pow n *
measure m
{x |
x ∈ m_space m ∧ &k / 2 pow n ≤ f x ∧
f x < (&k + 1) / 2 pow n}) (count (4 ** n)) +
2 pow n * measure m {x | x ∈ m_space m ∧ 2 pow n ≤ f x}))
[integrable_def] Definition
|- ∀m f.
integrable m f ⇔
f ∈ measurable (m_space m,measurable_sets m) Borel ∧
pos_fn_integral m (fn_plus f) ≠ PosInf ∧
pos_fn_integral m (fn_minus f) ≠ PosInf
[integral_def] Definition
|- ∀m f.
integral m f =
pos_fn_integral m (fn_plus f) − pos_fn_integral m (fn_minus f)
[max_fn_seq_def] Definition
|- (∀g x. max_fn_seq g 0 x = g 0 x) ∧
∀g n x.
max_fn_seq g (SUC n) x = max (max_fn_seq g n x) (g (SUC n) x)
[measure_absolutely_continuous_def] Definition
|- ∀m v.
measure_absolutely_continuous m v ⇔
∀A.
A ∈ measurable_sets m ∧ (measure v A = 0) ⇒ (measure m A = 0)
[negative_set_def] Definition
|- ∀m A.
negative_set m A ⇔
A ∈ measurable_sets m ∧
∀s. s ∈ measurable_sets m ∧ s ⊆ A ⇒ measure m s ≤ 0
[pos_fn_integral_def] Definition
|- ∀m f.
pos_fn_integral m f =
sup {r | ∃g. r ∈ psfis m g ∧ ∀x. g x ≤ f x}
[pos_simple_fn_integral_def] Definition
|- ∀m s a x.
pos_simple_fn_integral m s a x =
Normal (SIGMA (λi. x i * measure m (a i)) s)
[prod_measure3_def] Definition
|- ∀m0 m1 m2.
prod_measure3 m0 m1 m2 =
prod_measure m0 (prod_measure_space m1 m2)
[prod_measure_def] Definition
|- ∀m0 m1.
prod_measure m0 m1 =
(λa.
real
(integral m0
(λs0. Normal (measure m1 (PREIMAGE (λs1. (s0,s1)) a)))))
[prod_measure_space3_def] Definition
|- ∀m0 m1 m2.
prod_measure_space3 m0 m1 m2 =
(m_space m0 × (m_space m1 × m_space m2),
subsets
(sigma (m_space m0 × (m_space m1 × m_space m2))
(prod_sets3 (measurable_sets m0) (measurable_sets m1)
(measurable_sets m2))),prod_measure3 m0 m1 m2)
[prod_measure_space_def] Definition
|- ∀m0 m1.
prod_measure_space m0 m1 =
(m_space m0 × m_space m1,
subsets
(sigma (m_space m0 × m_space m1)
(prod_sets (measurable_sets m0) (measurable_sets m1))),
prod_measure m0 m1)
[prod_sets3_def] Definition
|- ∀a b c. prod_sets3 a b c = {s × (t × u) | s ∈ a ∧ t ∈ b ∧ u ∈ c}
[psfis_def] Definition
|- ∀m f.
psfis m f =
IMAGE (λ(s,a,x). pos_simple_fn_integral m s a x) (psfs m f)
[psfs_def] Definition
|- ∀m f. psfs m f = {(s,a,x) | pos_simple_fn m f s a x}
[seq_sup_def] Definition
|- (∀P. seq_sup P 0 = @r. r ∈ P ∧ sup P < r + 1) ∧
∀P n.
seq_sup P (SUC n) =
@r.
r ∈ P ∧ sup P < r + Normal ((1 / 2) pow SUC n) ∧
seq_sup P n < r ∧ r < sup P
[signed_measure_space_def] Definition
|- ∀m.
signed_measure_space m ⇔
sigma_algebra (m_space m,measurable_sets m) ∧
countably_additive m
[EXTREAL_SUP_FUN_SEQ_IMAGE] Theorem
|- ∀P P' f.
(∃x. P x) ∧ (∃z. z ≠ PosInf ∧ ∀x. P x ⇒ x ≤ z) ∧
(P = IMAGE f P') ⇒
∃g. (∀n. g n ∈ P') ∧ (sup (IMAGE (λn. f (g n)) 𝕌(:num)) = sup P)
[EXTREAL_SUP_FUN_SEQ_MONO_IMAGE] Theorem
|- ∀P P'.
(∃x. P x) ∧ (∃z. z ≠ PosInf ∧ ∀x. P x ⇒ x ≤ z) ∧
(P = IMAGE f P') ∧
(∀g1 g2. g1 ∈ P' ∧ g2 ∈ P' ∧ (∀x. g1 x ≤ g2 x) ⇒ f g1 ≤ f g2) ∧
(∀g1 g2. g1 ∈ P' ∧ g2 ∈ P' ⇒ (λx. max (g1 x) (g2 x)) ∈ P') ⇒
∃g.
(∀n. g n ∈ P') ∧ (∀x n. g n x ≤ g (SUC n) x) ∧
(sup (IMAGE (λn. f (g n)) 𝕌(:num)) = sup P)
[EXTREAL_SUP_SEQ] Theorem
|- ∀P.
(∃x. P x) ∧ (∃z. z ≠ PosInf ∧ ∀x. P x ⇒ x ≤ z) ⇒
∃x.
(∀n. x n ∈ P) ∧ (∀n. x n ≤ x (SUC n)) ∧
(sup (IMAGE x 𝕌(:num)) = sup P)
[IN_psfis] Theorem
|- ∀m r f.
r ∈ psfis m f ⇒
∃s a x.
pos_simple_fn m f s a x ∧ (r = pos_simple_fn_integral m s a x)
[IN_psfis_eq] Theorem
|- ∀m r f.
r ∈ psfis m f ⇔
∃s a x.
pos_simple_fn m f s a x ∧ (r = pos_simple_fn_integral m s a x)
[RN_lemma1] Theorem
|- ∀m v e.
measure_space m ∧ measure_space v ∧ 0 < e ∧
(m_space v = m_space m) ∧
(measurable_sets v = measurable_sets m) ⇒
∃A.
A ∈ measurable_sets m ∧
measure m (m_space m) − measure v (m_space m) ≤
measure m A − measure v A ∧
∀B.
B ∈ measurable_sets m ∧ B ⊆ A ⇒
-e < measure m B − measure v B
[RN_lemma2] Theorem
|- ∀m v.
measure_space m ∧ measure_space v ∧ (m_space v = m_space m) ∧
(measurable_sets v = measurable_sets m) ⇒
∃A.
A ∈ measurable_sets m ∧
measure m (m_space m) − measure v (m_space m) ≤
measure m A − measure v A ∧
∀B.
B ∈ measurable_sets m ∧ B ⊆ A ⇒
0 ≤ measure m B − measure v B
[Radon_Nikodym] Theorem
|- ∀m v.
measure_space m ∧ measure_space v ∧ (m_space v = m_space m) ∧
(measurable_sets v = measurable_sets m) ∧
measure_absolutely_continuous v m ⇒
∃f.
f ∈ measurable (m_space m,measurable_sets m) Borel ∧
(∀x. 0 ≤ f x) ∧
∀A.
A ∈ measurable_sets m ⇒
(pos_fn_integral m (λx. f x * indicator_fn A x) =
Normal (measure v A))
[Radon_Nikodym2] Theorem
|- ∀m v.
measure_space m ∧ measure_space v ∧ (m_space v = m_space m) ∧
(measurable_sets v = measurable_sets m) ∧
measure_absolutely_continuous v m ⇒
∃f.
f ∈ measurable (m_space m,measurable_sets m) Borel ∧
(∀x. 0 ≤ f x) ∧ (∀x. f x ≠ PosInf) ∧
∀A.
A ∈ measurable_sets m ⇒
(pos_fn_integral m (λx. f x * indicator_fn A x) =
Normal (measure v A))
[finite_POW_prod_measure_reduce] Theorem
|- ∀m0 m1.
measure_space m0 ∧ measure_space m1 ∧ FINITE (m_space m0) ∧
FINITE (m_space m1) ∧ (POW (m_space m0) = measurable_sets m0) ∧
(POW (m_space m1) = measurable_sets m1) ⇒
∀a0 a1.
a0 ∈ measurable_sets m0 ∧ a1 ∈ measurable_sets m1 ⇒
(prod_measure m0 m1 (a0 × a1) = measure m0 a0 * measure m1 a1)
[finite_POW_prod_measure_reduce3] Theorem
|- ∀m0 m1 m2.
measure_space m0 ∧ measure_space m1 ∧ measure_space m2 ∧
FINITE (m_space m0) ∧ FINITE (m_space m1) ∧
FINITE (m_space m2) ∧ (POW (m_space m0) = measurable_sets m0) ∧
(POW (m_space m1) = measurable_sets m1) ∧
(POW (m_space m2) = measurable_sets m2) ⇒
∀a0 a1 a2.
a0 ∈ measurable_sets m0 ∧ a1 ∈ measurable_sets m1 ∧
a2 ∈ measurable_sets m2 ⇒
(prod_measure3 m0 m1 m2 (a0 × (a1 × a2)) =
measure m0 a0 * measure m1 a1 * measure m2 a2)
[finite_prod_measure_space_POW] Theorem
|- ∀s1 s2 u v.
FINITE s1 ∧ FINITE s2 ⇒
(prod_measure_space (s1,POW s1,u) (s2,POW s2,v) =
(s1 × s2,POW (s1 × s2),
prod_measure (s1,POW s1,u) (s2,POW s2,v)))
[finite_prod_measure_space_POW3] Theorem
|- ∀s1 s2 s3 u v w.
FINITE s1 ∧ FINITE s2 ∧ FINITE s3 ⇒
(prod_measure_space3 (s1,POW s1,u) (s2,POW s2,v) (s3,POW s3,w) =
(s1 × (s2 × s3),POW (s1 × (s2 × s3)),
prod_measure3 (s1,POW s1,u) (s2,POW s2,v) (s3,POW s3,w)))
[finite_space_POW_integral_reduce] Theorem
|- ∀m f.
measure_space m ∧ (POW (m_space m) = measurable_sets m) ∧
FINITE (m_space m) ∧
(∀x. x ∈ m_space m ⇒ f x ≠ NegInf ∧ f x ≠ PosInf) ⇒
(integral m f =
SIGMA (λx. f x * Normal (measure m {x})) (m_space m))
[finite_space_integral_reduce] Theorem
|- ∀m f.
measure_space m ∧
f ∈ measurable (m_space m,measurable_sets m) Borel ∧
(∀x. x ∈ m_space m ⇒ f x ≠ NegInf ∧ f x ≠ PosInf) ∧
FINITE (m_space m) ⇒
(integral m f = finite_space_integral m f)
[finite_support_integral_reduce] Theorem
|- ∀m f.
measure_space m ∧
f ∈ measurable (m_space m,measurable_sets m) Borel ∧
(∀x. x ∈ m_space m ⇒ f x ≠ NegInf ∧ f x ≠ PosInf) ∧
FINITE (IMAGE f (m_space m)) ⇒
(integral m f = finite_space_integral m f)
[integrable_add] Theorem
|- ∀m f1 f2.
measure_space m ∧ integrable m f1 ∧ integrable m f2 ⇒
integrable m (λx. f1 x + f2 x)
[integrable_add_lemma] Theorem
|- ∀m f g.
measure_space m ∧ integrable m f ∧ integrable m g ⇒
integrable m (λx. fn_plus f x + fn_plus g x) ∧
integrable m (λx. fn_minus f x + fn_minus g x)
[integrable_add_pos] Theorem
|- ∀m f g.
measure_space m ∧ integrable m f ∧ integrable m g ∧
(∀x. 0 ≤ f x) ∧ (∀x. 0 ≤ g x) ⇒
integrable m (λx. f x + g x)
[integrable_bounded] Theorem
|- ∀m f g.
measure_space m ∧ integrable m f ∧
g ∈ measurable (m_space m,measurable_sets m) Borel ∧
(∀x. abs (g x) ≤ f x) ⇒
integrable m g
[integrable_cmul] Theorem
|- ∀m f c.
measure_space m ∧ integrable m f ⇒
integrable m (λx. Normal c * f x)
[integrable_const] Theorem
|- ∀m c. measure_space m ⇒ integrable m (λx. Normal c)
[integrable_fn_minus] Theorem
|- ∀m f. measure_space m ∧ integrable m f ⇒ integrable m (fn_minus f)
[integrable_fn_plus] Theorem
|- ∀m f. measure_space m ∧ integrable m f ⇒ integrable m (fn_plus f)
[integrable_indicator] Theorem
|- ∀m s.
measure_space m ∧ s ∈ measurable_sets m ⇒
integrable m (indicator_fn s)
[integrable_infty] Theorem
|- ∀m f s.
measure_space m ∧ integrable m f ∧ s ∈ measurable_sets m ∧
(∀x. x ∈ s ⇒ (f x = PosInf)) ⇒
(measure m s = 0)
[integrable_infty_null] Theorem
|- ∀m f.
measure_space m ∧ integrable m f ⇒
null_set m {x | x ∈ m_space m ∧ (f x = PosInf)}
[integrable_not_infty] Theorem
|- ∀m f.
measure_space m ∧ integrable m f ∧ (∀x. 0 ≤ f x) ⇒
∃g.
integrable m g ∧ (∀x. 0 ≤ g x) ∧
(∀x. x ∈ m_space m ⇒ g x ≠ PosInf) ∧
(integral m f = integral m g)
[integrable_not_infty_alt] Theorem
|- ∀m f.
measure_space m ∧ integrable m f ∧ (∀x. 0 ≤ f x) ⇒
integrable m (λx. if f x = PosInf then 0 else f x) ∧
(integral m f =
integral m (λx. if f x = PosInf then 0 else f x))
[integrable_not_infty_alt2] Theorem
|- ∀m f.
measure_space m ∧ integrable m f ∧ (∀x. 0 ≤ f x) ⇒
integrable m (λx. if f x = PosInf then 0 else f x) ∧
(pos_fn_integral m f =
pos_fn_integral m (λx. if f x = PosInf then 0 else f x))
[integrable_not_infty_alt3] Theorem
|- ∀m f.
measure_space m ∧ integrable m f ⇒
integrable m
(λx. if (f x = NegInf) ∨ (f x = PosInf) then 0 else f x) ∧
(integral m f =
integral m
(λx. if (f x = NegInf) ∨ (f x = PosInf) then 0 else f x))
[integrable_plus_minus] Theorem
|- ∀m f.
measure_space m ⇒
(integrable m f ⇔
f ∈ measurable (m_space m,measurable_sets m) Borel ∧
integrable m (fn_plus f) ∧ integrable m (fn_minus f))
[integrable_pos] Theorem
|- ∀m f.
measure_space m ∧ (∀x. 0 ≤ f x) ⇒
(integrable m f ⇔
f ∈ measurable (m_space m,measurable_sets m) Borel ∧
pos_fn_integral m f ≠ PosInf)
[integrable_sub] Theorem
|- ∀m f1 f2.
measure_space m ∧ integrable m f1 ∧ integrable m f2 ⇒
integrable m (λx. f1 x − f2 x)
[integrable_zero] Theorem
|- ∀m c. measure_space m ⇒ integrable m (λx. 0)
[integral_add] Theorem
|- ∀m f g.
measure_space m ∧ integrable m f ∧ integrable m g ⇒
(integral m (λx. f x + g x) = integral m f + integral m g)
[integral_add_lemma] Theorem
|- ∀m f f1 f2.
measure_space m ∧ integrable m f ∧ integrable m f1 ∧
integrable m f2 ∧ (f = (λx. f1 x − f2 x)) ∧ (∀x. 0 ≤ f1 x) ∧
(∀x. 0 ≤ f2 x) ⇒
(integral m f = pos_fn_integral m f1 − pos_fn_integral m f2)
[integral_cmul] Theorem
|- ∀m f c.
measure_space m ∧ integrable m f ⇒
(integral m (λx. Normal c * f x) = Normal c * integral m f)
[integral_cmul_indicator] Theorem
|- ∀m s c.
measure_space m ∧ s ∈ measurable_sets m ⇒
(integral m (λx. Normal c * indicator_fn s x) =
Normal (c * measure m s))
[integral_indicator] Theorem
|- ∀m s.
measure_space m ∧ s ∈ measurable_sets m ⇒
(integral m (indicator_fn s) = Normal (measure m s))
[integral_mono] Theorem
|- ∀m f1 f2.
measure_space m ∧ (∀t. t ∈ m_space m ⇒ f1 t ≤ f2 t) ⇒
integral m f1 ≤ integral m f2
[integral_mspace] Theorem
|- ∀m f.
measure_space m ⇒
(integral m f =
integral m (λx. f x * indicator_fn (m_space m) x))
[integral_pos_fn] Theorem
|- ∀m f.
measure_space m ∧ (∀x. 0 ≤ f x) ⇒
(integral m f = pos_fn_integral m f)
[integral_sequence] Theorem
|- ∀m f.
(∀x. 0 ≤ f x) ∧ measure_space m ∧
f ∈ measurable (m_space m,measurable_sets m) Borel ⇒
(pos_fn_integral m f =
sup (IMAGE (λi. pos_fn_integral m (fn_seq m f i)) 𝕌(:num)))
[integral_zero] Theorem
|- ∀m. measure_space m ⇒ (integral m (λx. 0) = 0)
[lebesgue_monotone_convergence] Theorem
|- ∀m f fi.
measure_space m ∧
(∀i. fi i ∈ measurable (m_space m,measurable_sets m) Borel) ∧
(∀i x. 0 ≤ fi i x) ∧ (∀x. 0 ≤ f x) ∧
(∀x. mono_increasing (λi. fi i x)) ∧
(∀x. x ∈ m_space m ⇒ (sup (IMAGE (λi. fi i x) 𝕌(:num)) = f x)) ⇒
(pos_fn_integral m f =
sup (IMAGE (λi. pos_fn_integral m (fi i)) 𝕌(:num)))
[lebesgue_monotone_convergence_lemma] Theorem
|- ∀m f fi g r'.
measure_space m ∧
(∀i. fi i ∈ measurable (m_space m,measurable_sets m) Borel) ∧
(∀x. mono_increasing (λi. fi i x)) ∧
(∀x. x ∈ m_space m ⇒ (sup (IMAGE (λi. fi i x) 𝕌(:num)) = f x)) ∧
r' ∈ psfis m g ∧ (∀x. g x ≤ f x) ∧ (∀i x. 0 ≤ fi i x) ⇒
r' ≤ sup (IMAGE (λi. pos_fn_integral m (fi i)) 𝕌(:num))
[lebesgue_monotone_convergence_subset] Theorem
|- ∀m f fi A.
measure_space m ∧
(∀i. fi i ∈ measurable (m_space m,measurable_sets m) Borel) ∧
(∀i x. 0 ≤ fi i x) ∧ (∀x. 0 ≤ f x) ∧
(∀x. x ∈ m_space m ⇒ (sup (IMAGE (λi. fi i x) 𝕌(:num)) = f x)) ∧
(∀x. mono_increasing (λi. fi i x)) ∧ A ∈ measurable_sets m ⇒
(pos_fn_integral m (λx. f x * indicator_fn A x) =
sup
(IMAGE
(λi. pos_fn_integral m (λx. fi i x * indicator_fn A x))
𝕌(:num)))
[lemma_fn_1] Theorem
|- ∀m f n x k.
x ∈ m_space m ∧ k ∈ count (4 ** n) ∧ &k / 2 pow n ≤ f x ∧
f x < (&k + 1) / 2 pow n ⇒
(fn_seq m f n x = &k / 2 pow n)
[lemma_fn_2] Theorem
|- ∀m f n x.
x ∈ m_space m ∧ 2 pow n ≤ f x ⇒ (fn_seq m f n x = 2 pow n)
[lemma_fn_3] Theorem
|- ∀m f n x.
x ∈ m_space m ∧ 0 ≤ f x ⇒
2 pow n ≤ f x ∨
∃k.
k ∈ count (4 ** n) ∧ &k / 2 pow n ≤ f x ∧
f x < (&k + 1) / 2 pow n
[lemma_fn_4] Theorem
|- ∀m f n x. x ∉ m_space m ⇒ (fn_seq m f n x = 0)
[lemma_fn_5] Theorem
|- ∀m f n x. 0 ≤ f x ⇒ 0 ≤ fn_seq m f n x
[lemma_fn_in_psfis] Theorem
|- ∀m f n.
(∀x. 0 ≤ f x) ∧ measure_space m ∧
f ∈ measurable (m_space m,measurable_sets m) Borel ⇒
fn_seq_integral m f n ∈ psfis m (fn_seq m f n)
[lemma_fn_mono_increasing] Theorem
|- ∀m f x. 0 ≤ f x ⇒ mono_increasing (λn. fn_seq m f n x)
[lemma_fn_sup] Theorem
|- ∀m f x.
x ∈ m_space m ∧ 0 ≤ f x ⇒
(sup (IMAGE (λn. fn_seq m f n x) 𝕌(:num)) = f x)
[lemma_fn_upper_bounded] Theorem
|- ∀m f n x. 0 ≤ f x ⇒ fn_seq m f n x ≤ f x
[lemma_radon_max_in_F] Theorem
|- ∀f g m v.
measure_space m ∧ measure_space v ∧ (m_space v = m_space m) ∧
(measurable_sets v = measurable_sets m) ∧ f ∈ RADON_F m v ∧
g ∈ RADON_F m v ⇒
(λx. max (f x) (g x)) ∈ RADON_F m v
[lemma_radon_seq_conv_sup] Theorem
|- ∀f m v.
measure_space m ∧ measure_space v ∧ (m_space v = m_space m) ∧
(measurable_sets v = measurable_sets m) ⇒
∃f_n.
(∀n. f_n n ∈ RADON_F m v) ∧ (∀x n. f_n n x ≤ f_n (SUC n) x) ∧
(sup (IMAGE (λn. pos_fn_integral m (f_n n)) 𝕌(:num)) =
sup (RADON_F_integrals m v))
[max_fn_seq_def_compute] Theorem
|- (∀g x. max_fn_seq g 0 x = g 0 x) ∧
(∀g n x.
max_fn_seq g (NUMERAL (BIT1 n)) x =
max (max_fn_seq g (NUMERAL (BIT1 n) − 1) x)
(g (NUMERAL (BIT1 n)) x)) ∧
∀g n x.
max_fn_seq g (NUMERAL (BIT2 n)) x =
max (max_fn_seq g (NUMERAL (BIT1 n)) x) (g (NUMERAL (BIT2 n)) x)
[max_fn_seq_mono] Theorem
|- ∀g n x. max_fn_seq g n x ≤ max_fn_seq g (SUC n) x
[measurable_sequence] Theorem
|- ∀m f.
measure_space m ∧
f ∈ measurable (m_space m,measurable_sets m) Borel ⇒
(∃fi ri.
(∀x. mono_increasing (λi. fi i x)) ∧
(∀x.
x ∈ m_space m ⇒
(sup (IMAGE (λi. fi i x) 𝕌(:num)) = fn_plus f x)) ∧
(∀i. ri i ∈ psfis m (fi i)) ∧ (∀i x. fi i x ≤ fn_plus f x) ∧
(∀i x. 0 ≤ fi i x) ∧
(pos_fn_integral m (fn_plus f) =
sup (IMAGE (λi. pos_fn_integral m (fi i)) 𝕌(:num)))) ∧
∃gi vi.
(∀x. mono_increasing (λi. gi i x)) ∧
(∀x.
x ∈ m_space m ⇒
(sup (IMAGE (λi. gi i x) 𝕌(:num)) = fn_minus f x)) ∧
(∀i. vi i ∈ psfis m (gi i)) ∧ (∀i x. gi i x ≤ fn_minus f x) ∧
(∀i x. 0 ≤ gi i x) ∧
(pos_fn_integral m (fn_minus f) =
sup (IMAGE (λi. pos_fn_integral m (gi i)) 𝕌(:num)))
[measure_space_finite_prod_measure_POW1] Theorem
|- ∀m0 m1.
measure_space m0 ∧ measure_space m1 ∧ FINITE (m_space m0) ∧
FINITE (m_space m1) ∧ (POW (m_space m0) = measurable_sets m0) ∧
(POW (m_space m1) = measurable_sets m1) ⇒
measure_space (prod_measure_space m0 m1)
[measure_space_finite_prod_measure_POW2] Theorem
|- ∀m0 m1.
measure_space m0 ∧ measure_space m1 ∧ FINITE (m_space m0) ∧
FINITE (m_space m1) ∧ (POW (m_space m0) = measurable_sets m0) ∧
(POW (m_space m1) = measurable_sets m1) ⇒
measure_space
(m_space m0 × m_space m1,POW (m_space m0 × m_space m1),
prod_measure m0 m1)
[measure_space_finite_prod_measure_POW3] Theorem
|- ∀m0 m1 m2.
measure_space m0 ∧ measure_space m1 ∧ measure_space m2 ∧
FINITE (m_space m0) ∧ FINITE (m_space m1) ∧
FINITE (m_space m2) ∧ (POW (m_space m0) = measurable_sets m0) ∧
(POW (m_space m1) = measurable_sets m1) ∧
(POW (m_space m2) = measurable_sets m2) ⇒
measure_space
(m_space m0 × (m_space m1 × m_space m2),
POW (m_space m0 × (m_space m1 × m_space m2)),
prod_measure3 m0 m1 m2)
[pos_fn_integral_add] Theorem
|- ∀m f g.
measure_space m ∧ (∀x. 0 ≤ f x ∧ 0 ≤ g x) ∧
f ∈ measurable (m_space m,measurable_sets m) Borel ∧
g ∈ measurable (m_space m,measurable_sets m) Borel ⇒
(pos_fn_integral m (λx. f x + g x) =
pos_fn_integral m f + pos_fn_integral m g)
[pos_fn_integral_cmul] Theorem
|- ∀f c.
measure_space m ∧ (∀x. x ∈ m_space m ⇒ 0 ≤ f x) ∧ 0 ≤ c ⇒
(pos_fn_integral m (λx. Normal c * f x) =
Normal c * pos_fn_integral m f)
[pos_fn_integral_cmul_indicator] Theorem
|- ∀m s c.
measure_space m ∧ s ∈ measurable_sets m ∧ 0 ≤ c ⇒
(pos_fn_integral m (λx. Normal c * indicator_fn s x) =
Normal (c * measure m s))
[pos_fn_integral_cmul_infty] Theorem
|- ∀m s.
measure_space m ∧ s ∈ measurable_sets m ⇒
(pos_fn_integral m (λx. PosInf * indicator_fn s x) =
PosInf * Normal (measure m s))
[pos_fn_integral_disjoint_sets] Theorem
|- ∀m f s t.
measure_space m ∧ DISJOINT s t ∧ s ∈ measurable_sets m ∧
t ∈ measurable_sets m ∧
f ∈ measurable (m_space m,measurable_sets m) Borel ∧
(∀x. 0 ≤ f x) ⇒
(pos_fn_integral m (λx. f x * indicator_fn (s ∪ t) x) =
pos_fn_integral m (λx. f x * indicator_fn s x) +
pos_fn_integral m (λx. f x * indicator_fn t x))
[pos_fn_integral_disjoint_sets_sum] Theorem
|- ∀m f s a.
FINITE s ∧ measure_space m ∧
(∀i. i ∈ s ⇒ a i ∈ measurable_sets m) ∧ (∀x. 0 ≤ f x) ∧
(∀i j. i ∈ s ∧ j ∈ s ∧ i ≠ j ⇒ DISJOINT (a i) (a j)) ∧
f ∈ measurable (m_space m,measurable_sets m) Borel ⇒
(pos_fn_integral m
(λx. f x * indicator_fn (BIGUNION (IMAGE a s)) x) =
SIGMA (λi. pos_fn_integral m (λx. f x * indicator_fn (a i) x))
s)
[pos_fn_integral_indicator] Theorem
|- ∀m s.
measure_space m ∧ s ∈ measurable_sets m ⇒
(pos_fn_integral m (indicator_fn s) = Normal (measure m s))
[pos_fn_integral_mono] Theorem
|- ∀f g.
(∀x. 0 ≤ f x ∧ f x ≤ g x) ⇒
pos_fn_integral m f ≤ pos_fn_integral m g
[pos_fn_integral_mono_mspace] Theorem
|- ∀m f g.
measure_space m ∧ (∀x. x ∈ m_space m ⇒ g x ≤ f x) ∧
(∀x. 0 ≤ f x) ∧ (∀x. 0 ≤ g x) ⇒
pos_fn_integral m g ≤ pos_fn_integral m f
[pos_fn_integral_mspace] Theorem
|- ∀m f.
measure_space m ∧ (∀x. 0 ≤ f x) ⇒
(pos_fn_integral m f =
pos_fn_integral m (λx. f x * indicator_fn (m_space m) x))
[pos_fn_integral_pos] Theorem
|- ∀m f. measure_space m ∧ (∀x. 0 ≤ f x) ⇒ 0 ≤ pos_fn_integral m f
[pos_fn_integral_pos_simple_fn] Theorem
|- ∀m f s a x.
measure_space m ∧ pos_simple_fn m f s a x ⇒
(pos_fn_integral m f = pos_simple_fn_integral m s a x)
[pos_fn_integral_split] Theorem
|- ∀m f s.
measure_space m ∧ s ∈ measurable_sets m ∧ (∀x. 0 ≤ f x) ∧
f ∈ measurable (m_space m,measurable_sets m) Borel ⇒
(pos_fn_integral m f =
pos_fn_integral m (λx. f x * indicator_fn s x) +
pos_fn_integral m
(λx. f x * indicator_fn (m_space m DIFF s) x))
[pos_fn_integral_sum] Theorem
|- ∀m f s.
FINITE s ∧ measure_space m ∧ (∀i. i ∈ s ⇒ ∀x. 0 ≤ f i x) ∧
(∀i.
i ∈ s ⇒
f i ∈ measurable (m_space m,measurable_sets m) Borel) ⇒
(pos_fn_integral m (λx. SIGMA (λi. f i x) s) =
SIGMA (λi. pos_fn_integral m (f i)) s)
[pos_fn_integral_sum_cmul_indicator] Theorem
|- ∀m s a x.
measure_space m ∧ FINITE s ∧ (∀i. i ∈ s ⇒ 0 ≤ x i) ∧
(∀i. i ∈ s ⇒ a i ∈ measurable_sets m) ⇒
(pos_fn_integral m
(λt. SIGMA (λi. Normal (x i) * indicator_fn (a i) t) s) =
Normal (SIGMA (λi. x i * measure m (a i)) s))
[pos_fn_integral_suminf] Theorem
|- ∀m f.
measure_space m ∧ (∀i x. 0 ≤ f i x) ∧
(∀i. f i ∈ measurable (m_space m,measurable_sets m) Borel) ⇒
(pos_fn_integral m (λx. suminf (λi. f i x)) =
suminf (λi. pos_fn_integral m (f i)))
[pos_fn_integral_zero] Theorem
|- ∀m. measure_space m ⇒ (pos_fn_integral m (λx. 0) = 0)
[pos_simple_fn_add] Theorem
|- ∀m f g.
measure_space m ∧ pos_simple_fn m f s a x ∧
pos_simple_fn m g s' a' x' ⇒
∃s'' a'' x''. pos_simple_fn m (λt. f t + g t) s'' a'' x''
[pos_simple_fn_add_alt] Theorem
|- ∀m f g s a x y.
measure_space m ∧ pos_simple_fn m f s a x ∧
pos_simple_fn m g s a y ⇒
pos_simple_fn m (λt. f t + g t) s a (λi. x i + y i)
[pos_simple_fn_cmul] Theorem
|- ∀m f z.
measure_space m ∧ pos_simple_fn m f s a x ∧ 0 ≤ z ⇒
∃s' a' x'. pos_simple_fn m (λt. Normal z * f t) s' a' x'
[pos_simple_fn_cmul_alt] Theorem
|- ∀m f s a x z.
measure_space m ∧ 0 ≤ z ∧ pos_simple_fn m f s a x ⇒
pos_simple_fn m (λt. Normal z * f t) s a (λi. z * x i)
[pos_simple_fn_indicator] Theorem
|- ∀m A.
measure_space m ∧ A ∈ measurable_sets m ⇒
∃s a x. pos_simple_fn m (indicator_fn A) s a x
[pos_simple_fn_indicator_alt] Theorem
|- ∀m s.
measure_space m ∧ s ∈ measurable_sets m ⇒
pos_simple_fn m (indicator_fn s) {0; 1}
(λi. if i = 0 then m_space m DIFF s else s)
(λi. if i = 0 then 0 else 1)
[pos_simple_fn_integral_add] Theorem
|- ∀m f s a x g s' b y.
measure_space m ∧ pos_simple_fn m f s a x ∧
pos_simple_fn m g s' b y ⇒
∃s'' c z.
pos_simple_fn m (λx. f x + g x) s'' c z ∧
(pos_simple_fn_integral m s a x +
pos_simple_fn_integral m s' b y =
pos_simple_fn_integral m s'' c z)
[pos_simple_fn_integral_add_alt] Theorem
|- ∀m f s a x g y.
measure_space m ∧ pos_simple_fn m f s a x ∧
pos_simple_fn m g s a y ⇒
(pos_simple_fn_integral m s a x +
pos_simple_fn_integral m s a y =
pos_simple_fn_integral m s a (λi. x i + y i))
[pos_simple_fn_integral_cmul] Theorem
|- ∀m f s a x z.
measure_space m ∧ pos_simple_fn m f s a x ∧ 0 ≤ z ⇒
pos_simple_fn m (λx. Normal z * f x) s a (λi. z * x i) ∧
(pos_simple_fn_integral m s a (λi. z * x i) =
Normal z * pos_simple_fn_integral m s a x)
[pos_simple_fn_integral_cmul_alt] Theorem
|- ∀m f s a x z.
measure_space m ∧ 0 ≤ z ∧ pos_simple_fn m f s a x ⇒
∃s' a' x'.
pos_simple_fn m (λt. Normal z * f t) s' a' x' ∧
(pos_simple_fn_integral m s' a' x' =
Normal z * pos_simple_fn_integral m s a x)
[pos_simple_fn_integral_indicator] Theorem
|- ∀m A.
measure_space m ∧ A ∈ measurable_sets m ⇒
∃s a x.
pos_simple_fn m (indicator_fn A) s a x ∧
(pos_simple_fn_integral m s a x = Normal (measure m A))
[pos_simple_fn_integral_mono] Theorem
|- ∀m f s a x g s' b y.
measure_space m ∧ pos_simple_fn m f s a x ∧
pos_simple_fn m g s' b y ∧ (∀x. x ∈ m_space m ⇒ f x ≤ g x) ⇒
pos_simple_fn_integral m s a x ≤ pos_simple_fn_integral m s' b y
[pos_simple_fn_integral_not_infty] Theorem
|- ∀m s a x.
pos_simple_fn_integral m s a x ≠ NegInf ∧
pos_simple_fn_integral m s a x ≠ PosInf
[pos_simple_fn_integral_present] Theorem
|- ∀m f s a x g s' b y.
measure_space m ∧ pos_simple_fn m f s a x ∧
pos_simple_fn m g s' b y ⇒
∃z z' c k.
(∀t.
t ∈ m_space m ⇒
(f t =
SIGMA (λi. Normal (z i) * indicator_fn (c i) t) k)) ∧
(∀t.
t ∈ m_space m ⇒
(g t =
SIGMA (λi. Normal (z' i) * indicator_fn (c i) t) k)) ∧
(pos_simple_fn_integral m s a x =
pos_simple_fn_integral m k c z) ∧
(pos_simple_fn_integral m s' b y =
pos_simple_fn_integral m k c z') ∧ FINITE k ∧
(∀i. i ∈ k ⇒ 0 ≤ z i) ∧ (∀i. i ∈ k ⇒ 0 ≤ z' i) ∧
(∀i j. i ∈ k ∧ j ∈ k ∧ i ≠ j ⇒ DISJOINT (c i) (c j)) ∧
(∀i. i ∈ k ⇒ c i ∈ measurable_sets m) ∧
(BIGUNION (IMAGE c k) = m_space m)
[pos_simple_fn_integral_sub] Theorem
|- ∀m f s a x g s' b y.
measure_space m ∧ (∀x. g x ≤ f x) ∧ (∀x. g x ≠ PosInf) ∧
pos_simple_fn m f s a x ∧ pos_simple_fn m g s' b y ⇒
∃s'' c z.
pos_simple_fn m (λx. f x − g x) s'' c z ∧
(pos_simple_fn_integral m s a x −
pos_simple_fn_integral m s' b y =
pos_simple_fn_integral m s'' c z)
[pos_simple_fn_integral_sum] Theorem
|- ∀m f s a x P.
measure_space m ∧
(∀i. i ∈ P ⇒ pos_simple_fn m (f i) s a (x i)) ∧ FINITE P ∧
P ≠ ∅ ⇒
pos_simple_fn m (λt. SIGMA (λi. f i t) P) s a
(λi. SIGMA (λj. x j i) P) ∧
(pos_simple_fn_integral m s a (λj. SIGMA (λi. x i j) P) =
SIGMA (λi. pos_simple_fn_integral m s a (x i)) P)
[pos_simple_fn_integral_sum_alt] Theorem
|- ∀m f s a x P.
measure_space m ∧
(∀i. i ∈ P ⇒ pos_simple_fn m (f i) (s i) (a i) (x i)) ∧
FINITE P ∧ P ≠ ∅ ⇒
∃c k z.
pos_simple_fn m (λt. SIGMA (λi. f i t) P) k c z ∧
(pos_simple_fn_integral m k c z =
SIGMA (λi. pos_simple_fn_integral m (s i) (a i) (x i)) P)
[pos_simple_fn_integral_unique] Theorem
|- ∀m f s a x s' b y.
measure_space m ∧ pos_simple_fn m f s a x ∧
pos_simple_fn m f s' b y ⇒
(pos_simple_fn_integral m s a x =
pos_simple_fn_integral m s' b y)
[pos_simple_fn_integral_zero] Theorem
|- ∀m s a x.
measure_space m ∧ pos_simple_fn m (λt. 0) s a x ⇒
(pos_simple_fn_integral m s a x = 0)
[pos_simple_fn_integral_zero_alt] Theorem
|- ∀m s a x.
measure_space m ∧ pos_simple_fn m g s a x ∧
(∀x. x ∈ m_space m ⇒ (g x = 0)) ⇒
(pos_simple_fn_integral m s a x = 0)
[pos_simple_fn_le] Theorem
|- ∀m f g s a x x' i.
measure_space m ∧ pos_simple_fn m f s a x ∧
pos_simple_fn m g s a x' ∧ (∀x. x ∈ m_space m ⇒ g x ≤ f x) ∧
i ∈ s ∧ a i ≠ ∅ ⇒
Normal (x' i) ≤ Normal (x i)
[pos_simple_fn_max] Theorem
|- ∀m f s a x g s'b y.
measure_space m ∧ pos_simple_fn m f s a x ∧
pos_simple_fn m g s' b y ⇒
∃s'' a'' x''. pos_simple_fn m (λx. max (f x) (g x)) s'' a'' x''
[pos_simple_fn_not_infty] Theorem
|- ∀m f s a x.
pos_simple_fn m f s a x ⇒
∀x. x ∈ m_space m ⇒ f x ≠ NegInf ∧ f x ≠ PosInf
[pos_simple_fn_thm1] Theorem
|- ∀m f s a x i y.
measure_space m ∧ pos_simple_fn m f s a x ∧ i ∈ s ∧ y ∈ a i ⇒
(f y = Normal (x i))
[psfis_add] Theorem
|- ∀m f g a b.
measure_space m ∧ a ∈ psfis m f ∧ b ∈ psfis m g ⇒
a + b ∈ psfis m (λx. f x + g x)
[psfis_cmul] Theorem
|- ∀m f a z.
measure_space m ∧ a ∈ psfis m f ∧ 0 ≤ z ⇒
Normal z * a ∈ psfis m (λx. Normal z * f x)
[psfis_indicator] Theorem
|- ∀m A.
measure_space m ∧ A ∈ measurable_sets m ⇒
Normal (measure m A) ∈ psfis m (indicator_fn A)
[psfis_intro] Theorem
|- ∀m a x P.
measure_space m ∧ (∀i. i ∈ P ⇒ a i ∈ measurable_sets m) ∧
(∀i. i ∈ P ⇒ 0 ≤ x i) ∧ FINITE P ⇒
Normal (SIGMA (λi. x i * measure m (a i)) P) ∈
psfis m (λt. SIGMA (λi. Normal (x i) * indicator_fn (a i) t) P)
[psfis_mono] Theorem
|- ∀m f g a b.
measure_space m ∧ a ∈ psfis m f ∧ b ∈ psfis m g ∧
(∀x. x ∈ m_space m ⇒ f x ≤ g x) ⇒
a ≤ b
[psfis_not_infty] Theorem
|- ∀m f a. a ∈ psfis m f ⇒ a ≠ NegInf ∧ a ≠ PosInf
[psfis_pos] Theorem
|- ∀m f a.
measure_space m ∧ a ∈ psfis m f ⇒ ∀x. x ∈ m_space m ⇒ 0 ≤ f x
[psfis_present] Theorem
|- ∀m f g a b.
measure_space m ∧ a ∈ psfis m f ∧ b ∈ psfis m g ⇒
∃z z' c k.
(∀t.
t ∈ m_space m ⇒
(f t =
SIGMA (λi. Normal (z i) * indicator_fn (c i) t) k)) ∧
(∀t.
t ∈ m_space m ⇒
(g t =
SIGMA (λi. Normal (z' i) * indicator_fn (c i) t) k)) ∧
(a = pos_simple_fn_integral m k c z) ∧
(b = pos_simple_fn_integral m k c z') ∧ FINITE k ∧
(∀i. i ∈ k ⇒ 0 ≤ z i) ∧ (∀i. i ∈ k ⇒ 0 ≤ z' i) ∧
(∀i j. i ∈ k ∧ j ∈ k ∧ i ≠ j ⇒ DISJOINT (c i) (c j)) ∧
(∀i. i ∈ k ⇒ c i ∈ measurable_sets m) ∧
(BIGUNION (IMAGE c k) = m_space m)
[psfis_sub] Theorem
|- ∀m f g a b.
measure_space m ∧ (∀x. g x ≤ f x) ∧ (∀x. g x ≠ PosInf) ∧
a ∈ psfis m f ∧ b ∈ psfis m g ⇒
a − b ∈ psfis m (λx. f x − g x)
[psfis_sum] Theorem
|- ∀m f a P.
measure_space m ∧ (∀i. i ∈ P ⇒ a i ∈ psfis m (f i)) ∧ FINITE P ⇒
SIGMA a P ∈ psfis m (λt. SIGMA (λi. f i t) P)
[psfis_unique] Theorem
|- ∀m f a b.
measure_space m ∧ a ∈ psfis m f ∧ b ∈ psfis m f ⇒ (a = b)
[psfis_zero] Theorem
|- ∀m a. measure_space m ⇒ (a ∈ psfis m (λx. 0) ⇔ (a = 0))
[seq_sup_def_compute] Theorem
|- (∀P. seq_sup P 0 = @r. r ∈ P ∧ sup P < r + 1) ∧
(∀P n.
seq_sup P (NUMERAL (BIT1 n)) =
@r.
r ∈ P ∧ sup P < r + Normal ((1 / 2) pow NUMERAL (BIT1 n)) ∧
seq_sup P (NUMERAL (BIT1 n) − 1) < r ∧ r < sup P) ∧
∀P n.
seq_sup P (NUMERAL (BIT2 n)) =
@r.
r ∈ P ∧ sup P < r + Normal ((1 / 2) pow NUMERAL (BIT2 n)) ∧
seq_sup P (NUMERAL (BIT1 n)) < r ∧ r < sup P
*)
end
HOL 4, Kananaskis-10