Structure measureTheory
signature measureTheory =
sig
type thm = Thm.thm
(* Definitions *)
val Borel_def : thm
val additive_def : thm
val algebra_def : thm
val closed_cdi_def : thm
val countably_additive_def : thm
val countably_subadditive_def : thm
val fn_abs_def : thm
val fn_minus_def : thm
val fn_plus_def : thm
val increasing_def : thm
val indicator_fn_def : thm
val inf_measure_def : thm
val lambda_system_def : thm
val m_space_def : thm
val measurable_def : thm
val measurable_sets_def : thm
val measure_def : thm
val measure_preserving_def : thm
val measure_space_def : thm
val null_set_def : thm
val outer_measure_space_def : thm
val pos_simple_fn_def : thm
val positive_def : thm
val sigma_algebra_def : thm
val sigma_def : thm
val smallest_closed_cdi_def : thm
val space_def : thm
val subadditive_def : thm
val subset_class_def : thm
val subsets_def : thm
(* Theorems *)
val ADDITIVE : thm
val ADDITIVE_INCREASING : thm
val ADDITIVE_SUM : thm
val ALGEBRA_ALT_INTER : thm
val ALGEBRA_COMPL : thm
val ALGEBRA_DIFF : thm
val ALGEBRA_EMPTY : thm
val ALGEBRA_FINITE_UNION : thm
val ALGEBRA_INTER : thm
val ALGEBRA_INTER_SPACE : thm
val ALGEBRA_SPACE : thm
val ALGEBRA_SUBSET_LAMBDA_SYSTEM : thm
val ALGEBRA_UNION : thm
val BIGUNION_IMAGE_Q : thm
val BOREL_MEASURABLE_SETS : thm
val BOREL_MEASURABLE_SETS1 : thm
val BOREL_MEASURABLE_SETS10 : thm
val BOREL_MEASURABLE_SETS2 : thm
val BOREL_MEASURABLE_SETS3 : thm
val BOREL_MEASURABLE_SETS4 : thm
val BOREL_MEASURABLE_SETS5 : thm
val BOREL_MEASURABLE_SETS6 : thm
val BOREL_MEASURABLE_SETS7 : thm
val BOREL_MEASURABLE_SETS8 : thm
val BOREL_MEASURABLE_SETS9 : thm
val CARATHEODORY : thm
val CARATHEODORY_LEMMA : thm
val CLOSED_CDI_COMPL : thm
val CLOSED_CDI_DISJOINT : thm
val CLOSED_CDI_DUNION : thm
val CLOSED_CDI_INCREASING : thm
val COUNTABLY_ADDITIVE : thm
val COUNTABLY_ADDITIVE_ADDITIVE : thm
val COUNTABLY_SUBADDITIVE : thm
val COUNTABLY_SUBADDITIVE_SUBADDITIVE : thm
val FN_MINUS_ADD_LE : thm
val FN_MINUS_CMUL : thm
val FN_MINUS_POS : thm
val FN_MINUS_POS_ZERO : thm
val FN_PLUS_ADD_LE : thm
val FN_PLUS_CMUL : thm
val FN_PLUS_POS : thm
val FN_PLUS_POS_ID : thm
val IMAGE_SING : thm
val INCREASING : thm
val INCREASING_ADDITIVE_SUMMABLE : thm
val INDICATOR_FN_MUL_INTER : thm
val INF_MEASURE_AGREES : thm
val INF_MEASURE_CLOSE : thm
val INF_MEASURE_COUNTABLY_SUBADDITIVE : thm
val INF_MEASURE_EMPTY : thm
val INF_MEASURE_INCREASING : thm
val INF_MEASURE_LE : thm
val INF_MEASURE_NONEMPTY : thm
val INF_MEASURE_OUTER : thm
val INF_MEASURE_POS : thm
val INF_MEASURE_POS0 : thm
val INF_MEASURE_POSITIVE : thm
val IN_MEASURABLE : thm
val IN_MEASURABLE_BOREL : thm
val IN_MEASURABLE_BOREL_ABS : thm
val IN_MEASURABLE_BOREL_ADD : thm
val IN_MEASURABLE_BOREL_ALL : thm
val IN_MEASURABLE_BOREL_ALL_MEASURE : thm
val IN_MEASURABLE_BOREL_ALT1 : thm
val IN_MEASURABLE_BOREL_ALT2 : thm
val IN_MEASURABLE_BOREL_ALT3 : thm
val IN_MEASURABLE_BOREL_ALT4 : thm
val IN_MEASURABLE_BOREL_ALT5 : thm
val IN_MEASURABLE_BOREL_ALT6 : thm
val IN_MEASURABLE_BOREL_ALT7 : thm
val IN_MEASURABLE_BOREL_ALT8 : thm
val IN_MEASURABLE_BOREL_ALT9 : thm
val IN_MEASURABLE_BOREL_CMUL : thm
val IN_MEASURABLE_BOREL_CMUL_INDICATOR : thm
val IN_MEASURABLE_BOREL_CONST : thm
val IN_MEASURABLE_BOREL_FN_MINUS : thm
val IN_MEASURABLE_BOREL_FN_PLUS : thm
val IN_MEASURABLE_BOREL_INDICATOR : thm
val IN_MEASURABLE_BOREL_LE : thm
val IN_MEASURABLE_BOREL_LT : thm
val IN_MEASURABLE_BOREL_MAX : thm
val IN_MEASURABLE_BOREL_MONO_SUP : thm
val IN_MEASURABLE_BOREL_MUL : thm
val IN_MEASURABLE_BOREL_MUL_INDICATOR : thm
val IN_MEASURABLE_BOREL_MUL_INDICATOR_EQ : thm
val IN_MEASURABLE_BOREL_NEGINF : thm
val IN_MEASURABLE_BOREL_PLUS_MINUS : thm
val IN_MEASURABLE_BOREL_POS_SIMPLE_FN : thm
val IN_MEASURABLE_BOREL_POW : thm
val IN_MEASURABLE_BOREL_SQR : thm
val IN_MEASURABLE_BOREL_SUB : thm
val IN_MEASURABLE_BOREL_SUM : thm
val IN_MEASURE_PRESERVING : thm
val IN_SIGMA : thm
val LAMBDA_SYSTEM_ADDITIVE : thm
val LAMBDA_SYSTEM_ALGEBRA : thm
val LAMBDA_SYSTEM_CARATHEODORY : thm
val LAMBDA_SYSTEM_COMPL : thm
val LAMBDA_SYSTEM_EMPTY : thm
val LAMBDA_SYSTEM_INCREASING : thm
val LAMBDA_SYSTEM_INTER : thm
val LAMBDA_SYSTEM_POSITIVE : thm
val LAMBDA_SYSTEM_STRONG_ADDITIVE : thm
val LAMBDA_SYSTEM_STRONG_SUM : thm
val MEASUBABLE_BIGUNION_LEMMA : thm
val MEASURABLE_BIGUNION_PROPERTY : thm
val MEASURABLE_BOREL : thm
val MEASURABLE_COMP : thm
val MEASURABLE_COMP_STRONG : thm
val MEASURABLE_COMP_STRONGER : thm
val MEASURABLE_DIFF_PROPERTY : thm
val MEASURABLE_I : thm
val MEASURABLE_LIFT : thm
val MEASURABLE_POW_TO_POW : thm
val MEASURABLE_POW_TO_POW_IMAGE : thm
val MEASURABLE_PROD_SIGMA : thm
val MEASURABLE_RANGE_REDUCE : thm
val MEASURABLE_SETS_SUBSET_SPACE : thm
val MEASURABLE_SIGMA : thm
val MEASURABLE_SIGMA_PREIMAGES : thm
val MEASURABLE_SUBSET : thm
val MEASURABLE_UP_LIFT : thm
val MEASURABLE_UP_SIGMA : thm
val MEASURABLE_UP_SUBSET : thm
val MEASURE_ADDITIVE : thm
val MEASURE_COMPL : thm
val MEASURE_COMPL_SUBSET : thm
val MEASURE_COUNTABLE_INCREASING : thm
val MEASURE_COUNTABLY_ADDITIVE : thm
val MEASURE_DOWN : thm
val MEASURE_EMPTY : thm
val MEASURE_PRESERVING_LIFT : thm
val MEASURE_PRESERVING_SUBSET : thm
val MEASURE_PRESERVING_UP_LIFT : thm
val MEASURE_PRESERVING_UP_SIGMA : thm
val MEASURE_PRESERVING_UP_SUBSET : thm
val MEASURE_REAL_SUM_IMAGE : thm
val MEASURE_SPACE_ADDITIVE : thm
val MEASURE_SPACE_BIGINTER : thm
val MEASURE_SPACE_BIGUNION : thm
val MEASURE_SPACE_CMUL : thm
val MEASURE_SPACE_DIFF : thm
val MEASURE_SPACE_EMPTY_MEASURABLE : thm
val MEASURE_SPACE_INCREASING : thm
val MEASURE_SPACE_INTER : thm
val MEASURE_SPACE_IN_MSPACE : thm
val MEASURE_SPACE_MSPACE_MEASURABLE : thm
val MEASURE_SPACE_POSITIVE : thm
val MEASURE_SPACE_REDUCE : thm
val MEASURE_SPACE_RESTRICTED : thm
val MEASURE_SPACE_SUBSET : thm
val MEASURE_SPACE_SUBSET_MSPACE : thm
val MEASURE_SPACE_UNION : thm
val MONOTONE_CONVERGENCE : thm
val MONOTONE_CONVERGENCE2 : thm
val MONOTONE_CONVERGENCE_BIGINTER : thm
val MONOTONE_CONVERGENCE_BIGINTER2 : thm
val OUTER_MEASURE_SPACE_POSITIVE : thm
val POW_ALGEBRA : thm
val POW_SIGMA_ALGEBRA : thm
val SIGMA_ALGEBRA : thm
val SIGMA_ALGEBRA_ALGEBRA : thm
val SIGMA_ALGEBRA_ALT : thm
val SIGMA_ALGEBRA_ALT_DISJOINT : thm
val SIGMA_ALGEBRA_ALT_MONO : thm
val SIGMA_ALGEBRA_BOREL : thm
val SIGMA_ALGEBRA_COUNTABLE_UNION : thm
val SIGMA_ALGEBRA_ENUM : thm
val SIGMA_ALGEBRA_FN : thm
val SIGMA_ALGEBRA_FN_BIGINTER : thm
val SIGMA_ALGEBRA_FN_DISJOINT : thm
val SIGMA_ALGEBRA_SIGMA : thm
val SIGMA_POW : thm
val SIGMA_PROPERTY : thm
val SIGMA_PROPERTY_ALT : thm
val SIGMA_PROPERTY_DISJOINT : thm
val SIGMA_PROPERTY_DISJOINT_LEMMA : thm
val SIGMA_PROPERTY_DISJOINT_LEMMA1 : thm
val SIGMA_PROPERTY_DISJOINT_LEMMA2 : thm
val SIGMA_PROPERTY_DISJOINT_WEAK : thm
val SIGMA_REDUCE : thm
val SIGMA_SUBSET : thm
val SIGMA_SUBSET_MEASURABLE_SETS : thm
val SIGMA_SUBSET_SUBSETS : thm
val SMALLEST_CLOSED_CDI : thm
val SPACE : thm
val SPACE_BOREL : thm
val SPACE_SIGMA : thm
val SPACE_SMALLEST_CLOSED_CDI : thm
val STRONG_MEASURE_SPACE_SUBSET : thm
val SUBADDITIVE : thm
val SUBSET_BIGINTER : thm
val UNIV_SIGMA_ALGEBRA : thm
val finite_additivity_sufficient_for_finite_spaces : thm
val finite_additivity_sufficient_for_finite_spaces2 : thm
val indicator_fn_split : thm
val indicator_fn_suminf : thm
val measure_split : thm
val measure_grammars : type_grammar.grammar * term_grammar.grammar
(*
[extreal] Parent theory of "measure"
[Borel_def] Definition
|- Borel = sigma π(:extreal) (IMAGE (Ξ»a. {x | x < a}) π(:extreal))
[additive_def] Definition
|- βm.
additive m β
βs t.
s β measurable_sets m β§ t β measurable_sets m β§ DISJOINT s t β
(measure m (s βͺ t) = measure m s + measure m t)
[algebra_def] Definition
|- βa.
algebra a β
subset_class (space a) (subsets a) β§ β
β subsets a β§
(βs. s β subsets a β space a DIFF s β subsets a) β§
βs t. s β subsets a β§ t β subsets a β s βͺ t β subsets a
[closed_cdi_def] Definition
|- βp.
closed_cdi p β
subset_class (space p) (subsets p) β§
(βs. s β subsets p β space p DIFF s β subsets p) β§
(βf.
f β (π(:num) -> subsets p) β§ (f 0 = β
) β§
(βn. f n β f (SUC n)) β
BIGUNION (IMAGE f π(:num)) β subsets p) β§
βf.
f β (π(:num) -> subsets p) β§
(βm n. m β n β DISJOINT (f m) (f n)) β
BIGUNION (IMAGE f π(:num)) β subsets p
[countably_additive_def] Definition
|- βm.
countably_additive m β
βf.
f β (π(:num) -> measurable_sets m) β§
(βm n. m β n β DISJOINT (f m) (f n)) β§
BIGUNION (IMAGE f π(:num)) β measurable_sets m β
measure m o f sums measure m (BIGUNION (IMAGE f π(:num)))
[countably_subadditive_def] Definition
|- βm.
countably_subadditive m β
βf.
f β (π(:num) -> measurable_sets m) β§
BIGUNION (IMAGE f π(:num)) β measurable_sets m β§
summable (measure m o f) β
measure m (BIGUNION (IMAGE f π(:num))) β€
suminf (measure m o f)
[fn_abs_def] Definition
|- βf. fn_abs f = (Ξ»x. abs (f x))
[fn_minus_def] Definition
|- βf. fn_minus f = (Ξ»x. if f x < 0 then -f x else 0)
[fn_plus_def] Definition
|- βf. fn_plus f = (Ξ»x. if 0 < f x then f x else 0)
[increasing_def] Definition
|- βm.
increasing m β
βs t.
s β measurable_sets m β§ t β measurable_sets m β§ s β t β
measure m s β€ measure m t
[indicator_fn_def] Definition
|- βs. indicator_fn s = (Ξ»x. if x β s then 1 else 0)
[inf_measure_def] Definition
|- βm s.
inf_measure m s =
inf
{r |
βf.
f β (π(:num) -> measurable_sets m) β§
(βm n. m β n β DISJOINT (f m) (f n)) β§
s β BIGUNION (IMAGE f π(:num)) β§ measure m o f sums r}
[lambda_system_def] Definition
|- βgen lam.
lambda_system gen lam =
{l |
l β subsets gen β§
βs.
s β subsets gen β
(lam (l β© s) + lam ((space gen DIFF l) β© s) = lam s)}
[m_space_def] Definition
|- βsp sts mu. m_space (sp,sts,mu) = sp
[measurable_def] Definition
|- βa b.
measurable a b =
{f |
sigma_algebra a β§ sigma_algebra b β§ f β (space a -> space b) β§
βs. s β subsets b β PREIMAGE f s β© space a β subsets a}
[measurable_sets_def] Definition
|- βsp sts mu. measurable_sets (sp,sts,mu) = sts
[measure_def] Definition
|- βsp sts mu. measure (sp,sts,mu) = mu
[measure_preserving_def] Definition
|- βm1 m2.
measure_preserving m1 m2 =
{f |
f β
measurable (m_space m1,measurable_sets m1)
(m_space m2,measurable_sets m2) β§ measure_space m1 β§
measure_space m2 β§
βs.
s β measurable_sets m2 β
(measure m1 (PREIMAGE f s β© m_space m1) = measure m2 s)}
[measure_space_def] Definition
|- βm.
measure_space m β
sigma_algebra (m_space m,measurable_sets m) β§ positive m β§
countably_additive m
[null_set_def] Definition
|- βm s. null_set m s β s β measurable_sets m β§ (measure m s = 0)
[outer_measure_space_def] Definition
|- βm.
outer_measure_space m β
positive m β§ increasing m β§ countably_subadditive m
[pos_simple_fn_def] Definition
|- βm f s a x.
pos_simple_fn m f s a x β
(βt. 0 β€ f t) β§
(βt.
t β m_space m β
(f t = SIGMA (Ξ»i. Normal (x i) * indicator_fn (a i) t) s)) β§
(βi. i β s β a i β measurable_sets m) β§ FINITE s β§
(βi. i β s β 0 β€ x i) β§
(βi j. i β s β§ j β s β§ i β j β DISJOINT (a i) (a j)) β§
(BIGUNION (IMAGE a s) = m_space m)
[positive_def] Definition
|- βm.
positive m β
(measure m β
= 0) β§ βs. s β measurable_sets m β 0 β€ measure m s
[sigma_algebra_def] Definition
|- βa.
sigma_algebra a β
algebra a β§
βc. countable c β§ c β subsets a β BIGUNION c β subsets a
[sigma_def] Definition
|- βsp st.
sigma sp st = (sp,BIGINTER {s | st β s β§ sigma_algebra (sp,s)})
[smallest_closed_cdi_def] Definition
|- βa.
smallest_closed_cdi a =
(space a,BIGINTER {b | subsets a β b β§ closed_cdi (space a,b)})
[space_def] Definition
|- βx y. space (x,y) = x
[subadditive_def] Definition
|- βm.
subadditive m β
βs t.
s β measurable_sets m β§ t β measurable_sets m β
measure m (s βͺ t) β€ measure m s + measure m t
[subset_class_def] Definition
|- βsp sts. subset_class sp sts β βx. x β sts β x β sp
[subsets_def] Definition
|- βx y. subsets (x,y) = y
[ADDITIVE] Theorem
|- βm s t u.
additive m β§ s β measurable_sets m β§ t β measurable_sets m β§
DISJOINT s t β§ (u = s βͺ t) β
(measure m u = measure m s + measure m t)
[ADDITIVE_INCREASING] Theorem
|- βm.
algebra (m_space m,measurable_sets m) β§ positive m β§
additive m β
increasing m
[ADDITIVE_SUM] Theorem
|- βm f n.
algebra (m_space m,measurable_sets m) β§ positive m β§
additive m β§ f β (π(:num) -> measurable_sets m) β§
(βm n. m β n β DISJOINT (f m) (f n)) β
(sum (0,n) (measure m o f) =
measure m (BIGUNION (IMAGE f (count n))))
[ALGEBRA_ALT_INTER] Theorem
|- βa.
algebra a β
subset_class (space a) (subsets a) β§ β
β subsets a β§
(βs. s β subsets a β space a DIFF s β subsets a) β§
βs t. s β subsets a β§ t β subsets a β s β© t β subsets a
[ALGEBRA_COMPL] Theorem
|- βa s. algebra a β§ s β subsets a β space a DIFF s β subsets a
[ALGEBRA_DIFF] Theorem
|- βa s t.
algebra a β§ s β subsets a β§ t β subsets a β s DIFF t β subsets a
[ALGEBRA_EMPTY] Theorem
|- βa. algebra a β β
β subsets a
[ALGEBRA_FINITE_UNION] Theorem
|- βa c.
algebra a β§ FINITE c β§ c β subsets a β BIGUNION c β subsets a
[ALGEBRA_INTER] Theorem
|- βa s t.
algebra a β§ s β subsets a β§ t β subsets a β s β© t β subsets a
[ALGEBRA_INTER_SPACE] Theorem
|- βa s.
algebra a β§ s β subsets a β
(space a β© s = s) β§ (s β© space a = s)
[ALGEBRA_SPACE] Theorem
|- βa. algebra a β space a β subsets a
[ALGEBRA_SUBSET_LAMBDA_SYSTEM] Theorem
|- βm.
algebra (m_space m,measurable_sets m) β§ positive m β§
increasing m β§ additive m β
measurable_sets m β
lambda_system (m_space m,POW (m_space m)) (inf_measure m)
[ALGEBRA_UNION] Theorem
|- βa s t.
algebra a β§ s β subsets a β§ t β subsets a β s βͺ t β subsets a
[BIGUNION_IMAGE_Q] Theorem
|- βa f.
sigma_algebra a β§ f β (Q_set -> subsets a) β
BIGUNION (IMAGE f Q_set) β subsets a
[BOREL_MEASURABLE_SETS] Theorem
|- (βc. {x | x < c} β subsets Borel) β§
(βc. {x | c β€ x} β subsets Borel) β§
(βc. {x | c < x} β subsets Borel) β§
(βc. {x | x β€ c} β subsets Borel) β§
(βc d. {x | c < x β§ x < d} β subsets Borel) β§
(βc d. {x | c β€ x β§ x < d} β subsets Borel) β§
(βc d. {x | c < x β§ x β€ d} β subsets Borel) β§
(βc d. {x | c β€ x β§ x β€ d} β subsets Borel) β§
(βc. {c} β subsets Borel) β§ βc. {x | x β c} β subsets Borel
[BOREL_MEASURABLE_SETS1] Theorem
|- βc. {x | x < c} β subsets Borel
[BOREL_MEASURABLE_SETS10] Theorem
|- βc. {x | x β c} β subsets Borel
[BOREL_MEASURABLE_SETS2] Theorem
|- βc. {x | c β€ x} β subsets Borel
[BOREL_MEASURABLE_SETS3] Theorem
|- βc. {x | x β€ c} β subsets Borel
[BOREL_MEASURABLE_SETS4] Theorem
|- βc. {x | c < x} β subsets Borel
[BOREL_MEASURABLE_SETS5] Theorem
|- βc d. {x | c β€ x β§ x < d} β subsets Borel
[BOREL_MEASURABLE_SETS6] Theorem
|- βc d. {x | c < x β§ x β€ d} β subsets Borel
[BOREL_MEASURABLE_SETS7] Theorem
|- βc d. {x | c β€ x β§ x β€ d} β subsets Borel
[BOREL_MEASURABLE_SETS8] Theorem
|- βc d. {x | c < x β§ x < d} β subsets Borel
[BOREL_MEASURABLE_SETS9] Theorem
|- βc. {c} β subsets Borel
[CARATHEODORY] Theorem
|- βm0.
algebra (m_space m0,measurable_sets m0) β§ positive m0 β§
countably_additive m0 β
βm.
(βs. s β measurable_sets m0 β (measure m s = measure m0 s)) β§
((m_space m,measurable_sets m) =
sigma (m_space m0) (measurable_sets m0)) β§ measure_space m
[CARATHEODORY_LEMMA] Theorem
|- βgsig lam.
sigma_algebra gsig β§
outer_measure_space (space gsig,subsets gsig,lam) β
measure_space (space gsig,lambda_system gsig lam,lam)
[CLOSED_CDI_COMPL] Theorem
|- βp s. closed_cdi p β§ s β subsets p β space p DIFF s β subsets p
[CLOSED_CDI_DISJOINT] Theorem
|- βp f.
closed_cdi p β§ f β (π(:num) -> subsets p) β§
(βm n. m β n β DISJOINT (f m) (f n)) β
BIGUNION (IMAGE f π(:num)) β subsets p
[CLOSED_CDI_DUNION] Theorem
|- βp s t.
β
β subsets p β§ closed_cdi p β§ s β subsets p β§ t β subsets p β§
DISJOINT s t β
s βͺ t β subsets p
[CLOSED_CDI_INCREASING] Theorem
|- βp f.
closed_cdi p β§ f β (π(:num) -> subsets p) β§ (f 0 = β
) β§
(βn. f n β f (SUC n)) β
BIGUNION (IMAGE f π(:num)) β subsets p
[COUNTABLY_ADDITIVE] Theorem
|- βm s f.
countably_additive m β§ f β (π(:num) -> measurable_sets m) β§
(βm n. m β n β DISJOINT (f m) (f n)) β§
(s = BIGUNION (IMAGE f π(:num))) β§ s β measurable_sets m β
measure m o f sums measure m s
[COUNTABLY_ADDITIVE_ADDITIVE] Theorem
|- βm.
algebra (m_space m,measurable_sets m) β§ positive m β§
countably_additive m β
additive m
[COUNTABLY_SUBADDITIVE] Theorem
|- βm f s.
countably_subadditive m β§ f β (π(:num) -> measurable_sets m) β§
summable (measure m o f) β§ (s = BIGUNION (IMAGE f π(:num))) β§
s β measurable_sets m β
measure m s β€ suminf (measure m o f)
[COUNTABLY_SUBADDITIVE_SUBADDITIVE] Theorem
|- βm.
algebra (m_space m,measurable_sets m) β§ positive m β§
countably_subadditive m β
subadditive m
[FN_MINUS_ADD_LE] Theorem
|- βf g x. fn_minus (Ξ»x. f x + g x) x β€ fn_minus f x + fn_minus g x
[FN_MINUS_CMUL] Theorem
|- βf c.
(0 β€ c β
(fn_minus (Ξ»x. Normal c * f x) =
(Ξ»x. Normal c * fn_minus f x))) β§
(c β€ 0 β
(fn_minus (Ξ»x. Normal c * f x) =
(Ξ»x. -Normal c * fn_plus f x)))
[FN_MINUS_POS] Theorem
|- βg x. 0 β€ fn_minus g x
[FN_MINUS_POS_ZERO] Theorem
|- (βx. 0 β€ g x) β (fn_minus g = (Ξ»x. 0))
[FN_PLUS_ADD_LE] Theorem
|- βf g x. fn_plus (Ξ»x. f x + g x) x β€ fn_plus f x + fn_plus g x
[FN_PLUS_CMUL] Theorem
|- βf c.
(0 β€ c β
(fn_plus (Ξ»x. Normal c * f x) =
(Ξ»x. Normal c * fn_plus f x))) β§
(c β€ 0 β
(fn_plus (Ξ»x. Normal c * f x) =
(Ξ»x. -Normal c * fn_minus f x)))
[FN_PLUS_POS] Theorem
|- βg x. 0 β€ fn_plus g x
[FN_PLUS_POS_ID] Theorem
|- (βx. 0 β€ g x) β (fn_plus g = g)
[IMAGE_SING] Theorem
|- βf x. IMAGE f {x} = {f x}
[INCREASING] Theorem
|- βm s t.
increasing m β§ s β t β§ s β measurable_sets m β§
t β measurable_sets m β
measure m s β€ measure m t
[INCREASING_ADDITIVE_SUMMABLE] Theorem
|- βm f.
algebra (m_space m,measurable_sets m) β§ positive m β§
increasing m β§ additive m β§ f β (π(:num) -> measurable_sets m) β§
(βm n. m β n β DISJOINT (f m) (f n)) β
summable (measure m o f)
[INDICATOR_FN_MUL_INTER] Theorem
|- βA B.
(Ξ»t. indicator_fn A t * indicator_fn B t) =
(Ξ»t. indicator_fn (A β© B) t)
[INF_MEASURE_AGREES] Theorem
|- βm s.
algebra (m_space m,measurable_sets m) β§ positive m β§
countably_additive m β§ s β measurable_sets m β
(inf_measure m s = measure m s)
[INF_MEASURE_CLOSE] Theorem
|- βm s e.
algebra (m_space m,measurable_sets m) β§ positive m β§ 0 < e β§
s β m_space m β
βf l.
f β (π(:num) -> measurable_sets m) β§
s β BIGUNION (IMAGE f π(:num)) β§
(βm n. m β n β DISJOINT (f m) (f n)) β§ measure m o f sums l β§
l β€ inf_measure m s + e
[INF_MEASURE_COUNTABLY_SUBADDITIVE] Theorem
|- βm.
algebra (m_space m,measurable_sets m) β§ positive m β§
increasing m β
countably_subadditive (m_space m,POW (m_space m),inf_measure m)
[INF_MEASURE_EMPTY] Theorem
|- βm.
algebra (m_space m,measurable_sets m) β§ positive m β
(inf_measure m β
= 0)
[INF_MEASURE_INCREASING] Theorem
|- βm.
algebra (m_space m,measurable_sets m) β§ positive m β
increasing (m_space m,POW (m_space m),inf_measure m)
[INF_MEASURE_LE] Theorem
|- βm s x.
algebra (m_space m,measurable_sets m) β§ positive m β§
increasing m β§
x β
{r |
βf.
f β (π(:num) -> measurable_sets m) β§
s β BIGUNION (IMAGE f π(:num)) β§ measure m o f sums r} β
inf_measure m s β€ x
[INF_MEASURE_NONEMPTY] Theorem
|- βm g s.
algebra (m_space m,measurable_sets m) β§ positive m β§
s β measurable_sets m β§ g β s β
measure m s β
{r |
βf.
f β (π(:num) -> measurable_sets m) β§
(βm n. m β n β DISJOINT (f m) (f n)) β§
g β BIGUNION (IMAGE f π(:num)) β§ measure m o f sums r}
[INF_MEASURE_OUTER] Theorem
|- βm.
algebra (m_space m,measurable_sets m) β§ positive m β§
increasing m β
outer_measure_space (m_space m,POW (m_space m),inf_measure m)
[INF_MEASURE_POS] Theorem
|- βm g.
algebra (m_space m,measurable_sets m) β§ positive m β§
g β m_space m β
0 β€ inf_measure m g
[INF_MEASURE_POS0] Theorem
|- βm g x.
algebra (m_space m,measurable_sets m) β§ positive m β§
x β
{r |
βf.
f β (π(:num) -> measurable_sets m) β§
(βm n. m β n β DISJOINT (f m) (f n)) β§
g β BIGUNION (IMAGE f π(:num)) β§ measure m o f sums r} β
0 β€ x
[INF_MEASURE_POSITIVE] Theorem
|- βm.
algebra (m_space m,measurable_sets m) β§ positive m β
positive (m_space m,POW (m_space m),inf_measure m)
[IN_MEASURABLE] Theorem
|- βa b f.
f β measurable a b β
sigma_algebra a β§ sigma_algebra b β§ f β (space a -> space b) β§
βs. s β subsets b β PREIMAGE f s β© space a β subsets a
[IN_MEASURABLE_BOREL] Theorem
|- βf a.
f β measurable a Borel β
sigma_algebra a β§ f β (space a -> π(:extreal)) β§
βc. {x | f x < c} β© space a β subsets a
[IN_MEASURABLE_BOREL_ABS] Theorem
|- βa f g.
sigma_algebra a β§ f β measurable a Borel β§
(βx. x β space a β (g x = abs (f x))) β
g β measurable a Borel
[IN_MEASURABLE_BOREL_ADD] Theorem
|- βa f g h.
sigma_algebra a β§ f β measurable a Borel β§
g β measurable a Borel β§ (βx. x β space a β (h x = f x + g x)) β
h β measurable a Borel
[IN_MEASURABLE_BOREL_ALL] Theorem
|- βf a.
f β measurable a Borel β
(βc. {x | f x < c} β© space a β subsets a) β§
(βc. {x | c β€ f x} β© space a β subsets a) β§
(βc. {x | f x β€ c} β© space a β subsets a) β§
(βc. {x | c < f x} β© space a β subsets a) β§
(βc d. {x | c < f x β§ f x < d} β© space a β subsets a) β§
(βc d. {x | c β€ f x β§ f x < d} β© space a β subsets a) β§
(βc d. {x | c < f x β§ f x β€ d} β© space a β subsets a) β§
(βc d. {x | c β€ f x β§ f x β€ d} β© space a β subsets a) β§
(βc. {x | f x β c} β© space a β subsets a) β§
βc. {x | f x = c} β© space a β subsets a
[IN_MEASURABLE_BOREL_ALL_MEASURE] Theorem
|- βf m.
f β measurable (m_space m,measurable_sets m) Borel β
(βc. {x | f x < c} β© m_space m β measurable_sets m) β§
(βc. {x | c β€ f x} β© m_space m β measurable_sets m) β§
(βc. {x | f x β€ c} β© m_space m β measurable_sets m) β§
(βc. {x | c < f x} β© m_space m β measurable_sets m) β§
(βc d.
{x | c < f x β§ f x < d} β© m_space m β measurable_sets m) β§
(βc d.
{x | c β€ f x β§ f x < d} β© m_space m β measurable_sets m) β§
(βc d.
{x | c < f x β§ f x β€ d} β© m_space m β measurable_sets m) β§
(βc d.
{x | c β€ f x β§ f x β€ d} β© m_space m β measurable_sets m) β§
(βc. {x | f x = c} β© m_space m β measurable_sets m) β§
βc. {x | f x β c} β© m_space m β measurable_sets m
[IN_MEASURABLE_BOREL_ALT1] Theorem
|- βf a.
f β measurable a Borel β
sigma_algebra a β§ f β (space a -> π(:extreal)) β§
βc. {x | c β€ f x} β© space a β subsets a
[IN_MEASURABLE_BOREL_ALT2] Theorem
|- βf a.
f β measurable a Borel β
sigma_algebra a β§ f β (space a -> π(:extreal)) β§
βc. {x | f x β€ c} β© space a β subsets a
[IN_MEASURABLE_BOREL_ALT3] Theorem
|- βf a.
f β measurable a Borel β
sigma_algebra a β§ f β (space a -> π(:extreal)) β§
βc. {x | c < f x} β© space a β subsets a
[IN_MEASURABLE_BOREL_ALT4] Theorem
|- βf a.
f β measurable a Borel β
sigma_algebra a β§ f β (space a -> π(:extreal)) β§
βc d. {x | c β€ f x β§ f x < d} β© space a β subsets a
[IN_MEASURABLE_BOREL_ALT5] Theorem
|- βf a.
f β measurable a Borel β
sigma_algebra a β§ f β (space a -> π(:extreal)) β§
βc d. {x | c < f x β§ f x β€ d} β© space a β subsets a
[IN_MEASURABLE_BOREL_ALT6] Theorem
|- βf a.
f β measurable a Borel β
sigma_algebra a β§ f β (space a -> π(:extreal)) β§
βc d. {x | c β€ f x β§ f x β€ d} β© space a β subsets a
[IN_MEASURABLE_BOREL_ALT7] Theorem
|- βf a.
f β measurable a Borel β
sigma_algebra a β§ f β (space a -> π(:extreal)) β§
βc d. {x | c < f x β§ f x < d} β© space a β subsets a
[IN_MEASURABLE_BOREL_ALT8] Theorem
|- βf a.
f β measurable a Borel β
sigma_algebra a β§ f β (space a -> π(:extreal)) β§
βc. {x | f x = c} β© space a β subsets a
[IN_MEASURABLE_BOREL_ALT9] Theorem
|- βf a.
f β measurable a Borel β
sigma_algebra a β§ f β (space a -> π(:extreal)) β§
βc. {x | f x β c} β© space a β subsets a
[IN_MEASURABLE_BOREL_CMUL] Theorem
|- βa f g z.
sigma_algebra a β§ f β measurable a Borel β§
(βx. x β space a β (g x = Normal z * f x)) β
g β measurable a Borel
[IN_MEASURABLE_BOREL_CMUL_INDICATOR] Theorem
|- βa z s.
sigma_algebra a β§ s β subsets a β
(Ξ»x. Normal z * indicator_fn s x) β measurable a Borel
[IN_MEASURABLE_BOREL_CONST] Theorem
|- βa k f.
sigma_algebra a β§ (βx. x β space a β (f x = k)) β
f β measurable a Borel
[IN_MEASURABLE_BOREL_FN_MINUS] Theorem
|- βa f. f β measurable a Borel β fn_minus f β measurable a Borel
[IN_MEASURABLE_BOREL_FN_PLUS] Theorem
|- βa f. f β measurable a Borel β fn_plus f β measurable a Borel
[IN_MEASURABLE_BOREL_INDICATOR] Theorem
|- βa A f.
sigma_algebra a β§ A β subsets a β§
(βx. x β space a β (f x = indicator_fn A x)) β
f β measurable a Borel
[IN_MEASURABLE_BOREL_LE] Theorem
|- βf g a.
f β measurable a Borel β§ g β measurable a Borel β
{x | f x β€ g x} β© space a β subsets a
[IN_MEASURABLE_BOREL_LT] Theorem
|- βf g a.
f β measurable a Borel β§ g β measurable a Borel β
{x | f x < g x} β© space a β subsets a
[IN_MEASURABLE_BOREL_MAX] Theorem
|- βa f g.
sigma_algebra a β§ f β measurable a Borel β§
g β measurable a Borel β
(Ξ»x. max (f x) (g x)) β measurable a Borel
[IN_MEASURABLE_BOREL_MONO_SUP] Theorem
|- βfn f a.
sigma_algebra a β§ (βn. fn n β measurable a Borel) β§
(βn x. x β space a β fn n x β€ fn (SUC n) x) β§
(βx. x β space a β (f x = sup (IMAGE (Ξ»n. fn n x) π(:num)))) β
f β measurable a Borel
[IN_MEASURABLE_BOREL_MUL] Theorem
|- βa f g h.
sigma_algebra a β§ f β measurable a Borel β§
(βx.
x β space a β
f x β NegInf β§ f x β PosInf β§ g x β NegInf β§ g x β PosInf) β§
g β measurable a Borel β§ (βx. x β space a β (h x = f x * g x)) β
h β measurable a Borel
[IN_MEASURABLE_BOREL_MUL_INDICATOR] Theorem
|- βa f s.
sigma_algebra a β§ f β measurable a Borel β§ s β subsets a β
(Ξ»x. f x * indicator_fn s x) β measurable a Borel
[IN_MEASURABLE_BOREL_MUL_INDICATOR_EQ] Theorem
|- βa f.
sigma_algebra a β
(f β measurable a Borel β
(Ξ»x. f x * indicator_fn (space a) x) β measurable a Borel)
[IN_MEASURABLE_BOREL_NEGINF] Theorem
|- βf a.
f β measurable a Borel β
{x | f x = NegInf} β© space a β subsets a
[IN_MEASURABLE_BOREL_PLUS_MINUS] Theorem
|- βa f.
f β measurable a Borel β
fn_plus f β measurable a Borel β§ fn_minus f β measurable a Borel
[IN_MEASURABLE_BOREL_POS_SIMPLE_FN] Theorem
|- βm f.
measure_space m β§ (βs a x. pos_simple_fn m f s a x) β
f β measurable (m_space m,measurable_sets m) Borel
[IN_MEASURABLE_BOREL_POW] Theorem
|- βn a f.
sigma_algebra a β§ f β measurable a Borel β§
(βx. x β space a β f x β NegInf β§ f x β PosInf) β
(Ξ»x. f x pow n) β measurable a Borel
[IN_MEASURABLE_BOREL_SQR] Theorem
|- βa f g.
sigma_algebra a β§ f β measurable a Borel β§
(βx. x β space a β (g x = f x pow 2)) β
g β measurable a Borel
[IN_MEASURABLE_BOREL_SUB] Theorem
|- βa f g h.
sigma_algebra a β§ f β measurable a Borel β§
g β measurable a Borel β§ (βx. x β space a β (h x = f x β g x)) β
h β measurable a Borel
[IN_MEASURABLE_BOREL_SUM] Theorem
|- βa f g s.
FINITE s β§ sigma_algebra a β§
(βi. i β s β f i β measurable a Borel) β§
(βx. x β space a β (g x = SIGMA (Ξ»i. f i x) s)) β
g β measurable a Borel
[IN_MEASURE_PRESERVING] Theorem
|- βm1 m2 f.
f β measure_preserving m1 m2 β
f β
measurable (m_space m1,measurable_sets m1)
(m_space m2,measurable_sets m2) β§ measure_space m1 β§
measure_space m2 β§
βs.
s β measurable_sets m2 β
(measure m1 (PREIMAGE f s β© m_space m1) = measure m2 s)
[IN_SIGMA] Theorem
|- βsp a x. x β a β x β subsets (sigma sp a)
[LAMBDA_SYSTEM_ADDITIVE] Theorem
|- βg0 lam l1 l2.
algebra g0 β§ positive (space g0,subsets g0,lam) β
additive (space g0,lambda_system g0 lam,lam)
[LAMBDA_SYSTEM_ALGEBRA] Theorem
|- βg0 lam.
algebra g0 β§ positive (space g0,subsets g0,lam) β
algebra (space g0,lambda_system g0 lam)
[LAMBDA_SYSTEM_CARATHEODORY] Theorem
|- βgsig lam.
sigma_algebra gsig β§
outer_measure_space (space gsig,subsets gsig,lam) β
βf.
f β (π(:num) -> lambda_system gsig lam) β§
(βm n. m β n β DISJOINT (f m) (f n)) β
BIGUNION (IMAGE f π(:num)) β lambda_system gsig lam β§
lam o f sums lam (BIGUNION (IMAGE f π(:num)))
[LAMBDA_SYSTEM_COMPL] Theorem
|- βg0 lam l.
algebra g0 β§ positive (space g0,subsets g0,lam) β§
l β lambda_system g0 lam β
space g0 DIFF l β lambda_system g0 lam
[LAMBDA_SYSTEM_EMPTY] Theorem
|- βg0 lam.
algebra g0 β§ positive (space g0,subsets g0,lam) β
β
β lambda_system g0 lam
[LAMBDA_SYSTEM_INCREASING] Theorem
|- βg0 lam.
increasing (space g0,subsets g0,lam) β
increasing (space g0,lambda_system g0 lam,lam)
[LAMBDA_SYSTEM_INTER] Theorem
|- βg0 lam l1 l2.
algebra g0 β§ positive (space g0,subsets g0,lam) β§
l1 β lambda_system g0 lam β§ l2 β lambda_system g0 lam β
l1 β© l2 β lambda_system g0 lam
[LAMBDA_SYSTEM_POSITIVE] Theorem
|- βg0 lam.
positive (space g0,subsets g0,lam) β
positive (space g0,lambda_system g0 lam,lam)
[LAMBDA_SYSTEM_STRONG_ADDITIVE] Theorem
|- βg0 lam g l1 l2.
algebra g0 β§ positive (space g0,subsets g0,lam) β§
g β subsets g0 β§ DISJOINT l1 l2 β§ l1 β lambda_system g0 lam β§
l2 β lambda_system g0 lam β
(lam ((l1 βͺ l2) β© g) = lam (l1 β© g) + lam (l2 β© g))
[LAMBDA_SYSTEM_STRONG_SUM] Theorem
|- βg0 lam g f n.
algebra g0 β§ positive (space g0,subsets g0,lam) β§
g β subsets g0 β§ f β (π(:num) -> lambda_system g0 lam) β§
(βm n. m β n β DISJOINT (f m) (f n)) β
(sum (0,n) (lam o (Ξ»s. s β© g) o f) =
lam (BIGUNION (IMAGE f (count n)) β© g))
[MEASUBABLE_BIGUNION_LEMMA] Theorem
|- βa b f.
sigma_algebra a β§ sigma_algebra b β§ f β (space a -> space b) β§
(βs. s β subsets b β PREIMAGE f s β subsets a) β
βc.
countable c β§ c β IMAGE (PREIMAGE f) (subsets b) β
BIGUNION c β IMAGE (PREIMAGE f) (subsets b)
[MEASURABLE_BIGUNION_PROPERTY] Theorem
|- βa b f.
sigma_algebra a β§ sigma_algebra b β§ f β (space a -> space b) β§
(βs. s β subsets b β PREIMAGE f s β subsets a) β
βc.
c β subsets b β
(PREIMAGE f (BIGUNION c) = BIGUNION (IMAGE (PREIMAGE f) c))
[MEASURABLE_BOREL] Theorem
|- βf a.
f β measurable a Borel β
sigma_algebra a β§ f β (space a -> π(:extreal)) β§
βc. PREIMAGE f {x | x < c} β© space a β subsets a
[MEASURABLE_COMP] Theorem
|- βf g a b c.
f β measurable a b β§ g β measurable b c β g o f β measurable a c
[MEASURABLE_COMP_STRONG] Theorem
|- βf g a b c.
f β measurable a b β§ sigma_algebra c β§
g β (space b -> space c) β§
(βx.
x β subsets c β
PREIMAGE g x β© IMAGE f (space a) β subsets b) β
g o f β measurable a c
[MEASURABLE_COMP_STRONGER] Theorem
|- βf g a b c t.
f β measurable a b β§ sigma_algebra c β§
g β (space b -> space c) β§ IMAGE f (space a) β t β§
(βs. s β subsets c β PREIMAGE g s β© t β subsets b) β
g o f β measurable a c
[MEASURABLE_DIFF_PROPERTY] Theorem
|- βa b f.
sigma_algebra a β§ sigma_algebra b β§ f β (space a -> space b) β§
(βs. s β subsets b β PREIMAGE f s β subsets a) β
βs.
s β subsets b β
(PREIMAGE f (space b DIFF s) = space a DIFF PREIMAGE f s)
[MEASURABLE_I] Theorem
|- βa. sigma_algebra a β I β measurable a a
[MEASURABLE_LIFT] Theorem
|- βf a b.
f β measurable a b β
f β measurable a (sigma (space b) (subsets b))
[MEASURABLE_POW_TO_POW] Theorem
|- βm f.
measure_space m β§ (measurable_sets m = POW (m_space m)) β
f β measurable (m_space m,measurable_sets m) (π(:Ξ²),POW π(:Ξ²))
[MEASURABLE_POW_TO_POW_IMAGE] Theorem
|- βm f.
measure_space m β§ (measurable_sets m = POW (m_space m)) β
f β
measurable (m_space m,measurable_sets m)
(IMAGE f (m_space m),POW (IMAGE f (m_space m)))
[MEASURABLE_PROD_SIGMA] Theorem
|- βa a1 a2 f.
sigma_algebra a β§ FST o f β measurable a a1 β§
SND o f β measurable a a2 β
f β
measurable a
(sigma (space a1 Γ space a2)
(prod_sets (subsets a1) (subsets a2)))
[MEASURABLE_RANGE_REDUCE] Theorem
|- βm f s.
measure_space m β§
f β measurable (m_space m,measurable_sets m) (s,POW s) β§ s β β
β
f β
measurable (m_space m,measurable_sets m)
(s β© IMAGE f (m_space m),POW (s β© IMAGE f (m_space m)))
[MEASURABLE_SETS_SUBSET_SPACE] Theorem
|- βm s. measure_space m β§ s β measurable_sets m β s β m_space m
[MEASURABLE_SIGMA] Theorem
|- βf a b sp.
sigma_algebra a β§ subset_class sp b β§ f β (space a -> sp) β§
(βs. s β b β PREIMAGE f s β© space a β subsets a) β
f β measurable a (sigma sp b)
[MEASURABLE_SIGMA_PREIMAGES] Theorem
|- βa b f.
sigma_algebra a β§ sigma_algebra b β§ f β (space a -> space b) β§
(βs. s β subsets b β PREIMAGE f s β subsets a) β
sigma_algebra (space a,IMAGE (PREIMAGE f) (subsets b))
[MEASURABLE_SUBSET] Theorem
|- βa b. measurable a b β measurable a (sigma (space b) (subsets b))
[MEASURABLE_UP_LIFT] Theorem
|- βsp a b c f.
f β measurable (sp,a) c β§ sigma_algebra (sp,b) β§ a β b β
f β measurable (sp,b) c
[MEASURABLE_UP_SIGMA] Theorem
|- βa b. measurable a b β measurable (sigma (space a) (subsets a)) b
[MEASURABLE_UP_SUBSET] Theorem
|- βsp a b c.
a β b β§ sigma_algebra (sp,b) β
measurable (sp,a) c β measurable (sp,b) c
[MEASURE_ADDITIVE] Theorem
|- βm s t u.
measure_space m β§ s β measurable_sets m β§
t β measurable_sets m β§ DISJOINT s t β§ (u = s βͺ t) β
(measure m u = measure m s + measure m t)
[MEASURE_COMPL] Theorem
|- βm s.
measure_space m β§ s β measurable_sets m β
(measure m (m_space m DIFF s) =
measure m (m_space m) β measure m s)
[MEASURE_COMPL_SUBSET] Theorem
|- βm s.
measure_space m β§ s β measurable_sets m β§
t β measurable_sets m β§ t β s β
(measure m (s DIFF t) = measure m s β measure m t)
[MEASURE_COUNTABLE_INCREASING] Theorem
|- βm s f.
measure_space m β§ f β (π(:num) -> measurable_sets m) β§
(f 0 = β
) β§ (βn. f n β f (SUC n)) β§
(s = BIGUNION (IMAGE f π(:num))) β
measure m o f --> measure m s
[MEASURE_COUNTABLY_ADDITIVE] Theorem
|- βm s f.
measure_space m β§ f β (π(:num) -> measurable_sets m) β§
(βm n. m β n β DISJOINT (f m) (f n)) β§
(s = BIGUNION (IMAGE f π(:num))) β
measure m o f sums measure m s
[MEASURE_DOWN] Theorem
|- βm0 m1.
sigma_algebra (m_space m0,measurable_sets m0) β§
measurable_sets m0 β measurable_sets m1 β§
(measure m0 = measure m1) β§ measure_space m1 β
measure_space m0
[MEASURE_EMPTY] Theorem
|- βm. measure_space m β (measure m β
= 0)
[MEASURE_PRESERVING_LIFT] Theorem
|- βm1 m2 a f.
measure_space m1 β§ measure_space m2 β§
(measurable_sets m2 = subsets (sigma (m_space m2) a)) β§
f β measure_preserving m1 (m_space m2,a,measure m2) β
f β measure_preserving m1 m2
[MEASURE_PRESERVING_SUBSET] Theorem
|- βm1 m2 a.
measure_space m1 β§ measure_space m2 β§
(measurable_sets m2 = subsets (sigma (m_space m2) a)) β
measure_preserving m1 (m_space m2,a,measure m2) β
measure_preserving m1 m2
[MEASURE_PRESERVING_UP_LIFT] Theorem
|- βm1 m2 f.
measure_space m1 β§
f β measure_preserving (m_space m1,a,measure m1) m2 β§
sigma_algebra (m_space m1,measurable_sets m1) β§
a β measurable_sets m1 β
f β measure_preserving m1 m2
[MEASURE_PRESERVING_UP_SIGMA] Theorem
|- βm1 m2 a.
measure_space m1 β§
(measurable_sets m1 = subsets (sigma (m_space m1) a)) β
measure_preserving (m_space m1,a,measure m1) m2 β
measure_preserving m1 m2
[MEASURE_PRESERVING_UP_SUBSET] Theorem
|- βm1 m2.
measure_space m1 β§ a β measurable_sets m1 β§
sigma_algebra (m_space m1,measurable_sets m1) β
measure_preserving (m_space m1,a,measure m1) m2 β
measure_preserving m1 m2
[MEASURE_REAL_SUM_IMAGE] Theorem
|- βm s.
measure_space m β§ s β measurable_sets m β§
(βx. x β s β {x} β measurable_sets m) β§ FINITE s β
(measure m s = SIGMA (Ξ»x. measure m {x}) s)
[MEASURE_SPACE_ADDITIVE] Theorem
|- βm. measure_space m β additive m
[MEASURE_SPACE_BIGINTER] Theorem
|- βm s.
measure_space m β§ (βn. s n β measurable_sets m) β
BIGINTER (IMAGE s π(:num)) β measurable_sets m
[MEASURE_SPACE_BIGUNION] Theorem
|- βm s.
measure_space m β§ (βn. s n β measurable_sets m) β
BIGUNION (IMAGE s π(:num)) β measurable_sets m
[MEASURE_SPACE_CMUL] Theorem
|- βm c.
measure_space m β§ 0 β€ c β
measure_space
(m_space m,measurable_sets m,(Ξ»a. c * measure m a))
[MEASURE_SPACE_DIFF] Theorem
|- βm s t.
measure_space m β§ s β measurable_sets m β§
t β measurable_sets m β
s DIFF t β measurable_sets m
[MEASURE_SPACE_EMPTY_MEASURABLE] Theorem
|- βm. measure_space m β β
β measurable_sets m
[MEASURE_SPACE_INCREASING] Theorem
|- βm. measure_space m β increasing m
[MEASURE_SPACE_INTER] Theorem
|- βm s t.
measure_space m β§ s β measurable_sets m β§
t β measurable_sets m β
s β© t β measurable_sets m
[MEASURE_SPACE_IN_MSPACE] Theorem
|- βm A.
measure_space m β§ A β measurable_sets m β
βx. x β A β x β m_space m
[MEASURE_SPACE_MSPACE_MEASURABLE] Theorem
|- βm. measure_space m β m_space m β measurable_sets m
[MEASURE_SPACE_POSITIVE] Theorem
|- βm. measure_space m β positive m
[MEASURE_SPACE_REDUCE] Theorem
|- βm. (m_space m,measurable_sets m,measure m) = m
[MEASURE_SPACE_RESTRICTED] Theorem
|- βm s.
measure_space m β§ s β measurable_sets m β
measure_space
(s,IMAGE (Ξ»t. s β© t) (measurable_sets m),measure m)
[MEASURE_SPACE_SUBSET] Theorem
|- βs s' m.
s' β s β§ measure_space (s,POW s,m) β measure_space (s',POW s',m)
[MEASURE_SPACE_SUBSET_MSPACE] Theorem
|- βA m. measure_space m β§ A β measurable_sets m β A β m_space m
[MEASURE_SPACE_UNION] Theorem
|- βm s t.
measure_space m β§ s β measurable_sets m β§
t β measurable_sets m β
s βͺ t β measurable_sets m
[MONOTONE_CONVERGENCE] Theorem
|- βm s f.
measure_space m β§ f β (π(:num) -> measurable_sets m) β§
(βn. f n β f (SUC n)) β§ (s = BIGUNION (IMAGE f π(:num))) β
measure m o f --> measure m s
[MONOTONE_CONVERGENCE2] Theorem
|- βm f.
measure_space m β§ f β (π(:num) -> measurable_sets m) β§
(βn. f n β f (SUC n)) β
measure m o f --> measure m (BIGUNION (IMAGE f π(:num)))
[MONOTONE_CONVERGENCE_BIGINTER] Theorem
|- βm s f.
measure_space m β§ f β (π(:num) -> measurable_sets m) β§
(βn. f (SUC n) β f n) β§ (s = BIGINTER (IMAGE f π(:num))) β
measure m o f --> measure m s
[MONOTONE_CONVERGENCE_BIGINTER2] Theorem
|- βm f.
measure_space m β§ f β (π(:num) -> measurable_sets m) β§
(βn. f (SUC n) β f n) β
measure m o f --> measure m (BIGINTER (IMAGE f π(:num)))
[OUTER_MEASURE_SPACE_POSITIVE] Theorem
|- βm. outer_measure_space m β positive m
[POW_ALGEBRA] Theorem
|- algebra (sp,POW sp)
[POW_SIGMA_ALGEBRA] Theorem
|- sigma_algebra (sp,POW sp)
[SIGMA_ALGEBRA] Theorem
|- βp.
sigma_algebra p β
subset_class (space p) (subsets p) β§ β
β subsets p β§
(βs. s β subsets p β space p DIFF s β subsets p) β§
βc. countable c β§ c β subsets p β BIGUNION c β subsets p
[SIGMA_ALGEBRA_ALGEBRA] Theorem
|- βa. sigma_algebra a β algebra a
[SIGMA_ALGEBRA_ALT] Theorem
|- βa.
sigma_algebra a β
algebra a β§
βf.
f β (π(:num) -> subsets a) β
BIGUNION (IMAGE f π(:num)) β subsets a
[SIGMA_ALGEBRA_ALT_DISJOINT] Theorem
|- βa.
sigma_algebra a β
algebra a β§
βf.
f β (π(:num) -> subsets a) β§
(βm n. m β n β DISJOINT (f m) (f n)) β
BIGUNION (IMAGE f π(:num)) β subsets a
[SIGMA_ALGEBRA_ALT_MONO] Theorem
|- βa.
sigma_algebra a β
algebra a β§
βf.
f β (π(:num) -> subsets a) β§ (f 0 = β
) β§
(βn. f n β f (SUC n)) β
BIGUNION (IMAGE f π(:num)) β subsets a
[SIGMA_ALGEBRA_BOREL] Theorem
|- sigma_algebra Borel
[SIGMA_ALGEBRA_COUNTABLE_UNION] Theorem
|- βa c.
sigma_algebra a β§ countable c β§ c β subsets a β
BIGUNION c β subsets a
[SIGMA_ALGEBRA_ENUM] Theorem
|- βa f.
sigma_algebra a β§ f β (π(:num) -> subsets a) β
BIGUNION (IMAGE f π(:num)) β subsets a
[SIGMA_ALGEBRA_FN] Theorem
|- βa.
sigma_algebra a β
subset_class (space a) (subsets a) β§ β
β subsets a β§
(βs. s β subsets a β space a DIFF s β subsets a) β§
βf.
f β (π(:num) -> subsets a) β
BIGUNION (IMAGE f π(:num)) β subsets a
[SIGMA_ALGEBRA_FN_BIGINTER] Theorem
|- βa.
sigma_algebra a β
subset_class (space a) (subsets a) β§ β
β subsets a β§
(βs. s β subsets a β space a DIFF s β subsets a) β§
βf.
f β (π(:num) -> subsets a) β
BIGINTER (IMAGE f π(:num)) β subsets a
[SIGMA_ALGEBRA_FN_DISJOINT] Theorem
|- βa.
sigma_algebra a β
subset_class (space a) (subsets a) β§ β
β subsets a β§
(βs. s β subsets a β space a DIFF s β subsets a) β§
(βs t. s β subsets a β§ t β subsets a β s βͺ t β subsets a) β§
βf.
f β (π(:num) -> subsets a) β§
(βm n. m β n β DISJOINT (f m) (f n)) β
BIGUNION (IMAGE f π(:num)) β subsets a
[SIGMA_ALGEBRA_SIGMA] Theorem
|- βsp sts. subset_class sp sts β sigma_algebra (sigma sp sts)
[SIGMA_POW] Theorem
|- βs. sigma s (POW s) = (s,POW s)
[SIGMA_PROPERTY] Theorem
|- βsp p a.
subset_class sp p β§ β
β p β§ a β p β§
(βs. s β p β© subsets (sigma sp a) β sp DIFF s β p) β§
(βc.
countable c β§ c β p β© subsets (sigma sp a) β
BIGUNION c β p) β
subsets (sigma sp a) β p
[SIGMA_PROPERTY_ALT] Theorem
|- βsp p a.
subset_class sp p β§ β
β p β§ a β p β§
(βs. s β p β© subsets (sigma sp a) β sp DIFF s β p) β§
(βf.
f β (π(:num) -> p β© subsets (sigma sp a)) β
BIGUNION (IMAGE f π(:num)) β p) β
subsets (sigma sp a) β p
[SIGMA_PROPERTY_DISJOINT] Theorem
|- βsp p a.
algebra (sp,a) β§ a β p β§
(βs. s β p β© subsets (sigma sp a) β sp DIFF s β p) β§
(βf.
f β (π(:num) -> p β© subsets (sigma sp a)) β§ (f 0 = β
) β§
(βn. f n β f (SUC n)) β
BIGUNION (IMAGE f π(:num)) β p) β§
(βf.
f β (π(:num) -> p β© subsets (sigma sp a)) β§
(βm n. m β n β DISJOINT (f m) (f n)) β
BIGUNION (IMAGE f π(:num)) β p) β
subsets (sigma sp a) β p
[SIGMA_PROPERTY_DISJOINT_LEMMA] Theorem
|- βsp a p.
algebra (sp,a) β§ a β p β§ closed_cdi (sp,p) β
subsets (sigma sp a) β p
[SIGMA_PROPERTY_DISJOINT_LEMMA1] Theorem
|- βa.
algebra a β
βs t.
s β subsets a β§ t β subsets (smallest_closed_cdi a) β
s β© t β subsets (smallest_closed_cdi a)
[SIGMA_PROPERTY_DISJOINT_LEMMA2] Theorem
|- βa.
algebra a β
βs t.
s β subsets (smallest_closed_cdi a) β§
t β subsets (smallest_closed_cdi a) β
s β© t β subsets (smallest_closed_cdi a)
[SIGMA_PROPERTY_DISJOINT_WEAK] Theorem
|- βsp p a.
algebra (sp,a) β§ a β p β§ subset_class sp p β§
(βs. s β p β sp DIFF s β p) β§
(βf.
f β (π(:num) -> p) β§ (f 0 = β
) β§ (βn. f n β f (SUC n)) β
BIGUNION (IMAGE f π(:num)) β p) β§
(βf.
f β (π(:num) -> p) β§ (βm n. m β n β DISJOINT (f m) (f n)) β
BIGUNION (IMAGE f π(:num)) β p) β
subsets (sigma sp a) β p
[SIGMA_REDUCE] Theorem
|- βsp a. (sp,subsets (sigma sp a)) = sigma sp a
[SIGMA_SUBSET] Theorem
|- βa b.
sigma_algebra b β§ a β subsets b β
subsets (sigma (space b) a) β subsets b
[SIGMA_SUBSET_MEASURABLE_SETS] Theorem
|- βa m.
measure_space m β§ a β measurable_sets m β
subsets (sigma (m_space m) a) β measurable_sets m
[SIGMA_SUBSET_SUBSETS] Theorem
|- βsp a. a β subsets (sigma sp a)
[SMALLEST_CLOSED_CDI] Theorem
|- βa.
algebra a β
subsets a β subsets (smallest_closed_cdi a) β§
closed_cdi (smallest_closed_cdi a) β§
subset_class (space a) (subsets (smallest_closed_cdi a))
[SPACE] Theorem
|- βa. (space a,subsets a) = a
[SPACE_BOREL] Theorem
|- space Borel = π(:extreal)
[SPACE_SIGMA] Theorem
|- βsp a. space (sigma sp a) = sp
[SPACE_SMALLEST_CLOSED_CDI] Theorem
|- βa. space (smallest_closed_cdi a) = space a
[STRONG_MEASURE_SPACE_SUBSET] Theorem
|- βs s'.
s' β m_space s β§ measure_space s β§ POW s' β measurable_sets s β
measure_space (s',POW s',measure s)
[SUBADDITIVE] Theorem
|- βm s t u.
subadditive m β§ s β measurable_sets m β§ t β measurable_sets m β§
(u = s βͺ t) β
measure m u β€ measure m s + measure m t
[SUBSET_BIGINTER] Theorem
|- βX P. X β BIGINTER P β βY. Y β P β X β Y
[UNIV_SIGMA_ALGEBRA] Theorem
|- sigma_algebra (π(:Ξ±),π(:Ξ± -> bool))
[finite_additivity_sufficient_for_finite_spaces] Theorem
|- βs m.
sigma_algebra s β§ FINITE (space s) β§
positive (space s,subsets s,m) β§
additive (space s,subsets s,m) β
measure_space (space s,subsets s,m)
[finite_additivity_sufficient_for_finite_spaces2] Theorem
|- βm.
sigma_algebra (m_space m,measurable_sets m) β§
FINITE (m_space m) β§ positive m β§ additive m β
measure_space m
[indicator_fn_split] Theorem
|- βr s b.
FINITE r β§ (BIGUNION (IMAGE b r) = s) β§
(βi j. i β r β§ j β r β§ i β j β DISJOINT (b i) (b j)) β
βa.
a β s β
(indicator_fn a =
(Ξ»x. SIGMA (Ξ»i. indicator_fn (a β© b i) x) r))
[indicator_fn_suminf] Theorem
|- βa x.
(βm n. m β n β DISJOINT (a m) (a n)) β
(suminf (Ξ»i. indicator_fn (a i) x) =
indicator_fn (BIGUNION (IMAGE a π(:num))) x)
[measure_split] Theorem
|- βr b m.
measure_space m β§ FINITE r β§
(BIGUNION (IMAGE b r) = m_space m) β§
(βi j. i β r β§ j β r β§ i β j β DISJOINT (b i) (b j)) β§
(βi. i β r β b i β measurable_sets m) β
βa.
a β measurable_sets m β
(measure m a = SIGMA (Ξ»i. measure m (a β© b i)) r)
*)
end
HOL 4, Kananaskis-10