Structure netsTheory
signature netsTheory =
sig
type thm = Thm.thm
(* Definitions *)
val bounded : thm
val dorder : thm
val tends : thm
val tendsto : thm
(* Theorems *)
val DORDER_LEMMA : thm
val DORDER_NGE : thm
val DORDER_TENDSTO : thm
val LIM_TENDS : thm
val LIM_TENDS2 : thm
val MR1_BOUNDED : thm
val MTOP_TENDS : thm
val MTOP_TENDS_UNIQ : thm
val NET_ABS : thm
val NET_ADD : thm
val NET_CONV_BOUNDED : thm
val NET_CONV_IBOUNDED : thm
val NET_CONV_NZ : thm
val NET_DIV : thm
val NET_INV : thm
val NET_LE : thm
val NET_MUL : thm
val NET_NEG : thm
val NET_NULL : thm
val NET_NULL_ADD : thm
val NET_NULL_CMUL : thm
val NET_NULL_MUL : thm
val NET_SUB : thm
val SEQ_TENDS : thm
val nets_grammars : type_grammar.grammar * term_grammar.grammar
(*
[topology] Parent theory of "nets"
[bounded] Definition
|- ∀m g f.
bounded (m,g) f ⇔ ∃k x N. g N N ∧ ∀n. g n N ⇒ dist m (f n,x) < k
[dorder] Definition
|- ∀g.
dorder g ⇔
∀x y. g x x ∧ g y y ⇒ ∃z. g z z ∧ ∀w. g w z ⇒ g w x ∧ g w y
[tends] Definition
|- ∀s l top g.
(s tends l) (top,g) ⇔
∀N. neigh top (N,l) ⇒ ∃n. g n n ∧ ∀m. g m n ⇒ N (s m)
[tendsto] Definition
|- ∀m x y z.
tendsto (m,x) y z ⇔
0 < dist m (x,y) ∧ dist m (x,y) ≤ dist m (x,z)
[DORDER_LEMMA] Theorem
|- ∀g.
dorder g ⇒
∀P Q.
(∃n. g n n ∧ ∀m. g m n ⇒ P m) ∧
(∃n. g n n ∧ ∀m. g m n ⇒ Q m) ⇒
∃n. g n n ∧ ∀m. g m n ⇒ P m ∧ Q m
[DORDER_NGE] Theorem
|- dorder $>=
[DORDER_TENDSTO] Theorem
|- ∀m x. dorder (tendsto (m,x))
[LIM_TENDS] Theorem
|- ∀m1 m2 f x0 y0.
limpt (mtop m1) x0 𝕌(:α) ⇒
((f tends y0) (mtop m2,tendsto (m1,x0)) ⇔
∀e.
0 < e ⇒
∃d.
0 < d ∧
∀x.
0 < dist m1 (x,x0) ∧ dist m1 (x,x0) ≤ d ⇒
dist m2 (f x,y0) < e)
[LIM_TENDS2] Theorem
|- ∀m1 m2 f x0 y0.
limpt (mtop m1) x0 𝕌(:α) ⇒
((f tends y0) (mtop m2,tendsto (m1,x0)) ⇔
∀e.
0 < e ⇒
∃d.
0 < d ∧
∀x.
0 < dist m1 (x,x0) ∧ dist m1 (x,x0) < d ⇒
dist m2 (f x,y0) < e)
[MR1_BOUNDED] Theorem
|- ∀g f. bounded (mr1,g) f ⇔ ∃k N. g N N ∧ ∀n. g n N ⇒ abs (f n) < k
[MTOP_TENDS] Theorem
|- ∀d g x x0.
(x tends x0) (mtop d,g) ⇔
∀e. 0 < e ⇒ ∃n. g n n ∧ ∀m. g m n ⇒ dist d (x m,x0) < e
[MTOP_TENDS_UNIQ] Theorem
|- ∀g d.
dorder g ⇒
(x tends x0) (mtop d,g) ∧ (x tends x1) (mtop d,g) ⇒
(x0 = x1)
[NET_ABS] Theorem
|- ∀g x x0.
(x tends x0) (mtop mr1,g) ⇒
((λn. abs (x n)) tends abs x0) (mtop mr1,g)
[NET_ADD] Theorem
|- ∀g.
dorder g ⇒
∀x x0 y y0.
(x tends x0) (mtop mr1,g) ∧ (y tends y0) (mtop mr1,g) ⇒
((λn. x n + y n) tends (x0 + y0)) (mtop mr1,g)
[NET_CONV_BOUNDED] Theorem
|- ∀g x x0. (x tends x0) (mtop mr1,g) ⇒ bounded (mr1,g) x
[NET_CONV_IBOUNDED] Theorem
|- ∀g x x0.
(x tends x0) (mtop mr1,g) ∧ x0 ≠ 0 ⇒
bounded (mr1,g) (λn. inv (x n))
[NET_CONV_NZ] Theorem
|- ∀g x x0.
(x tends x0) (mtop mr1,g) ∧ x0 ≠ 0 ⇒
∃N. g N N ∧ ∀n. g n N ⇒ x n ≠ 0
[NET_DIV] Theorem
|- ∀g.
dorder g ⇒
∀x x0 y y0.
(x tends x0) (mtop mr1,g) ∧ (y tends y0) (mtop mr1,g) ∧
y0 ≠ 0 ⇒
((λn. x n / y n) tends (x0 / y0)) (mtop mr1,g)
[NET_INV] Theorem
|- ∀g.
dorder g ⇒
∀x x0.
(x tends x0) (mtop mr1,g) ∧ x0 ≠ 0 ⇒
((λn. inv (x n)) tends inv x0) (mtop mr1,g)
[NET_LE] Theorem
|- ∀g.
dorder g ⇒
∀x x0 y y0.
(x tends x0) (mtop mr1,g) ∧ (y tends y0) (mtop mr1,g) ∧
(∃N. g N N ∧ ∀n. g n N ⇒ x n ≤ y n) ⇒
x0 ≤ y0
[NET_MUL] Theorem
|- ∀g.
dorder g ⇒
∀x y x0 y0.
(x tends x0) (mtop mr1,g) ∧ (y tends y0) (mtop mr1,g) ⇒
((λn. x n * y n) tends (x0 * y0)) (mtop mr1,g)
[NET_NEG] Theorem
|- ∀g.
dorder g ⇒
∀x x0.
(x tends x0) (mtop mr1,g) ⇔
((λn. -x n) tends -x0) (mtop mr1,g)
[NET_NULL] Theorem
|- ∀g x x0.
(x tends x0) (mtop mr1,g) ⇔
((λn. x n − x0) tends 0) (mtop mr1,g)
[NET_NULL_ADD] Theorem
|- ∀g.
dorder g ⇒
∀x y.
(x tends 0) (mtop mr1,g) ∧ (y tends 0) (mtop mr1,g) ⇒
((λn. x n + y n) tends 0) (mtop mr1,g)
[NET_NULL_CMUL] Theorem
|- ∀g k x.
(x tends 0) (mtop mr1,g) ⇒ ((λn. k * x n) tends 0) (mtop mr1,g)
[NET_NULL_MUL] Theorem
|- ∀g.
dorder g ⇒
∀x y.
bounded (mr1,g) x ∧ (y tends 0) (mtop mr1,g) ⇒
((λn. x n * y n) tends 0) (mtop mr1,g)
[NET_SUB] Theorem
|- ∀g.
dorder g ⇒
∀x x0 y y0.
(x tends x0) (mtop mr1,g) ∧ (y tends y0) (mtop mr1,g) ⇒
((λn. x n − y n) tends (x0 − y0)) (mtop mr1,g)
[SEQ_TENDS] Theorem
|- ∀d x x0.
(x tends x0) (mtop d,$>=) ⇔
∀e. 0 < e ⇒ ∃N. ∀n. n ≥ N ⇒ dist d (x n,x0) < e
*)
end
HOL 4, Kananaskis-10