Structure normalFormsTheory
signature normalFormsTheory =
sig
type thm = Thm.thm
(* Definitions *)
val EXT_POINT_DEF : thm
val UNIV_POINT_DEF : thm
(* Theorems *)
val EXT_POINT : thm
val UNIV_POINT : thm
val normalForms_grammars : type_grammar.grammar * term_grammar.grammar
(*
[bool] Parent theory of "normalForms"
[EXT_POINT_DEF] Definition
|- ∀f g. (f (EXT_POINT f g) = g (EXT_POINT f g)) ⇒ (f = g)
[UNIV_POINT_DEF] Definition
|- ∀p. p (UNIV_POINT p) ⇒ ∀x. p x
[EXT_POINT] Theorem
|- ∀f g. (f (EXT_POINT f g) = g (EXT_POINT f g)) ⇔ (f = g)
[UNIV_POINT] Theorem
|- ∀p. p (UNIV_POINT p) ⇔ ∀x. p x
*)
end
HOL 4, Kananaskis-10