Structure optionTheory
signature optionTheory =
sig
type thm = Thm.thm
(* Definitions *)
val IS_NONE_DEF : thm
val IS_SOME_DEF : thm
val NONE_DEF : thm
val OPTION_APPLY_def : thm
val OPTION_BIND_def : thm
val OPTION_CHOICE_def : thm
val OPTION_GUARD_def : thm
val OPTION_IGNORE_BIND_def : thm
val OPTION_JOIN_DEF : thm
val OPTION_MAP2_DEF : thm
val OPTION_MAP_DEF : thm
val OPTREL_def : thm
val SOME_DEF : thm
val THE_DEF : thm
val option_REP_ABS_DEF : thm
val option_TY_DEF : thm
val option_case_def : thm
val some_def : thm
(* Theorems *)
val EXISTS_OPTION : thm
val FORALL_OPTION : thm
val IF_EQUALS_OPTION : thm
val IF_NONE_EQUALS_OPTION : thm
val IS_NONE_EQ_NONE : thm
val NOT_IS_SOME_EQ_NONE : thm
val NOT_NONE_SOME : thm
val NOT_SOME_NONE : thm
val OPTION_APPLY_MAP2 : thm
val OPTION_APPLY_o : thm
val OPTION_BIND_EQUALS_OPTION : thm
val OPTION_BIND_cong : thm
val OPTION_CHOICE_EQ_NONE : thm
val OPTION_GUARD_COND : thm
val OPTION_GUARD_EQ_THM : thm
val OPTION_IGNORE_BIND_thm : thm
val OPTION_JOIN_EQ_SOME : thm
val OPTION_MAP2_NONE : thm
val OPTION_MAP2_SOME : thm
val OPTION_MAP2_THM : thm
val OPTION_MAP2_cong : thm
val OPTION_MAP_COMPOSE : thm
val OPTION_MAP_CONG : thm
val OPTION_MAP_EQ_NONE : thm
val OPTION_MAP_EQ_NONE_both_ways : thm
val OPTION_MAP_EQ_SOME : thm
val OPTREL_MONO : thm
val OPTREL_refl : thm
val SOME_11 : thm
val SOME_APPLY_PERMUTE : thm
val SOME_SOME_APPLY : thm
val datatype_option : thm
val option_Axiom : thm
val option_CLAUSES : thm
val option_case_ID : thm
val option_case_SOME_ID : thm
val option_case_compute : thm
val option_case_cong : thm
val option_induction : thm
val option_nchotomy : thm
val some_EQ : thm
val some_F : thm
val some_elim : thm
val some_intro : thm
val option_grammars : type_grammar.grammar * term_grammar.grammar
val option_Induct : thm
val option_CASES : thm
(*
[normalForms] Parent theory of "option"
[one] Parent theory of "option"
[sum] Parent theory of "option"
[IS_NONE_DEF] Definition
|- (∀x. IS_NONE (SOME x) ⇔ F) ∧ (IS_NONE NONE ⇔ T)
[IS_SOME_DEF] Definition
|- (∀x. IS_SOME (SOME x) ⇔ T) ∧ (IS_SOME NONE ⇔ F)
[NONE_DEF] Definition
|- NONE = option_ABS (INR ())
[OPTION_APPLY_def] Definition
|- (∀x. NONE <*> x = NONE) ∧ ∀f x. SOME f <*> x = OPTION_MAP f x
[OPTION_BIND_def] Definition
|- (∀f. OPTION_BIND NONE f = NONE) ∧
∀x f. OPTION_BIND (SOME x) f = f x
[OPTION_CHOICE_def] Definition
|- (∀m2. OPTION_CHOICE NONE m2 = m2) ∧
∀x m2. OPTION_CHOICE (SOME x) m2 = SOME x
[OPTION_GUARD_def] Definition
|- (OPTION_GUARD T = SOME ()) ∧ (OPTION_GUARD F = NONE)
[OPTION_IGNORE_BIND_def] Definition
|- ∀m1 m2. OPTION_IGNORE_BIND m1 m2 = OPTION_BIND m1 (K m2)
[OPTION_JOIN_DEF] Definition
|- (OPTION_JOIN NONE = NONE) ∧ ∀x. OPTION_JOIN (SOME x) = x
[OPTION_MAP2_DEF] Definition
|- ∀f x y.
OPTION_MAP2 f x y =
if IS_SOME x ∧ IS_SOME y then SOME (f (THE x) (THE y)) else NONE
[OPTION_MAP_DEF] Definition
|- (∀f x. OPTION_MAP f (SOME x) = SOME (f x)) ∧
∀f. OPTION_MAP f NONE = NONE
[OPTREL_def] Definition
|- ∀R x y.
OPTREL R x y ⇔
(x = NONE) ∧ (y = NONE) ∨
∃x0 y0. (x = SOME x0) ∧ (y = SOME y0) ∧ R x0 y0
[SOME_DEF] Definition
|- ∀x. SOME x = option_ABS (INL x)
[THE_DEF] Definition
|- ∀x. THE (SOME x) = x
[option_REP_ABS_DEF] Definition
|- (∀a. option_ABS (option_REP a) = a) ∧
∀r. (λx. T) r ⇔ (option_REP (option_ABS r) = r)
[option_TY_DEF] Definition
|- ∃rep. TYPE_DEFINITION (λx. T) rep
[option_case_def] Definition
|- (∀v f. option_CASE NONE v f = v) ∧
∀x v f. option_CASE (SOME x) v f = f x
[some_def] Definition
|- ∀P. $some P = if ∃x. P x then SOME (@x. P x) else NONE
[EXISTS_OPTION] Theorem
|- (∃opt. P opt) ⇔ P NONE ∨ ∃x. P (SOME x)
[FORALL_OPTION] Theorem
|- (∀opt. P opt) ⇔ P NONE ∧ ∀x. P (SOME x)
[IF_EQUALS_OPTION] Theorem
|- (((if P then SOME x else NONE) = NONE) ⇔ ¬P) ∧
(((if P then NONE else SOME x) = NONE) ⇔ P) ∧
(((if P then SOME x else NONE) = SOME y) ⇔ P ∧ (x = y)) ∧
(((if P then NONE else SOME x) = SOME y) ⇔ ¬P ∧ (x = y))
[IF_NONE_EQUALS_OPTION] Theorem
|- (((if P then X else NONE) = NONE) ⇔ P ⇒ IS_NONE X) ∧
(((if P then NONE else X) = NONE) ⇔ IS_SOME X ⇒ P) ∧
(((if P then X else NONE) = SOME x) ⇔ P ∧ (X = SOME x)) ∧
(((if P then NONE else X) = SOME x) ⇔ ¬P ∧ (X = SOME x))
[IS_NONE_EQ_NONE] Theorem
|- ∀x. IS_NONE x ⇔ (x = NONE)
[NOT_IS_SOME_EQ_NONE] Theorem
|- ∀x. ¬IS_SOME x ⇔ (x = NONE)
[NOT_NONE_SOME] Theorem
|- ∀x. NONE ≠ SOME x
[NOT_SOME_NONE] Theorem
|- ∀x. SOME x ≠ NONE
[OPTION_APPLY_MAP2] Theorem
|- OPTION_MAP f x <*> y = OPTION_MAP2 f x y
[OPTION_APPLY_o] Theorem
|- SOME $o <*> f <*> g <*> x = f <*> (g <*> x)
[OPTION_BIND_EQUALS_OPTION] Theorem
|- ((OPTION_BIND p f = NONE) ⇔
(p = NONE) ∨ ∃x. (p = SOME x) ∧ (f x = NONE)) ∧
((OPTION_BIND p f = SOME y) ⇔ ∃x. (p = SOME x) ∧ (f x = SOME y))
[OPTION_BIND_cong] Theorem
|- ∀o1 o2 f1 f2.
(o1 = o2) ∧ (∀x. (o2 = SOME x) ⇒ (f1 x = f2 x)) ⇒
(OPTION_BIND o1 f1 = OPTION_BIND o2 f2)
[OPTION_CHOICE_EQ_NONE] Theorem
|- (OPTION_CHOICE m1 m2 = NONE) ⇔ (m1 = NONE) ∧ (m2 = NONE)
[OPTION_GUARD_COND] Theorem
|- OPTION_GUARD b = if b then SOME () else NONE
[OPTION_GUARD_EQ_THM] Theorem
|- ((OPTION_GUARD b = SOME ()) ⇔ b) ∧ ((OPTION_GUARD b = NONE) ⇔ ¬b)
[OPTION_IGNORE_BIND_thm] Theorem
|- (OPTION_IGNORE_BIND NONE m = NONE) ∧
(OPTION_IGNORE_BIND (SOME v) m = m)
[OPTION_JOIN_EQ_SOME] Theorem
|- ∀x y. (OPTION_JOIN x = SOME y) ⇔ (x = SOME (SOME y))
[OPTION_MAP2_NONE] Theorem
|- (OPTION_MAP2 f o1 o2 = NONE) ⇔ (o1 = NONE) ∨ (o2 = NONE)
[OPTION_MAP2_SOME] Theorem
|- (OPTION_MAP2 f o1 o2 = SOME v) ⇔
∃x1 x2. (o1 = SOME x1) ∧ (o2 = SOME x2) ∧ (v = f x1 x2)
[OPTION_MAP2_THM] Theorem
|- (OPTION_MAP2 f (SOME x) (SOME y) = SOME (f x y)) ∧
(OPTION_MAP2 f (SOME x) NONE = NONE) ∧
(OPTION_MAP2 f NONE (SOME y) = NONE) ∧
(OPTION_MAP2 f NONE NONE = NONE)
[OPTION_MAP2_cong] Theorem
|- ∀x1 x2 y1 y2 f1 f2.
(x1 = x2) ∧ (y1 = y2) ∧
(∀x y. (x2 = SOME x) ∧ (y2 = SOME y) ⇒ (f1 x y = f2 x y)) ⇒
(OPTION_MAP2 f1 x1 y1 = OPTION_MAP2 f2 x2 y2)
[OPTION_MAP_COMPOSE] Theorem
|- OPTION_MAP f (OPTION_MAP g x) = OPTION_MAP (f o g) x
[OPTION_MAP_CONG] Theorem
|- ∀opt1 opt2 f1 f2.
(opt1 = opt2) ∧ (∀x. (opt2 = SOME x) ⇒ (f1 x = f2 x)) ⇒
(OPTION_MAP f1 opt1 = OPTION_MAP f2 opt2)
[OPTION_MAP_EQ_NONE] Theorem
|- ∀f x. (OPTION_MAP f x = NONE) ⇔ (x = NONE)
[OPTION_MAP_EQ_NONE_both_ways] Theorem
|- ((OPTION_MAP f x = NONE) ⇔ (x = NONE)) ∧
((NONE = OPTION_MAP f x) ⇔ (x = NONE))
[OPTION_MAP_EQ_SOME] Theorem
|- ∀f x y. (OPTION_MAP f x = SOME y) ⇔ ∃z. (x = SOME z) ∧ (y = f z)
[OPTREL_MONO] Theorem
|- (∀x y. P x y ⇒ Q x y) ⇒ OPTREL P x y ⇒ OPTREL Q x y
[OPTREL_refl] Theorem
|- (∀x. R x x) ⇒ ∀x. OPTREL R x x
[SOME_11] Theorem
|- ∀x y. (SOME x = SOME y) ⇔ (x = y)
[SOME_APPLY_PERMUTE] Theorem
|- f <*> SOME x = SOME (λf. f x) <*> f
[SOME_SOME_APPLY] Theorem
|- SOME f <*> SOME x = SOME (f x)
[datatype_option] Theorem
|- DATATYPE (option NONE SOME)
[option_Axiom] Theorem
|- ∀e f. ∃fn. (fn NONE = e) ∧ ∀x. fn (SOME x) = f x
[option_CLAUSES] Theorem
|- (∀x y. (SOME x = SOME y) ⇔ (x = y)) ∧ (∀x. THE (SOME x) = x) ∧
(∀x. NONE ≠ SOME x) ∧ (∀x. SOME x ≠ NONE) ∧
(∀x. IS_SOME (SOME x) ⇔ T) ∧ (IS_SOME NONE ⇔ F) ∧
(∀x. IS_NONE x ⇔ (x = NONE)) ∧ (∀x. ¬IS_SOME x ⇔ (x = NONE)) ∧
(∀x. IS_SOME x ⇒ (SOME (THE x) = x)) ∧
(∀x. option_CASE x NONE SOME = x) ∧
(∀x. option_CASE x x SOME = x) ∧
(∀x. IS_NONE x ⇒ (option_CASE x e f = e)) ∧
(∀x. IS_SOME x ⇒ (option_CASE x e f = f (THE x))) ∧
(∀x. IS_SOME x ⇒ (option_CASE x e SOME = x)) ∧
(∀v f. option_CASE NONE v f = v) ∧
(∀x v f. option_CASE (SOME x) v f = f x) ∧
(∀f x. OPTION_MAP f (SOME x) = SOME (f x)) ∧
(∀f. OPTION_MAP f NONE = NONE) ∧ (OPTION_JOIN NONE = NONE) ∧
∀x. OPTION_JOIN (SOME x) = x
[option_case_ID] Theorem
|- ∀x. option_CASE x NONE SOME = x
[option_case_SOME_ID] Theorem
|- ∀x. option_CASE x x SOME = x
[option_case_compute] Theorem
|- option_CASE x e f = if IS_SOME x then f (THE x) else e
[option_case_cong] Theorem
|- ∀M M' v f.
(M = M') ∧ ((M' = NONE) ⇒ (v = v')) ∧
(∀x. (M' = SOME x) ⇒ (f x = f' x)) ⇒
(option_CASE M v f = option_CASE M' v' f')
[option_induction] Theorem
|- ∀P. P NONE ∧ (∀a. P (SOME a)) ⇒ ∀x. P x
[option_nchotomy] Theorem
|- ∀opt. (opt = NONE) ∨ ∃x. opt = SOME x
[some_EQ] Theorem
|- ((some x. x = y) = SOME y) ∧ ((some x. y = x) = SOME y)
[some_F] Theorem
|- (some x. F) = NONE
[some_elim] Theorem
|- Q ($some P) ⇒ (∃x. P x ∧ Q (SOME x)) ∨ (∀x. ¬P x) ∧ Q NONE
[some_intro] Theorem
|- (∀x. P x ⇒ Q (SOME x)) ∧ ((∀x. ¬P x) ⇒ Q NONE) ⇒ Q ($some P)
*)
end
HOL 4, Kananaskis-10