Structure polyTheory
signature polyTheory =
sig
type thm = Thm.thm
(* Definitions *)
val degree : thm
val normalize : thm
val poly_add_def : thm
val poly_cmul_def : thm
val poly_def : thm
val poly_diff_aux_def : thm
val poly_diff_def : thm
val poly_divides : thm
val poly_exp_def : thm
val poly_mul_def : thm
val poly_neg_def : thm
val poly_order : thm
val rsquarefree : thm
(* Theorems *)
val DEGREE_ZERO : thm
val FINITE_LEMMA : thm
val ORDER : thm
val ORDER_DECOMP : thm
val ORDER_DIFF : thm
val ORDER_DIVIDES : thm
val ORDER_MUL : thm
val ORDER_POLY : thm
val ORDER_ROOT : thm
val ORDER_THM : thm
val ORDER_UNIQUE : thm
val POLY_ADD : thm
val POLY_ADD_CLAUSES : thm
val POLY_ADD_RZERO : thm
val POLY_CMUL : thm
val POLY_CMUL_CLAUSES : thm
val POLY_CONT : thm
val POLY_DIFF : thm
val POLY_DIFFERENTIABLE : thm
val POLY_DIFF_ADD : thm
val POLY_DIFF_AUX_ADD : thm
val POLY_DIFF_AUX_CMUL : thm
val POLY_DIFF_AUX_ISZERO : thm
val POLY_DIFF_AUX_MUL_LEMMA : thm
val POLY_DIFF_AUX_NEG : thm
val POLY_DIFF_CLAUSES : thm
val POLY_DIFF_CMUL : thm
val POLY_DIFF_EXP : thm
val POLY_DIFF_EXP_PRIME : thm
val POLY_DIFF_ISZERO : thm
val POLY_DIFF_LEMMA : thm
val POLY_DIFF_MUL : thm
val POLY_DIFF_MUL_LEMMA : thm
val POLY_DIFF_NEG : thm
val POLY_DIFF_WELLDEF : thm
val POLY_DIFF_ZERO : thm
val POLY_DIVIDES_ADD : thm
val POLY_DIVIDES_EXP : thm
val POLY_DIVIDES_REFL : thm
val POLY_DIVIDES_SUB : thm
val POLY_DIVIDES_SUB2 : thm
val POLY_DIVIDES_TRANS : thm
val POLY_DIVIDES_ZERO : thm
val POLY_ENTIRE : thm
val POLY_ENTIRE_LEMMA : thm
val POLY_EXP : thm
val POLY_EXP_ADD : thm
val POLY_EXP_DIVIDES : thm
val POLY_EXP_EQ_0 : thm
val POLY_EXP_PRIME_EQ_0 : thm
val POLY_IVT_NEG : thm
val POLY_IVT_POS : thm
val POLY_LENGTH_MUL : thm
val POLY_LINEAR_DIVIDES : thm
val POLY_LINEAR_REM : thm
val POLY_MONO : thm
val POLY_MUL : thm
val POLY_MUL_ASSOC : thm
val POLY_MUL_CLAUSES : thm
val POLY_MUL_LCANCEL : thm
val POLY_MVT : thm
val POLY_NEG : thm
val POLY_NEG_CLAUSES : thm
val POLY_NORMALIZE : thm
val POLY_ORDER : thm
val POLY_ORDER_EXISTS : thm
val POLY_PRIMES : thm
val POLY_PRIME_EQ_0 : thm
val POLY_ROOTS_FINITE : thm
val POLY_ROOTS_FINITE_LEMMA : thm
val POLY_ROOTS_FINITE_SET : thm
val POLY_ROOTS_INDEX_LEMMA : thm
val POLY_ROOTS_INDEX_LENGTH : thm
val POLY_SQUAREFREE_DECOMP : thm
val POLY_SQUAREFREE_DECOMP_ORDER : thm
val POLY_ZERO : thm
val POLY_ZERO_LEMMA : thm
val RSQUAREFREE_DECOMP : thm
val RSQUAREFREE_ROOTS : thm
val poly_grammars : type_grammar.grammar * term_grammar.grammar
(*
[lim] Parent theory of "poly"
[degree] Definition
|- ∀p. degree p = PRE (LENGTH (normalize p))
[normalize] Definition
|- (normalize [] = []) ∧
∀h t.
normalize (h::t) =
if normalize t = [] then if h = 0 then [] else [h]
else h::normalize t
[poly_add_def] Definition
|- (∀l2. [] + l2 = l2) ∧
∀h t l2.
(h::t) + l2 = if l2 = [] then h::t else h + HD l2::t + TL l2
[poly_cmul_def] Definition
|- (∀c. c ## [] = []) ∧ ∀c h t. c ## (h::t) = c * h::c ## t
[poly_def] Definition
|- (∀x. poly [] x = 0) ∧ ∀h t x. poly (h::t) x = h + x * poly t x
[poly_diff_aux_def] Definition
|- (∀n. poly_diff_aux n [] = []) ∧
∀n h t. poly_diff_aux n (h::t) = &n * h::poly_diff_aux (SUC n) t
[poly_diff_def] Definition
|- ∀l. diff l = if l = [] then [] else poly_diff_aux 1 (TL l)
[poly_divides] Definition
|- ∀p1 p2. p1 poly_divides p2 ⇔ ∃q. poly p2 = poly (p1 * q)
[poly_exp_def] Definition
|- (∀p. p poly_exp 0 = [1]) ∧
∀p n. p poly_exp SUC n = p * p poly_exp n
[poly_mul_def] Definition
|- (∀l2. [] * l2 = []) ∧
∀h t l2.
(h::t) * l2 = if t = [] then h ## l2 else h ## l2 + (0::t * l2)
[poly_neg_def] Definition
|- $~ = $## (-1)
[poly_order] Definition
|- ∀a p.
poly_order a p =
@n.
[-a; 1] poly_exp n poly_divides p ∧
¬([-a; 1] poly_exp SUC n poly_divides p)
[rsquarefree] Definition
|- ∀p.
rsquarefree p ⇔
poly p ≠ poly [] ∧
∀a. (poly_order a p = 0) ∨ (poly_order a p = 1)
[DEGREE_ZERO] Theorem
|- ∀p. (poly p = poly []) ⇒ (degree p = 0)
[FINITE_LEMMA] Theorem
|- ∀i N P. (∀x. P x ⇒ ∃n. n < N ∧ (x = i n)) ⇒ ∃a. ∀x. P x ⇒ x < a
[ORDER] Theorem
|- ∀p a n.
[-a; 1] poly_exp n poly_divides p ∧
¬([-a; 1] poly_exp SUC n poly_divides p) ⇔
(n = poly_order a p) ∧ poly p ≠ poly []
[ORDER_DECOMP] Theorem
|- ∀p a.
poly p ≠ poly [] ⇒
∃q.
(poly p = poly ([-a; 1] poly_exp poly_order a p * q)) ∧
¬([-a; 1] poly_divides q)
[ORDER_DIFF] Theorem
|- ∀p a.
poly (diff p) ≠ poly [] ∧ poly_order a p ≠ 0 ⇒
(poly_order a p = SUC (poly_order a (diff p)))
[ORDER_DIVIDES] Theorem
|- ∀p a n.
[-a; 1] poly_exp n poly_divides p ⇔
(poly p = poly []) ∨ n ≤ poly_order a p
[ORDER_MUL] Theorem
|- ∀a p q.
poly (p * q) ≠ poly [] ⇒
(poly_order a (p * q) = poly_order a p + poly_order a q)
[ORDER_POLY] Theorem
|- ∀p q a. (poly p = poly q) ⇒ (poly_order a p = poly_order a q)
[ORDER_ROOT] Theorem
|- ∀p a. (poly p a = 0) ⇔ (poly p = poly []) ∨ poly_order a p ≠ 0
[ORDER_THM] Theorem
|- ∀p a.
poly p ≠ poly [] ⇒
[-a; 1] poly_exp poly_order a p poly_divides p ∧
¬([-a; 1] poly_exp SUC (poly_order a p) poly_divides p)
[ORDER_UNIQUE] Theorem
|- ∀p a n.
poly p ≠ poly [] ∧ [-a; 1] poly_exp n poly_divides p ∧
¬([-a; 1] poly_exp SUC n poly_divides p) ⇒
(n = poly_order a p)
[POLY_ADD] Theorem
|- ∀p1 p2 x. poly (p1 + p2) x = poly p1 x + poly p2 x
[POLY_ADD_CLAUSES] Theorem
|- ([] + p2 = p2) ∧ (p1 + [] = p1) ∧
((h1::t1) + (h2::t2) = h1 + h2::t1 + t2)
[POLY_ADD_RZERO] Theorem
|- ∀p. poly (p + []) = poly p
[POLY_CMUL] Theorem
|- ∀p c x. poly (c ## p) x = c * poly p x
[POLY_CMUL_CLAUSES] Theorem
|- (c ## [] = []) ∧ (c ## (h::t) = c * h::c ## t)
[POLY_CONT] Theorem
|- ∀l x. (λx. poly l x) contl x
[POLY_DIFF] Theorem
|- ∀l x. ((λx. poly l x) diffl poly (diff l) x) x
[POLY_DIFFERENTIABLE] Theorem
|- ∀l x. (λx. poly l x) differentiable x
[POLY_DIFF_ADD] Theorem
|- ∀p1 p2. poly (diff (p1 + p2)) = poly (diff p1 + diff p2)
[POLY_DIFF_AUX_ADD] Theorem
|- ∀p1 p2 n.
poly (poly_diff_aux n (p1 + p2)) =
poly (poly_diff_aux n p1 + poly_diff_aux n p2)
[POLY_DIFF_AUX_CMUL] Theorem
|- ∀p c n.
poly (poly_diff_aux n (c ## p)) = poly (c ## poly_diff_aux n p)
[POLY_DIFF_AUX_ISZERO] Theorem
|- ∀p n.
EVERY (λc. c = 0) (poly_diff_aux (SUC n) p) ⇔
EVERY (λc. c = 0) p
[POLY_DIFF_AUX_MUL_LEMMA] Theorem
|- ∀p n.
poly (poly_diff_aux (SUC n) p) = poly (poly_diff_aux n p + p)
[POLY_DIFF_AUX_NEG] Theorem
|- ∀p n. poly (poly_diff_aux n (¬p)) = poly (¬poly_diff_aux n p)
[POLY_DIFF_CLAUSES] Theorem
|- (diff [] = []) ∧ (diff [c] = []) ∧
(diff (h::t) = poly_diff_aux 1 t)
[POLY_DIFF_CMUL] Theorem
|- ∀p c. poly (diff (c ## p)) = poly (c ## diff p)
[POLY_DIFF_EXP] Theorem
|- ∀p n.
poly (diff (p poly_exp SUC n)) =
poly (&SUC n ## p poly_exp n * diff p)
[POLY_DIFF_EXP_PRIME] Theorem
|- ∀n a.
poly (diff ([-a; 1] poly_exp SUC n)) =
poly (&SUC n ## [-a; 1] poly_exp n)
[POLY_DIFF_ISZERO] Theorem
|- ∀p. (poly (diff p) = poly []) ⇒ ∃h. poly p = poly [h]
[POLY_DIFF_LEMMA] Theorem
|- ∀l n x.
((λx. x pow SUC n * poly l x) diffl
(x pow n * poly (poly_diff_aux (SUC n) l) x)) x
[POLY_DIFF_MUL] Theorem
|- ∀p1 p2. poly (diff (p1 * p2)) = poly (p1 * diff p2 + diff p1 * p2)
[POLY_DIFF_MUL_LEMMA] Theorem
|- ∀t h. poly (diff (h::t)) = poly ((0::diff t) + t)
[POLY_DIFF_NEG] Theorem
|- ∀p. poly (diff (¬p)) = poly (¬diff p)
[POLY_DIFF_WELLDEF] Theorem
|- ∀p q. (poly p = poly q) ⇒ (poly (diff p) = poly (diff q))
[POLY_DIFF_ZERO] Theorem
|- ∀p. (poly p = poly []) ⇒ (poly (diff p) = poly [])
[POLY_DIVIDES_ADD] Theorem
|- ∀p q r. p poly_divides q ∧ p poly_divides r ⇒ p poly_divides q + r
[POLY_DIVIDES_EXP] Theorem
|- ∀p m n. m ≤ n ⇒ p poly_exp m poly_divides p poly_exp n
[POLY_DIVIDES_REFL] Theorem
|- ∀p. p poly_divides p
[POLY_DIVIDES_SUB] Theorem
|- ∀p q r. p poly_divides q ∧ p poly_divides q + r ⇒ p poly_divides r
[POLY_DIVIDES_SUB2] Theorem
|- ∀p q r. p poly_divides r ∧ p poly_divides q + r ⇒ p poly_divides q
[POLY_DIVIDES_TRANS] Theorem
|- ∀p q r. p poly_divides q ∧ q poly_divides r ⇒ p poly_divides r
[POLY_DIVIDES_ZERO] Theorem
|- ∀p q. (poly p = poly []) ⇒ q poly_divides p
[POLY_ENTIRE] Theorem
|- ∀p q.
(poly (p * q) = poly []) ⇔
(poly p = poly []) ∨ (poly q = poly [])
[POLY_ENTIRE_LEMMA] Theorem
|- ∀p q. poly p ≠ poly [] ∧ poly q ≠ poly [] ⇒ poly (p * q) ≠ poly []
[POLY_EXP] Theorem
|- ∀p n x. poly (p poly_exp n) x = poly p x pow n
[POLY_EXP_ADD] Theorem
|- ∀d n p.
poly (p poly_exp (n + d)) = poly (p poly_exp n * p poly_exp d)
[POLY_EXP_DIVIDES] Theorem
|- ∀p q m n.
p poly_exp n poly_divides q ∧ m ≤ n ⇒
p poly_exp m poly_divides q
[POLY_EXP_EQ_0] Theorem
|- ∀p n. (poly (p poly_exp n) = poly []) ⇔ (poly p = poly []) ∧ n ≠ 0
[POLY_EXP_PRIME_EQ_0] Theorem
|- ∀a n. poly ([a; 1] poly_exp n) ≠ poly []
[POLY_IVT_NEG] Theorem
|- ∀p a b.
a < b ∧ poly p a > 0 ∧ poly p b < 0 ⇒
∃x. a < x ∧ x < b ∧ (poly p x = 0)
[POLY_IVT_POS] Theorem
|- ∀p a b.
a < b ∧ poly p a < 0 ∧ poly p b > 0 ⇒
∃x. a < x ∧ x < b ∧ (poly p x = 0)
[POLY_LENGTH_MUL] Theorem
|- ∀q. LENGTH ([-a; 1] * q) = SUC (LENGTH q)
[POLY_LINEAR_DIVIDES] Theorem
|- ∀a p. (poly p a = 0) ⇔ (p = []) ∨ ∃q. p = [-a; 1] * q
[POLY_LINEAR_REM] Theorem
|- ∀t h. ∃q r. h::t = [r] + [-a; 1] * q
[POLY_MONO] Theorem
|- ∀x k p. abs x ≤ k ⇒ abs (poly p x) ≤ poly (MAP abs p) k
[POLY_MUL] Theorem
|- ∀x p1 p2. poly (p1 * p2) x = poly p1 x * poly p2 x
[POLY_MUL_ASSOC] Theorem
|- ∀p q r. poly (p * (q * r)) = poly (p * q * r)
[POLY_MUL_CLAUSES] Theorem
|- ([] * p2 = []) ∧ ([h1] * p2 = h1 ## p2) ∧
((h1::k1::t1) * p2 = h1 ## p2 + (0::(k1::t1) * p2))
[POLY_MUL_LCANCEL] Theorem
|- ∀p q r.
(poly (p * q) = poly (p * r)) ⇔
(poly p = poly []) ∨ (poly q = poly r)
[POLY_MVT] Theorem
|- ∀p a b.
a < b ⇒
∃x.
a < x ∧ x < b ∧
(poly p b − poly p a = (b − a) * poly (diff p) x)
[POLY_NEG] Theorem
|- ∀p x. poly (¬p) x = -poly p x
[POLY_NEG_CLAUSES] Theorem
|- (¬[] = []) ∧ (¬(h::t) = -h::¬t)
[POLY_NORMALIZE] Theorem
|- ∀p. poly (normalize p) = poly p
[POLY_ORDER] Theorem
|- ∀p a.
poly p ≠ poly [] ⇒
∃!n.
[-a; 1] poly_exp n poly_divides p ∧
¬([-a; 1] poly_exp SUC n poly_divides p)
[POLY_ORDER_EXISTS] Theorem
|- ∀a d p.
(LENGTH p = d) ∧ poly p ≠ poly [] ⇒
∃n.
[-a; 1] poly_exp n poly_divides p ∧
¬([-a; 1] poly_exp SUC n poly_divides p)
[POLY_PRIMES] Theorem
|- ∀a p q.
[a; 1] poly_divides p * q ⇔
[a; 1] poly_divides p ∨ [a; 1] poly_divides q
[POLY_PRIME_EQ_0] Theorem
|- ∀a. poly [a; 1] ≠ poly []
[POLY_ROOTS_FINITE] Theorem
|- ∀p.
poly p ≠ poly [] ⇔
∃N i. ∀x. (poly p x = 0) ⇒ ∃n. n < N ∧ (x = i n)
[POLY_ROOTS_FINITE_LEMMA] Theorem
|- ∀p.
poly p ≠ poly [] ⇒
∃N i. ∀x. (poly p x = 0) ⇒ ∃n. n < N ∧ (x = i n)
[POLY_ROOTS_FINITE_SET] Theorem
|- ∀p. poly p ≠ poly [] ⇒ FINITE {x | poly p x = 0}
[POLY_ROOTS_INDEX_LEMMA] Theorem
|- ∀n p.
poly p ≠ poly [] ∧ (LENGTH p = n) ⇒
∃i. ∀x. (poly p x = 0) ⇒ ∃m. m ≤ n ∧ (x = i m)
[POLY_ROOTS_INDEX_LENGTH] Theorem
|- ∀p.
poly p ≠ poly [] ⇒
∃i. ∀x. (poly p x = 0) ⇒ ∃n. n ≤ LENGTH p ∧ (x = i n)
[POLY_SQUAREFREE_DECOMP] Theorem
|- ∀p q d e r s.
poly (diff p) ≠ poly [] ∧ (poly p = poly (q * d)) ∧
(poly (diff p) = poly (e * d)) ∧
(poly d = poly (r * p + s * diff p)) ⇒
rsquarefree q ∧ ∀a. (poly q a = 0) ⇔ (poly p a = 0)
[POLY_SQUAREFREE_DECOMP_ORDER] Theorem
|- ∀p q d e r s.
poly (diff p) ≠ poly [] ∧ (poly p = poly (q * d)) ∧
(poly (diff p) = poly (e * d)) ∧
(poly d = poly (r * p + s * diff p)) ⇒
∀a. poly_order a q = if poly_order a p = 0 then 0 else 1
[POLY_ZERO] Theorem
|- ∀p. (poly p = poly []) ⇔ EVERY (λc. c = 0) p
[POLY_ZERO_LEMMA] Theorem
|- ∀h t. (poly (h::t) = poly []) ⇒ (h = 0) ∧ (poly t = poly [])
[RSQUAREFREE_DECOMP] Theorem
|- ∀p a.
rsquarefree p ∧ (poly p a = 0) ⇒
∃q. (poly p = poly ([-a; 1] * q)) ∧ poly q a ≠ 0
[RSQUAREFREE_ROOTS] Theorem
|- ∀p. rsquarefree p ⇔ ∀a. ¬((poly p a = 0) ∧ (poly (diff p) a = 0))
*)
end
HOL 4, Kananaskis-10