Structure posetTheory
signature posetTheory =
sig
type thm = Thm.thm
(* Definitions *)
val bottom_def : thm
val carrier_def : thm
val chain_def : thm
val complete_def : thm
val continuous_def : thm
val down_continuous_def : thm
val function_def : thm
val gfp_def : thm
val glb_def : thm
val lfp_def : thm
val lub_def : thm
val monotonic_def : thm
val pointwise_lift_def : thm
val poset_def : thm
val relation_def : thm
val top_def : thm
val up_continuous_def : thm
(* Theorems *)
val complete_bottom : thm
val complete_down : thm
val complete_pointwise : thm
val complete_top : thm
val complete_up : thm
val gfp_unique : thm
val glb_pred : thm
val knaster_tarski : thm
val knaster_tarski_gfp : thm
val knaster_tarski_lfp : thm
val lfp_unique : thm
val lub_pred : thm
val poset_antisym : thm
val poset_nonempty : thm
val poset_refl : thm
val poset_trans : thm
val poset_grammars : type_grammar.grammar * term_grammar.grammar
(*
[pair] Parent theory of "poset"
[bottom_def] Definition
|- ∀s r x. bottom (s,r) x ⇔ s x ∧ ∀y. s y ⇒ r x y
[carrier_def] Definition
|- ∀s r. carrier (s,r) = s
[chain_def] Definition
|- ∀s r c.
chain (s,r) c ⇔ ∀x y. s x ∧ s y ∧ c x ∧ c y ⇒ r x y ∨ r y x
[complete_def] Definition
|- ∀p. complete p ⇔ ∀c. (∃x. lub p c x) ∧ ∃x. glb p c x
[continuous_def] Definition
|- ∀p f. continuous p f ⇔ up_continuous p f ∧ down_continuous p f
[down_continuous_def] Definition
|- ∀s r f.
down_continuous (s,r) f ⇔
∀c x.
chain (s,r) c ∧ glb (s,r) c x ⇒
glb (s,r) (λy. ∃z. (s z ∧ c z) ∧ (y = f z)) (f x)
[function_def] Definition
|- ∀a b f. function a b f ⇔ ∀x. a x ⇒ b (f x)
[gfp_def] Definition
|- ∀s r f x.
gfp (s,r) f x ⇔ s x ∧ (f x = x) ∧ ∀y. s y ∧ r y (f y) ⇒ r y x
[glb_def] Definition
|- ∀s r p x.
glb (s,r) p x ⇔
s x ∧ (∀y. s y ∧ p y ⇒ r x y) ∧
∀z. s z ∧ (∀y. s y ∧ p y ⇒ r z y) ⇒ r z x
[lfp_def] Definition
|- ∀s r f x.
lfp (s,r) f x ⇔ s x ∧ (f x = x) ∧ ∀y. s y ∧ r (f y) y ⇒ r x y
[lub_def] Definition
|- ∀s r p x.
lub (s,r) p x ⇔
s x ∧ (∀y. s y ∧ p y ⇒ r y x) ∧
∀z. s z ∧ (∀y. s y ∧ p y ⇒ r y z) ⇒ r x z
[monotonic_def] Definition
|- ∀s r f.
monotonic (s,r) f ⇔ ∀x y. s x ∧ s y ∧ r x y ⇒ r (f x) (f y)
[pointwise_lift_def] Definition
|- ∀t s r.
pointwise_lift t (s,r) =
(function t s,(λf g. ∀x. t x ⇒ r (f x) (g x)))
[poset_def] Definition
|- ∀s r.
poset (s,r) ⇔
(∃x. s x) ∧ (∀x. s x ⇒ r x x) ∧
(∀x y. s x ∧ s y ∧ r x y ∧ r y x ⇒ (x = y)) ∧
∀x y z. s x ∧ s y ∧ s z ∧ r x y ∧ r y z ⇒ r x z
[relation_def] Definition
|- ∀s r. relation (s,r) = r
[top_def] Definition
|- ∀s r x. top (s,r) x ⇔ s x ∧ ∀y. s y ⇒ r y x
[up_continuous_def] Definition
|- ∀s r f.
up_continuous (s,r) f ⇔
∀c x.
chain (s,r) c ∧ lub (s,r) c x ⇒
lub (s,r) (λy. ∃z. (s z ∧ c z) ∧ (y = f z)) (f x)
[complete_bottom] Theorem
|- ∀p. poset p ∧ complete p ⇒ ∃x. bottom p x
[complete_down] Theorem
|- ∀p c. complete p ⇒ ∃x. glb p c x
[complete_pointwise] Theorem
|- ∀p t. complete p ⇒ complete (pointwise_lift t p)
[complete_top] Theorem
|- ∀p. poset p ∧ complete p ⇒ ∃x. top p x
[complete_up] Theorem
|- ∀p c. complete p ⇒ ∃x. lub p c x
[gfp_unique] Theorem
|- ∀p f x x'. poset p ∧ gfp p f x ∧ gfp p f x' ⇒ (x = x')
[glb_pred] Theorem
|- ∀s r p x. glb (s,r) (λj. s j ∧ p j) x ⇔ glb (s,r) p x
[knaster_tarski] Theorem
|- ∀p f.
poset p ∧ complete p ∧ function (carrier p) (carrier p) f ∧
monotonic p f ⇒
(∃x. lfp p f x) ∧ ∃x. gfp p f x
[knaster_tarski_gfp] Theorem
|- ∀p f.
poset p ∧ complete p ∧ function (carrier p) (carrier p) f ∧
monotonic p f ⇒
∃x. gfp p f x
[knaster_tarski_lfp] Theorem
|- ∀p f.
poset p ∧ complete p ∧ function (carrier p) (carrier p) f ∧
monotonic p f ⇒
∃x. lfp p f x
[lfp_unique] Theorem
|- ∀p f x x'. poset p ∧ lfp p f x ∧ lfp p f x' ⇒ (x = x')
[lub_pred] Theorem
|- ∀s r p x. lub (s,r) (λj. s j ∧ p j) x ⇔ lub (s,r) p x
[poset_antisym] Theorem
|- ∀s r x y. poset (s,r) ∧ s x ∧ s y ∧ r x y ∧ r y x ⇒ (x = y)
[poset_nonempty] Theorem
|- ∀s r. poset (s,r) ⇒ ∃x. s x
[poset_refl] Theorem
|- ∀s r x. poset (s,r) ∧ s x ⇒ r x x
[poset_trans] Theorem
|- ∀s r x y z. poset (s,r) ∧ s x ∧ s y ∧ s z ∧ r x y ∧ r y z ⇒ r x z
*)
end
HOL 4, Kananaskis-10