Structure quotient_optionTheory
signature quotient_optionTheory =
sig
type thm = Thm.thm
(* Theorems *)
val IS_NONE_PRS : thm
val IS_NONE_RSP : thm
val IS_SOME_PRS : thm
val IS_SOME_RSP : thm
val NONE_PRS : thm
val NONE_RSP : thm
val OPTION_EQUIV : thm
val OPTION_MAP_I : thm
val OPTION_MAP_PRS : thm
val OPTION_MAP_RSP : thm
val OPTION_QUOTIENT : thm
val OPTION_REL_EQ : thm
val OPTION_REL_def : thm
val SOME_PRS : thm
val SOME_RSP : thm
val quotient_option_grammars : type_grammar.grammar * term_grammar.grammar
(*
[quotient] Parent theory of "quotient_option"
[IS_NONE_PRS] Theorem
|- ∀R abs rep.
QUOTIENT R abs rep ⇒ ∀x. IS_NONE x ⇔ IS_NONE (OPTION_MAP rep x)
[IS_NONE_RSP] Theorem
|- ∀R abs rep.
QUOTIENT R abs rep ⇒
∀x y. OPTREL R x y ⇒ (IS_NONE x ⇔ IS_NONE y)
[IS_SOME_PRS] Theorem
|- ∀R abs rep.
QUOTIENT R abs rep ⇒ ∀x. IS_SOME x ⇔ IS_SOME (OPTION_MAP rep x)
[IS_SOME_RSP] Theorem
|- ∀R abs rep.
QUOTIENT R abs rep ⇒
∀x y. OPTREL R x y ⇒ (IS_SOME x ⇔ IS_SOME y)
[NONE_PRS] Theorem
|- ∀R abs rep. QUOTIENT R abs rep ⇒ (NONE = OPTION_MAP abs NONE)
[NONE_RSP] Theorem
|- ∀R abs rep. QUOTIENT R abs rep ⇒ OPTREL R NONE NONE
[OPTION_EQUIV] Theorem
|- ∀R. EQUIV R ⇒ EQUIV (OPTREL R)
[OPTION_MAP_I] Theorem
|- OPTION_MAP I = I
[OPTION_MAP_PRS] Theorem
|- ∀R1 abs1 rep1.
QUOTIENT R1 abs1 rep1 ⇒
∀R2 abs2 rep2.
QUOTIENT R2 abs2 rep2 ⇒
∀a f.
OPTION_MAP f a =
OPTION_MAP abs2
(OPTION_MAP ((abs1 --> rep2) f) (OPTION_MAP rep1 a))
[OPTION_MAP_RSP] Theorem
|- ∀R1 abs1 rep1.
QUOTIENT R1 abs1 rep1 ⇒
∀R2 abs2 rep2.
QUOTIENT R2 abs2 rep2 ⇒
∀a1 a2 f1 f2.
(R1 ===> R2) f1 f2 ∧ OPTREL R1 a1 a2 ⇒
OPTREL R2 (OPTION_MAP f1 a1) (OPTION_MAP f2 a2)
[OPTION_QUOTIENT] Theorem
|- ∀R abs rep.
QUOTIENT R abs rep ⇒
QUOTIENT (OPTREL R) (OPTION_MAP abs) (OPTION_MAP rep)
[OPTION_REL_EQ] Theorem
|- OPTREL $= = $=
[OPTION_REL_def] Theorem
|- (OPTREL R NONE NONE ⇔ T) ∧ (OPTREL R (SOME x) NONE ⇔ F) ∧
(OPTREL R NONE (SOME y) ⇔ F) ∧
(OPTREL R (SOME x) (SOME y) ⇔ R x y)
[SOME_PRS] Theorem
|- ∀R abs rep.
QUOTIENT R abs rep ⇒ ∀x. SOME x = OPTION_MAP abs (SOME (rep x))
[SOME_RSP] Theorem
|- ∀R abs rep.
QUOTIENT R abs rep ⇒ ∀x y. R x y ⇒ OPTREL R (SOME x) (SOME y)
*)
end
HOL 4, Kananaskis-10