Structure quotient_pairTheory
signature quotient_pairTheory =
sig
type thm = Thm.thm
(* Definitions *)
val PAIR_REL : thm
(* Theorems *)
val COMMA_PRS : thm
val COMMA_RSP : thm
val CURRY_PRS : thm
val CURRY_RSP : thm
val FST_PRS : thm
val FST_RSP : thm
val PAIR_EQUIV : thm
val PAIR_MAP_I : thm
val PAIR_MAP_PRS : thm
val PAIR_MAP_RSP : thm
val PAIR_QUOTIENT : thm
val PAIR_REL_EQ : thm
val PAIR_REL_REFL : thm
val PAIR_REL_THM : thm
val SND_PRS : thm
val SND_RSP : thm
val UNCURRY_PRS : thm
val UNCURRY_RSP : thm
val quotient_pair_grammars : type_grammar.grammar * term_grammar.grammar
(*
[quotient] Parent theory of "quotient_pair"
[PAIR_REL] Definition
|- ∀R1 R2. R1 ### R2 = (λ(a,b) (c,d). R1 a c ∧ R2 b d)
[COMMA_PRS] Theorem
|- ∀R1 abs1 rep1.
QUOTIENT R1 abs1 rep1 ⇒
∀R2 abs2 rep2.
QUOTIENT R2 abs2 rep2 ⇒
∀a b. (a,b) = (abs1 ## abs2) (rep1 a,rep2 b)
[COMMA_RSP] Theorem
|- ∀R1 abs1 rep1.
QUOTIENT R1 abs1 rep1 ⇒
∀R2 abs2 rep2.
QUOTIENT R2 abs2 rep2 ⇒
∀a1 a2 b1 b2.
R1 a1 b1 ∧ R2 a2 b2 ⇒ (R1 ### R2) (a1,a2) (b1,b2)
[CURRY_PRS] Theorem
|- ∀R1 abs1 rep1.
QUOTIENT R1 abs1 rep1 ⇒
∀R2 abs2 rep2.
QUOTIENT R2 abs2 rep2 ⇒
∀R3 abs3 rep3.
QUOTIENT R3 abs3 rep3 ⇒
∀f a b.
CURRY f a b =
abs3
(CURRY (((abs1 ## abs2) --> rep3) f) (rep1 a) (rep2 b))
[CURRY_RSP] Theorem
|- ∀R1 abs1 rep1.
QUOTIENT R1 abs1 rep1 ⇒
∀R2 abs2 rep2.
QUOTIENT R2 abs2 rep2 ⇒
∀R3 abs3 rep3.
QUOTIENT R3 abs3 rep3 ⇒
∀f1 f2.
((R1 ### R2) ===> R3) f1 f2 ⇒
(R1 ===> R2 ===> R3) (CURRY f1) (CURRY f2)
[FST_PRS] Theorem
|- ∀R1 abs1 rep1.
QUOTIENT R1 abs1 rep1 ⇒
∀R2 abs2 rep2.
QUOTIENT R2 abs2 rep2 ⇒
∀p. FST p = abs1 (FST ((rep1 ## rep2) p))
[FST_RSP] Theorem
|- ∀R1 abs1 rep1.
QUOTIENT R1 abs1 rep1 ⇒
∀R2 abs2 rep2.
QUOTIENT R2 abs2 rep2 ⇒
∀p1 p2. (R1 ### R2) p1 p2 ⇒ R1 (FST p1) (FST p2)
[PAIR_EQUIV] Theorem
|- ∀R1 R2. EQUIV R1 ⇒ EQUIV R2 ⇒ EQUIV (R1 ### R2)
[PAIR_MAP_I] Theorem
|- I ## I = I
[PAIR_MAP_PRS] Theorem
|- ∀R1 abs1 rep1.
QUOTIENT R1 abs1 rep1 ⇒
∀R2 abs2 rep2.
QUOTIENT R2 abs2 rep2 ⇒
∀R3 abs3 rep3.
QUOTIENT R3 abs3 rep3 ⇒
∀R4 abs4 rep4.
QUOTIENT R4 abs4 rep4 ⇒
∀f g.
f ## g =
((rep1 ## rep3) --> (abs2 ## abs4))
((abs1 --> rep2) f ## (abs3 --> rep4) g)
[PAIR_MAP_RSP] Theorem
|- ∀R1 abs1 rep1.
QUOTIENT R1 abs1 rep1 ⇒
∀R2 abs2 rep2.
QUOTIENT R2 abs2 rep2 ⇒
∀R3 abs3 rep3.
QUOTIENT R3 abs3 rep3 ⇒
∀R4 abs4 rep4.
QUOTIENT R4 abs4 rep4 ⇒
∀f1 f2 g1 g2.
(R1 ===> R2) f1 f2 ∧ (R3 ===> R4) g1 g2 ⇒
((R1 ### R3) ===> R2 ### R4) (f1 ## g1) (f2 ## g2)
[PAIR_QUOTIENT] Theorem
|- ∀R1 abs1 rep1.
QUOTIENT R1 abs1 rep1 ⇒
∀R2 abs2 rep2.
QUOTIENT R2 abs2 rep2 ⇒
QUOTIENT (R1 ### R2) (abs1 ## abs2) (rep1 ## rep2)
[PAIR_REL_EQ] Theorem
|- $= ### $= = $=
[PAIR_REL_REFL] Theorem
|- ∀R1 R2.
(∀x y. R1 x y ⇔ (R1 x = R1 y)) ∧
(∀x y. R2 x y ⇔ (R2 x = R2 y)) ⇒
∀x. (R1 ### R2) x x
[PAIR_REL_THM] Theorem
|- ∀R1 R2 a b c d. (R1 ### R2) (a,b) (c,d) ⇔ R1 a c ∧ R2 b d
[SND_PRS] Theorem
|- ∀R1 abs1 rep1.
QUOTIENT R1 abs1 rep1 ⇒
∀R2 abs2 rep2.
QUOTIENT R2 abs2 rep2 ⇒
∀p. SND p = abs2 (SND ((rep1 ## rep2) p))
[SND_RSP] Theorem
|- ∀R1 abs1 rep1.
QUOTIENT R1 abs1 rep1 ⇒
∀R2 abs2 rep2.
QUOTIENT R2 abs2 rep2 ⇒
∀p1 p2. (R1 ### R2) p1 p2 ⇒ R2 (SND p1) (SND p2)
[UNCURRY_PRS] Theorem
|- ∀R1 abs1 rep1.
QUOTIENT R1 abs1 rep1 ⇒
∀R2 abs2 rep2.
QUOTIENT R2 abs2 rep2 ⇒
∀R3 abs3 rep3.
QUOTIENT R3 abs3 rep3 ⇒
∀f p.
UNCURRY f p =
abs3
(UNCURRY ((abs1 --> abs2 --> rep3) f)
((rep1 ## rep2) p))
[UNCURRY_RSP] Theorem
|- ∀R1 abs1 rep1.
QUOTIENT R1 abs1 rep1 ⇒
∀R2 abs2 rep2.
QUOTIENT R2 abs2 rep2 ⇒
∀R3 abs3 rep3.
QUOTIENT R3 abs3 rep3 ⇒
∀f1 f2.
(R1 ===> R2 ===> R3) f1 f2 ⇒
((R1 ### R2) ===> R3) (UNCURRY f1) (UNCURRY f2)
*)
end
HOL 4, Kananaskis-10