Structure res_quanTheory
signature res_quanTheory =
sig
type thm = Thm.thm
(* Theorems *)
val RES_ABSTRACT : thm
val RES_ABSTRACT_EQUAL : thm
val RES_ABSTRACT_EQUAL_EQ : thm
val RES_ABSTRACT_IDEMPOT : thm
val RES_DISJ_EXISTS_DIST : thm
val RES_EXISTS : thm
val RES_EXISTS_ALT : thm
val RES_EXISTS_DISJ_DIST : thm
val RES_EXISTS_EMPTY : thm
val RES_EXISTS_EQUAL : thm
val RES_EXISTS_NULL : thm
val RES_EXISTS_REORDER : thm
val RES_EXISTS_UNIQUE : thm
val RES_EXISTS_UNIQUE_ALT : thm
val RES_EXISTS_UNIQUE_EMPTY : thm
val RES_EXISTS_UNIQUE_NULL : thm
val RES_EXISTS_UNIQUE_UNIV : thm
val RES_EXISTS_UNIV : thm
val RES_FORALL : thm
val RES_FORALL_CONJ_DIST : thm
val RES_FORALL_DISJ_DIST : thm
val RES_FORALL_EMPTY : thm
val RES_FORALL_FORALL : thm
val RES_FORALL_NULL : thm
val RES_FORALL_REORDER : thm
val RES_FORALL_UNIQUE : thm
val RES_FORALL_UNIV : thm
val RES_SELECT : thm
val RES_SELECT_EMPTY : thm
val RES_SELECT_UNIV : thm
val res_quan_grammars : type_grammar.grammar * term_grammar.grammar
(*
[list] Parent theory of "res_quan"
[RES_ABSTRACT] Theorem
|- ∀p m x. x ∈ p ⇒ (RES_ABSTRACT p m x = m x)
[RES_ABSTRACT_EQUAL] Theorem
|- ∀p m1 m2.
(∀x. x ∈ p ⇒ (m1 x = m2 x)) ⇒
(RES_ABSTRACT p m1 = RES_ABSTRACT p m2)
[RES_ABSTRACT_EQUAL_EQ] Theorem
|- ∀p m1 m2.
(RES_ABSTRACT p m1 = RES_ABSTRACT p m2) ⇔
∀x. x ∈ p ⇒ (m1 x = m2 x)
[RES_ABSTRACT_IDEMPOT] Theorem
|- ∀p m. RES_ABSTRACT p (RES_ABSTRACT p m) = RES_ABSTRACT p m
[RES_DISJ_EXISTS_DIST] Theorem
|- ∀P Q R. (∃i::(λi. P i ∨ Q i). R i) ⇔ (∃i::P. R i) ∨ ∃i::Q. R i
[RES_EXISTS] Theorem
|- ∀P f. RES_EXISTS P f ⇔ ∃x. x ∈ P ∧ f x
[RES_EXISTS_ALT] Theorem
|- ∀p m. RES_EXISTS p m ⇔ RES_SELECT p m ∈ p ∧ m (RES_SELECT p m)
[RES_EXISTS_DISJ_DIST] Theorem
|- ∀P Q R. (∃i::P. Q i ∨ R i) ⇔ (∃i::P. Q i) ∨ ∃i::P. R i
[RES_EXISTS_EMPTY] Theorem
|- ∀p. ¬RES_EXISTS ∅ p
[RES_EXISTS_EQUAL] Theorem
|- ∀P j. (∃i:: $= j. P i) ⇔ P j
[RES_EXISTS_NULL] Theorem
|- ∀p m. (∃x::p. m) ⇔ p ≠ ∅ ∧ m
[RES_EXISTS_REORDER] Theorem
|- ∀P Q R. (∃(i::P) (j::Q). R i j) ⇔ ∃(j::Q) (i::P). R i j
[RES_EXISTS_UNIQUE] Theorem
|- ∀P f.
RES_EXISTS_UNIQUE P f ⇔
(∃x::P. f x) ∧ ∀x y::P. f x ∧ f y ⇒ (x = y)
[RES_EXISTS_UNIQUE_ALT] Theorem
|- ∀p m. RES_EXISTS_UNIQUE p m ⇔ ∃x::p. m x ∧ ∀y::p. m y ⇒ (y = x)
[RES_EXISTS_UNIQUE_EMPTY] Theorem
|- ∀p. ¬RES_EXISTS_UNIQUE ∅ p
[RES_EXISTS_UNIQUE_NULL] Theorem
|- ∀p m. (∃!x::p. m) ⇔ (∃x. p = {x}) ∧ m
[RES_EXISTS_UNIQUE_UNIV] Theorem
|- ∀p. RES_EXISTS_UNIQUE 𝕌(:α) p ⇔ $?! p
[RES_EXISTS_UNIV] Theorem
|- ∀p. RES_EXISTS 𝕌(:α) p ⇔ $? p
[RES_FORALL] Theorem
|- ∀P f. RES_FORALL P f ⇔ ∀x. x ∈ P ⇒ f x
[RES_FORALL_CONJ_DIST] Theorem
|- ∀P Q R. (∀i::P. Q i ∧ R i) ⇔ (∀i::P. Q i) ∧ ∀i::P. R i
[RES_FORALL_DISJ_DIST] Theorem
|- ∀P Q R. (∀i::(λj. P j ∨ Q j). R i) ⇔ (∀i::P. R i) ∧ ∀i::Q. R i
[RES_FORALL_EMPTY] Theorem
|- ∀p. RES_FORALL ∅ p
[RES_FORALL_FORALL] Theorem
|- ∀P R x. (∀x (i::P). R i x) ⇔ ∀(i::P) x. R i x
[RES_FORALL_NULL] Theorem
|- ∀p m. (∀x::p. m) ⇔ (p = ∅) ∨ m
[RES_FORALL_REORDER] Theorem
|- ∀P Q R. (∀(i::P) (j::Q). R i j) ⇔ ∀(j::Q) (i::P). R i j
[RES_FORALL_UNIQUE] Theorem
|- ∀P j. (∀i:: $= j. P i) ⇔ P j
[RES_FORALL_UNIV] Theorem
|- ∀p. RES_FORALL 𝕌(:α) p ⇔ $! p
[RES_SELECT] Theorem
|- ∀P f. RES_SELECT P f = @x. x ∈ P ∧ f x
[RES_SELECT_EMPTY] Theorem
|- ∀p. RES_SELECT ∅ p = @x. F
[RES_SELECT_UNIV] Theorem
|- ∀p. RES_SELECT 𝕌(:α) p = $@ p
*)
end
HOL 4, Kananaskis-10