Structure schneiderUtils
signature schneiderUtils =
sig
type term = Term.term
type thm = Thm.thm
type goal = Abbrev.goal
type conv = Abbrev.conv
type tactic = Abbrev.tactic
val APPLY_ASM_TAC : int -> tactic -> tactic
val ASM_LIST_TAC : int list
-> (thm list -> term list * 'a -> 'b)
-> term list * 'a -> 'b
val ASM_TAC : int -> (thm -> term list * 'a -> 'b) -> term list * 'a -> 'b
val BOOL_VAR_ELIM_CONV : term -> term -> thm
val BOOL_VAR_ELIM_TAC : term -> tactic
val COND_ELIM_CONV : term -> thm
val COND_ELIM_TAC : tactic
val COND_EQ_CONV : term -> thm
val COND_EQ_TAC : tactic
val COND_FUN_EXT_CONV : term -> thm
val COND_FUN_EXT_TAC : tactic
val COPY_ASM_NO : int -> tactic
val FORALL_IN_CONV : conv
val FORALL_UNFREE_CONV : term -> thm
val LEFT_CONJ_TAC : tactic
val LEFT_DISJ_TAC : tactic
val LEFT_EXISTS_TAC : tactic
val LEFT_FORALL_TAC : term -> tactic
val LEFT_LEMMA_DISJ_CASES_TAC : thm -> tactic
val LEFT_NO_EXISTS_TAC : int -> tactic
val LEFT_NO_FORALL_TAC : int -> term -> tactic
val MP2_TAC : thm -> goal -> (term list * term) list * (thm list -> thm)
val MY_MP_TAC : term -> goal -> (term list * term) list * (thm list -> thm)
val POP_NO_ASSUM : int -> (thm -> term list * 'a -> 'b) -> term list * 'a -> 'b
val POP_NO_TAC : int -> tactic
val PROP_TAC : tactic
val REW_PROP_TAC : tactic
val RIGHT_CONJ_TAC : tactic
val RIGHT_DISJ_TAC : tactic
val RIGHT_LEMMA_DISJ_CASES_TAC : thm -> tactic
val REWRITE1_TAC : thm -> tactic
val SELECT_EXISTS_TAC : term -> tactic
val SELECT_TAC : term -> tactic
val SELECT_UNIQUE_RULE : term -> thm -> thm -> thm
val SELECT_UNIQUE_TAC : tactic
val SELECT_UNIQUE_THM : thm
val TAC_CONV : tactic -> term -> thm
val UNDISCH_ALL_TAC : tactic
val UNDISCH_HD_TAC : tactic
val UNDISCH_NO_TAC : int -> tactic
val delete : int -> 'a list -> 'a list
val elem : int -> 'a list -> 'a
val prove_thm : string * term * tactic -> thm
end;
HOL 4, Kananaskis-10