Structure seqTheory
signature seqTheory =
sig
type thm = Thm.thm
(* Definitions *)
val cauchy : thm
val convergent : thm
val lim : thm
val mono : thm
val subseq : thm
val suminf : thm
val summable : thm
val sums : thm
val tends_num_real : thm
(* Theorems *)
val ABS_NEG_LEMMA : thm
val BOLZANO_LEMMA : thm
val GP : thm
val GP_FINITE : thm
val LE_SEQ_IMP_LE_LIM : thm
val MAX_LEMMA : thm
val MONO_SUC : thm
val NEST_LEMMA : thm
val NEST_LEMMA_UNIQ : thm
val SEQ : thm
val SEQ_ABS : thm
val SEQ_ABS_IMP : thm
val SEQ_ADD : thm
val SEQ_BCONV : thm
val SEQ_BOUNDED : thm
val SEQ_BOUNDED_2 : thm
val SEQ_CAUCHY : thm
val SEQ_CBOUNDED : thm
val SEQ_CONST : thm
val SEQ_DIRECT : thm
val SEQ_DIV : thm
val SEQ_ICONV : thm
val SEQ_INV : thm
val SEQ_INV0 : thm
val SEQ_LE : thm
val SEQ_LE_IMP_LIM_LE : thm
val SEQ_LE_MONO : thm
val SEQ_LIM : thm
val SEQ_MONOSUB : thm
val SEQ_MONO_LE : thm
val SEQ_MUL : thm
val SEQ_NEG : thm
val SEQ_NEG_BOUNDED : thm
val SEQ_NEG_CONV : thm
val SEQ_POWER : thm
val SEQ_POWER_ABS : thm
val SEQ_SBOUNDED : thm
val SEQ_SUB : thm
val SEQ_SUBLE : thm
val SEQ_SUC : thm
val SEQ_UNIQ : thm
val SER_0 : thm
val SER_ABS : thm
val SER_ACONV : thm
val SER_ADD : thm
val SER_CAUCHY : thm
val SER_CDIV : thm
val SER_CMUL : thm
val SER_COMPAR : thm
val SER_COMPARA : thm
val SER_GROUP : thm
val SER_LE : thm
val SER_LE2 : thm
val SER_NEG : thm
val SER_OFFSET : thm
val SER_PAIR : thm
val SER_POS_LE : thm
val SER_POS_LT : thm
val SER_POS_LT_PAIR : thm
val SER_RATIO : thm
val SER_SUB : thm
val SER_ZERO : thm
val SUBSEQ_SUC : thm
val SUMMABLE_SUM : thm
val SUM_SUMMABLE : thm
val SUM_UNIQ : thm
val seq_grammars : type_grammar.grammar * term_grammar.grammar
(*
[nets] Parent theory of "seq"
[cauchy] Definition
|- ∀f.
cauchy f ⇔
∀e. 0 < e ⇒ ∃N. ∀m n. m ≥ N ∧ n ≥ N ⇒ abs (f m − f n) < e
[convergent] Definition
|- ∀f. convergent f ⇔ ∃l. f --> l
[lim] Definition
|- ∀f. lim f = @l. f --> l
[mono] Definition
|- ∀f. mono f ⇔ (∀m n. m ≤ n ⇒ f m ≤ f n) ∨ ∀m n. m ≤ n ⇒ f m ≥ f n
[subseq] Definition
|- ∀f. subseq f ⇔ ∀m n. m < n ⇒ f m < f n
[suminf] Definition
|- ∀f. suminf f = @s. f sums s
[summable] Definition
|- ∀f. summable f ⇔ ∃s. f sums s
[sums] Definition
|- ∀f s. f sums s ⇔ (λn. sum (0,n) f) --> s
[tends_num_real] Definition
|- ∀x x0. x --> x0 ⇔ (x tends x0) (mtop mr1,$>=)
[ABS_NEG_LEMMA] Theorem
|- ∀c. c ≤ 0 ⇒ ∀x y. abs x ≤ c * abs y ⇒ (x = 0)
[BOLZANO_LEMMA] Theorem
|- ∀P.
(∀a b c. a ≤ b ∧ b ≤ c ∧ P (a,b) ∧ P (b,c) ⇒ P (a,c)) ∧
(∀x. ∃d. 0 < d ∧ ∀a b. a ≤ x ∧ x ≤ b ∧ b − a < d ⇒ P (a,b)) ⇒
∀a b. a ≤ b ⇒ P (a,b)
[GP] Theorem
|- ∀x. abs x < 1 ⇒ (λn. x pow n) sums inv (1 − x)
[GP_FINITE] Theorem
|- ∀x. x ≠ 1 ⇒ ∀n. sum (0,n) (λn. x pow n) = (x pow n − 1) / (x − 1)
[LE_SEQ_IMP_LE_LIM] Theorem
|- ∀x y f. (∀n. x ≤ f n) ∧ f --> y ⇒ x ≤ y
[MAX_LEMMA] Theorem
|- ∀s N. ∃k. ∀n. n < N ⇒ abs (s n) < k
[MONO_SUC] Theorem
|- ∀f. mono f ⇔ (∀n. f (SUC n) ≥ f n) ∨ ∀n. f (SUC n) ≤ f n
[NEST_LEMMA] Theorem
|- ∀f g.
(∀n. f (SUC n) ≥ f n) ∧ (∀n. g (SUC n) ≤ g n) ∧
(∀n. f n ≤ g n) ⇒
∃l m.
l ≤ m ∧ ((∀n. f n ≤ l) ∧ f --> l) ∧ (∀n. m ≤ g n) ∧ g --> m
[NEST_LEMMA_UNIQ] Theorem
|- ∀f g.
(∀n. f (SUC n) ≥ f n) ∧ (∀n. g (SUC n) ≤ g n) ∧
(∀n. f n ≤ g n) ∧ (λn. f n − g n) --> 0 ⇒
∃l. ((∀n. f n ≤ l) ∧ f --> l) ∧ (∀n. l ≤ g n) ∧ g --> l
[SEQ] Theorem
|- ∀x x0. x --> x0 ⇔ ∀e. 0 < e ⇒ ∃N. ∀n. n ≥ N ⇒ abs (x n − x0) < e
[SEQ_ABS] Theorem
|- ∀f. (λn. abs (f n)) --> 0 ⇔ f --> 0
[SEQ_ABS_IMP] Theorem
|- ∀f l. f --> l ⇒ (λn. abs (f n)) --> abs l
[SEQ_ADD] Theorem
|- ∀x x0 y y0. x --> x0 ∧ y --> y0 ⇒ (λn. x n + y n) --> (x0 + y0)
[SEQ_BCONV] Theorem
|- ∀f. bounded (mr1,$>=) f ∧ mono f ⇒ convergent f
[SEQ_BOUNDED] Theorem
|- ∀s. bounded (mr1,$>=) s ⇔ ∃k. ∀n. abs (s n) < k
[SEQ_BOUNDED_2] Theorem
|- ∀f k k'. (∀n. k ≤ f n ∧ f n ≤ k') ⇒ bounded (mr1,$>=) f
[SEQ_CAUCHY] Theorem
|- ∀f. cauchy f ⇔ convergent f
[SEQ_CBOUNDED] Theorem
|- ∀f. cauchy f ⇒ bounded (mr1,$>=) f
[SEQ_CONST] Theorem
|- ∀k. (λx. k) --> k
[SEQ_DIRECT] Theorem
|- ∀f. subseq f ⇒ ∀N1 N2. ∃n. n ≥ N1 ∧ f n ≥ N2
[SEQ_DIV] Theorem
|- ∀x x0 y y0.
x --> x0 ∧ y --> y0 ∧ y0 ≠ 0 ⇒ (λn. x n / y n) --> (x0 / y0)
[SEQ_ICONV] Theorem
|- ∀f. bounded (mr1,$>=) f ∧ (∀m n. m ≥ n ⇒ f m ≥ f n) ⇒ convergent f
[SEQ_INV] Theorem
|- ∀x x0. x --> x0 ∧ x0 ≠ 0 ⇒ (λn. inv (x n)) --> inv x0
[SEQ_INV0] Theorem
|- ∀f. (∀y. ∃N. ∀n. n ≥ N ⇒ f n > y) ⇒ (λn. inv (f n)) --> 0
[SEQ_LE] Theorem
|- ∀f g l m. f --> l ∧ g --> m ∧ (∃N. ∀n. n ≥ N ⇒ f n ≤ g n) ⇒ l ≤ m
[SEQ_LE_IMP_LIM_LE] Theorem
|- ∀x y f. (∀n. f n ≤ x) ∧ f --> y ⇒ y ≤ x
[SEQ_LE_MONO] Theorem
|- ∀f x n. (∀n. f (n + 1) ≤ f n) ∧ f --> x ⇒ x ≤ f n
[SEQ_LIM] Theorem
|- ∀f. convergent f ⇔ f --> lim f
[SEQ_MONOSUB] Theorem
|- ∀s. ∃f. subseq f ∧ mono (λn. s (f n))
[SEQ_MONO_LE] Theorem
|- ∀f x n. (∀n. f n ≤ f (n + 1)) ∧ f --> x ⇒ f n ≤ x
[SEQ_MUL] Theorem
|- ∀x x0 y y0. x --> x0 ∧ y --> y0 ⇒ (λn. x n * y n) --> (x0 * y0)
[SEQ_NEG] Theorem
|- ∀x x0. x --> x0 ⇔ (λn. -x n) --> -x0
[SEQ_NEG_BOUNDED] Theorem
|- ∀f. bounded (mr1,$>=) (λn. -f n) ⇔ bounded (mr1,$>=) f
[SEQ_NEG_CONV] Theorem
|- ∀f. convergent f ⇔ convergent (λn. -f n)
[SEQ_POWER] Theorem
|- ∀c. abs c < 1 ⇒ (λn. c pow n) --> 0
[SEQ_POWER_ABS] Theorem
|- ∀c. abs c < 1 ⇒ (λn. abs c pow n) --> 0
[SEQ_SBOUNDED] Theorem
|- ∀s f. bounded (mr1,$>=) s ⇒ bounded (mr1,$>=) (λn. s (f n))
[SEQ_SUB] Theorem
|- ∀x x0 y y0. x --> x0 ∧ y --> y0 ⇒ (λn. x n − y n) --> (x0 − y0)
[SEQ_SUBLE] Theorem
|- ∀f. subseq f ⇒ ∀n. n ≤ f n
[SEQ_SUC] Theorem
|- ∀f l. f --> l ⇔ (λn. f (SUC n)) --> l
[SEQ_UNIQ] Theorem
|- ∀x x1 x2. x --> x1 ∧ x --> x2 ⇒ (x1 = x2)
[SER_0] Theorem
|- ∀f n. (∀m. n ≤ m ⇒ (f m = 0)) ⇒ f sums sum (0,n) f
[SER_ABS] Theorem
|- ∀f.
summable (λn. abs (f n)) ⇒
abs (suminf f) ≤ suminf (λn. abs (f n))
[SER_ACONV] Theorem
|- ∀f. summable (λn. abs (f n)) ⇒ summable f
[SER_ADD] Theorem
|- ∀x x0 y y0. x sums x0 ∧ y sums y0 ⇒ (λn. x n + y n) sums (x0 + y0)
[SER_CAUCHY] Theorem
|- ∀f.
summable f ⇔ ∀e. 0 < e ⇒ ∃N. ∀m n. m ≥ N ⇒ abs (sum (m,n) f) < e
[SER_CDIV] Theorem
|- ∀x x0 c. x sums x0 ⇒ (λn. x n / c) sums (x0 / c)
[SER_CMUL] Theorem
|- ∀x x0 c. x sums x0 ⇒ (λn. c * x n) sums (c * x0)
[SER_COMPAR] Theorem
|- ∀f g. (∃N. ∀n. n ≥ N ⇒ abs (f n) ≤ g n) ∧ summable g ⇒ summable f
[SER_COMPARA] Theorem
|- ∀f g.
(∃N. ∀n. n ≥ N ⇒ abs (f n) ≤ g n) ∧ summable g ⇒
summable (λk. abs (f k))
[SER_GROUP] Theorem
|- ∀f k. summable f ∧ 0 < k ⇒ (λn. sum (n * k,k) f) sums suminf f
[SER_LE] Theorem
|- ∀f g.
(∀n. f n ≤ g n) ∧ summable f ∧ summable g ⇒ suminf f ≤ suminf g
[SER_LE2] Theorem
|- ∀f g.
(∀n. abs (f n) ≤ g n) ∧ summable g ⇒
summable f ∧ suminf f ≤ suminf g
[SER_NEG] Theorem
|- ∀x x0. x sums x0 ⇒ (λn. -x n) sums -x0
[SER_OFFSET] Theorem
|- ∀f. summable f ⇒ ∀k. (λn. f (n + k)) sums (suminf f − sum (0,k) f)
[SER_PAIR] Theorem
|- ∀f. summable f ⇒ (λn. sum (2 * n,2) f) sums suminf f
[SER_POS_LE] Theorem
|- ∀f n. summable f ∧ (∀m. n ≤ m ⇒ 0 ≤ f m) ⇒ sum (0,n) f ≤ suminf f
[SER_POS_LT] Theorem
|- ∀f n. summable f ∧ (∀m. n ≤ m ⇒ 0 < f m) ⇒ sum (0,n) f < suminf f
[SER_POS_LT_PAIR] Theorem
|- ∀f n.
summable f ∧ (∀d. 0 < f (n + 2 * d) + f (n + (2 * d + 1))) ⇒
sum (0,n) f < suminf f
[SER_RATIO] Theorem
|- ∀f c N.
c < 1 ∧ (∀n. n ≥ N ⇒ abs (f (SUC n)) ≤ c * abs (f n)) ⇒
summable f
[SER_SUB] Theorem
|- ∀x x0 y y0. x sums x0 ∧ y sums y0 ⇒ (λn. x n − y n) sums (x0 − y0)
[SER_ZERO] Theorem
|- ∀f. summable f ⇒ f --> 0
[SUBSEQ_SUC] Theorem
|- ∀f. subseq f ⇔ ∀n. f n < f (SUC n)
[SUMMABLE_SUM] Theorem
|- ∀f. summable f ⇒ f sums suminf f
[SUM_SUMMABLE] Theorem
|- ∀f l. f sums l ⇒ summable f
[SUM_UNIQ] Theorem
|- ∀f x. f sums x ⇒ (x = suminf f)
*)
end
HOL 4, Kananaskis-10