Structure topologyTheory


Source File Identifier index Theory binding index

signature topologyTheory =
sig
  type thm = Thm.thm

  (*  Definitions  *)
    val ball : thm
    val closed : thm
    val ismet : thm
    val istopology : thm
    val limpt : thm
    val metric_TY_DEF : thm
    val metric_tybij : thm
    val mr1 : thm
    val mtop : thm
    val neigh : thm
    val re_intersect : thm
    val re_union : thm
    val topology_TY_DEF : thm
    val topology_tybij : thm

  (*  Theorems  *)
    val BALL_NEIGH : thm
    val BALL_OPEN : thm
    val CLOSED_LIMPT : thm
    val ISMET_R1 : thm
    val METRIC_ISMET : thm
    val METRIC_NZ : thm
    val METRIC_POS : thm
    val METRIC_SAME : thm
    val METRIC_SYM : thm
    val METRIC_TRIANGLE : thm
    val METRIC_ZERO : thm
    val MR1_ADD : thm
    val MR1_ADD_LT : thm
    val MR1_ADD_POS : thm
    val MR1_BETWEEN1 : thm
    val MR1_DEF : thm
    val MR1_LIMPT : thm
    val MR1_SUB : thm
    val MR1_SUB_LE : thm
    val MR1_SUB_LT : thm
    val MTOP_LIMPT : thm
    val MTOP_OPEN : thm
    val OPEN_NEIGH : thm
    val OPEN_OWN_NEIGH : thm
    val OPEN_SUBOPEN : thm
    val OPEN_UNOPEN : thm
    val TOPOLOGY : thm
    val TOPOLOGY_UNION : thm
    val mtop_istopology : thm

  val topology_grammars : type_grammar.grammar * term_grammar.grammar
(*
   [real] Parent theory of "topology"

   [ball]  Definition

      |- ∀m x e. B m (x,e) = (λy. dist m (x,y) < e)

   [closed]  Definition

      |- ∀L S'. closed L S' ⇔ open L (COMPL S')

   [ismet]  Definition

      |- ∀m.
           ismet m ⇔
           (∀x y. (m (x,y) = 0) ⇔ (x = y)) ∧
           ∀x y z. m (y,z) ≤ m (x,y) + m (x,z)

   [istopology]  Definition

      |- ∀L.
           istopology L ⇔
           L ∅ ∧ L 𝕌(:α) ∧ (∀a b. L a ∧ L b ⇒ L (a re_intersect b)) ∧
           ∀P. P ⊆ L ⇒ L (BIGUNION P)

   [limpt]  Definition

      |- ∀top x S'.
           limpt top x S' ⇔ ∀N. neigh top (N,x) ⇒ ∃y. x ≠ y ∧ S' y ∧ N y

   [metric_TY_DEF]  Definition

      |- ∃rep. TYPE_DEFINITION ismet rep

   [metric_tybij]  Definition

      |- (∀a. metric (dist a) = a) ∧ ∀r. ismet r ⇔ (dist (metric r) = r)

   [mr1]  Definition

      |- mr1 = metric (λ(x,y). abs (y − x))

   [mtop]  Definition

      |- ∀m.
           mtop m =
           topology
             (λS'. ∀x. S' x ⇒ ∃e. 0 < e ∧ ∀y. dist m (x,y) < e ⇒ S' y)

   [neigh]  Definition

      |- ∀top N x. neigh top (N,x) ⇔ ∃P. open top P ∧ P ⊆ N ∧ P x

   [re_intersect]  Definition

      |- ∀P Q. P re_intersect Q = (λx. P x ∧ Q x)

   [re_union]  Definition

      |- ∀P Q. P re_union Q = (λx. P x ∨ Q x)

   [topology_TY_DEF]  Definition

      |- ∃rep. TYPE_DEFINITION istopology rep

   [topology_tybij]  Definition

      |- (∀a. topology (open a) = a) ∧
         ∀r. istopology r ⇔ (open (topology r) = r)

   [BALL_NEIGH]  Theorem

      |- ∀m x e. 0 < e ⇒ neigh (mtop m) (B m (x,e),x)

   [BALL_OPEN]  Theorem

      |- ∀m x e. 0 < e ⇒ open (mtop m) (B m (x,e))

   [CLOSED_LIMPT]  Theorem

      |- ∀top S'. closed top S' ⇔ ∀x. limpt top x S' ⇒ S' x

   [ISMET_R1]  Theorem

      |- ismet (λ(x,y). abs (y − x))

   [METRIC_ISMET]  Theorem

      |- ∀m. ismet (dist m)

   [METRIC_NZ]  Theorem

      |- ∀m x y. x ≠ y ⇒ 0 < dist m (x,y)

   [METRIC_POS]  Theorem

      |- ∀m x y. 0 ≤ dist m (x,y)

   [METRIC_SAME]  Theorem

      |- ∀m x. dist m (x,x) = 0

   [METRIC_SYM]  Theorem

      |- ∀m x y. dist m (x,y) = dist m (y,x)

   [METRIC_TRIANGLE]  Theorem

      |- ∀m x y z. dist m (x,z) ≤ dist m (x,y) + dist m (y,z)

   [METRIC_ZERO]  Theorem

      |- ∀m x y. (dist m (x,y) = 0) ⇔ (x = y)

   [MR1_ADD]  Theorem

      |- ∀x d. dist mr1 (x,x + d) = abs d

   [MR1_ADD_LT]  Theorem

      |- ∀x d. 0 < d ⇒ (dist mr1 (x,x + d) = d)

   [MR1_ADD_POS]  Theorem

      |- ∀x d. 0 ≤ d ⇒ (dist mr1 (x,x + d) = d)

   [MR1_BETWEEN1]  Theorem

      |- ∀x y z. x < z ∧ dist mr1 (x,y) < z − x ⇒ y < z

   [MR1_DEF]  Theorem

      |- ∀x y. dist mr1 (x,y) = abs (y − x)

   [MR1_LIMPT]  Theorem

      |- ∀x. limpt (mtop mr1) x 𝕌(:real)

   [MR1_SUB]  Theorem

      |- ∀x d. dist mr1 (x,x − d) = abs d

   [MR1_SUB_LE]  Theorem

      |- ∀x d. 0 ≤ d ⇒ (dist mr1 (x,x − d) = d)

   [MR1_SUB_LT]  Theorem

      |- ∀x d. 0 < d ⇒ (dist mr1 (x,x − d) = d)

   [MTOP_LIMPT]  Theorem

      |- ∀m x S'.
           limpt (mtop m) x S' ⇔
           ∀e. 0 < e ⇒ ∃y. x ≠ y ∧ S' y ∧ dist m (x,y) < e

   [MTOP_OPEN]  Theorem

      |- ∀S' m.
           open (mtop m) S' ⇔
           ∀x. S' x ⇒ ∃e. 0 < e ∧ ∀y. dist m (x,y) < e ⇒ S' y

   [OPEN_NEIGH]  Theorem

      |- ∀S' top. open top S' ⇔ ∀x. S' x ⇒ ∃N. neigh top (N,x) ∧ N ⊆ S'

   [OPEN_OWN_NEIGH]  Theorem

      |- ∀S' top x. open top S' ∧ S' x ⇒ neigh top (S',x)

   [OPEN_SUBOPEN]  Theorem

      |- ∀S' top. open top S' ⇔ ∀x. S' x ⇒ ∃P. P x ∧ open top P ∧ P ⊆ S'

   [OPEN_UNOPEN]  Theorem

      |- ∀S' top. open top S' ⇔ (BIGUNION {P | open top P ∧ P ⊆ S'} = S')

   [TOPOLOGY]  Theorem

      |- ∀L.
           open L ∅ ∧ open L 𝕌(:α) ∧
           (∀x y. open L x ∧ open L y ⇒ open L (x re_intersect y)) ∧
           ∀P. P ⊆ open L ⇒ open L (BIGUNION P)

   [TOPOLOGY_UNION]  Theorem

      |- ∀L P. P ⊆ open L ⇒ open L (BIGUNION P)

   [mtop_istopology]  Theorem

      |- ∀m.
           istopology
             (λS'. ∀x. S' x ⇒ ∃e. 0 < e ∧ ∀y. dist m (x,y) < e ⇒ S' y)


*)
end


Source File Identifier index Theory binding index

HOL 4, Kananaskis-10