Structure wotTheory
signature wotTheory =
sig
type thm = Thm.thm
(* Definitions *)
val StrongWellOrder_def : thm
val U_def : thm
val WeakWellOrder_def : thm
val chain_def : thm
val comparable_def : thm
val cpl_def : thm
val lub_sub_def : thm
val mex_def : thm
val mex_less_def : thm
val mex_less_eq_def : thm
val preds_def : thm
val preds_image_def : thm
val setsuc_def : thm
val succl_def : thm
val t0_def : thm
val tower_def : thm
val uncl_def : thm
(* Theorems *)
val StrongWellOrderExists : thm
val wot_grammars : type_grammar.grammar * term_grammar.grammar
(*
[list] Parent theory of "wot"
[StrongWellOrder_def] Definition
|- !R. StrongWellOrder R <=> StrongLinearOrder R /\ WF R
[U_def] Definition
|- !C. U C = {A | A IN t0 /\ (A SUBSET C \/ setsuc C SUBSET A)}
[WeakWellOrder_def] Definition
|- !R.
WeakWellOrder R <=>
WeakOrder R /\
!B. B <> {} ==> ?m. m IN B /\ !b. b IN B ==> R m b
[chain_def] Definition
|- !C. chain C <=> !a b. a IN C /\ b IN C ==> a cpl b
[comparable_def] Definition
|- !p. comparable p <=> !q. q IN t0 ==> p cpl q
[cpl_def] Definition
|- !A B. A cpl B <=> A SUBSET B \/ B SUBSET A
[lub_sub_def] Definition
|- !B.
lub_sub B = BIGUNION {y | y IN t0 /\ !x. x IN B ==> y SUBSET x}
[mex_def] Definition
|- !s. mex s = CHOICE (COMPL s)
[mex_less_def] Definition
|- $mex_less = STRORD $mex_less_eq
[mex_less_eq_def] Definition
|- !a b. a mex_less_eq b <=> preds a SUBSET preds b
[preds_def] Definition
|- !a. preds a = BIGUNION {s | s IN t0 /\ a NOTIN s}
[preds_image_def] Definition
|- !X. preds_image X = {preds x | x IN X}
[setsuc_def] Definition
|- !s. setsuc s = mex s INSERT s
[succl_def] Definition
|- !c. succl c <=> !s. s IN c ==> setsuc s IN c
[t0_def] Definition
|- t0 = BIGINTER tower
[tower_def] Definition
|- !A. tower A <=> succl A /\ uncl A
[uncl_def] Definition
|- !c. uncl c <=> !w. w SUBSET c /\ chain w ==> BIGUNION w IN c
[StrongWellOrderExists] Theorem
|- ?R. StrongLinearOrder R /\ WF R
*)
end
HOL 4, Kananaskis-10