Theory "EncodeVar"

Parents     Coder

Signature

Constant Type
fixed_width :num -> (α -> bool) # (α -> bitstring) # (bitstring, α) state_option -> bool
of_length :num -> α list -> bool

Definitions

fixed_width_def
|- ∀n c. fixed_width n c ⇔ ∀x. domain c x ⇒ (LENGTH (encoder c x) = n)
of_length_def
|- ∀l n. l ∈ of_length n ⇔ (LENGTH l = n)


Theorems

fixed_width_univ
|- ∀phi c n.
     wf_coder c ∧ fixed_width n c ⇒
     ((∀x. domain c x ⇒ phi x) ⇔ ∀w::of_length n. phi (decoder c w))
of_length_univ_suc
|- ∀phi n. (∀w::of_length (SUC n). phi w) ⇔ ∀x (w::of_length n). phi (x::w)
of_length_univ_zero
|- ∀phi. (∀w::of_length 0. phi w) ⇔ phi []
fixed_width_exists
|- ∀phi c n.
     wf_coder c ∧ fixed_width n c ⇒
     ((∃x. domain c x ∧ phi x) ⇔ ∃w::of_length n. phi (decoder c w))
of_length_exists_suc
|- ∀phi n. (∃w::of_length (SUC n). phi w) ⇔ ∃x (w::of_length n). phi (x::w)
of_length_exists_zero
|- ∀phi. (∃w::of_length 0. phi w) ⇔ phi []
fixed_width_unit
|- ∀p. fixed_width 0 (unit_coder p)
fixed_width_bool
|- ∀p. fixed_width 1 (bool_coder p)
fixed_width_prod
|- ∀c1 c2 n1 n2.
     fixed_width n1 c1 ∧ fixed_width n2 c2 ⇒
     fixed_width (n1 + n2) (prod_coder c1 c2)
fixed_width_sum
|- ∀c1 c2 n.
     fixed_width n c1 ∧ fixed_width n c2 ⇒
     fixed_width (SUC n) (sum_coder c1 c2)
fixed_width_bnum
|- ∀m p. fixed_width m (bnum_coder m p)