Theory "Temporal_Logic"

Parents     list

Signature

Constant Type
ALWAYS :(num -> bool) -> num -> bool
BEFORE :(num -> bool) -> (num -> bool) -> num -> bool
EVENTUAL :(num -> bool) -> num -> bool
NEXT :(num -> bool) -> num -> bool
SBEFORE :(num -> bool) -> (num -> bool) -> num -> bool
SUNTIL :(num -> bool) -> (num -> bool) -> num -> bool
SWHEN :(num -> bool) -> (num -> bool) -> num -> bool
UNTIL :(num -> bool) -> (num -> bool) -> num -> bool
UPTO :num # num # (num -> bool) -> bool
WATCH :(num -> bool) -> (num -> bool) -> num -> bool
WHEN :(num -> bool) -> (num -> bool) -> num -> bool

Definitions

NEXT
|- ∀P. NEXT P = (λt. P (SUC t))
ALWAYS
|- ∀P t0. ALWAYS P t0 ⇔ ∀t. P (t + t0)
EVENTUAL
|- ∀P t0. EVENTUAL P t0 ⇔ ∃t. P (t + t0)
WATCH
|- ∀q b t0.
     (q WATCH b) t0 ⇔
     ∀t. (q t0 ⇔ F) ∧ (q (SUC (t + t0)) ⇔ q (t + t0) ∨ b (t + t0))
UPTO
|- ∀t0 t1 a. UPTO (t0,t1,a) ⇔ ∀t2. t0 ≤ t2 ∧ t2 < t1 ⇒ a t2
WHEN
|- ∀a b t0.
     (a WHEN b) t0 ⇔
     ∃q. (q WATCH b) t0 ∧ ∀t. q (t + t0) ∨ (b (t + t0) ⇒ a (t + t0))
UNTIL
|- ∀a b t0.
     (a UNTIL b) t0 ⇔
     ∃q. (q WATCH b) t0 ∧ ∀t. q (t + t0) ∨ b (t + t0) ∨ a (t + t0)
BEFORE
|- ∀a b t0.
     (a BEFORE b) t0 ⇔
     ∃q.
       (q WATCH b) t0 ∧
       ((∃t. ¬q (t + t0) ∧ ¬b (t + t0) ∧ a (t + t0)) ∨ ∀t. ¬b (t + t0))
SWHEN
|- ∀a b t0.
     (a SWHEN b) t0 ⇔
     ∃q. (q WATCH b) t0 ∧ ∃t. ¬q (t + t0) ∧ b (t + t0) ∧ a (t + t0)
SUNTIL
|- ∀a b t0.
     (a SUNTIL b) t0 ⇔
     ∃q.
       (q WATCH b) t0 ∧ (∀t. q (t + t0) ∨ b (t + t0) ∨ a (t + t0)) ∧
       ∃t. b (t + t0)
SBEFORE
|- ∀a b t0.
     (a SBEFORE b) t0 ⇔
     ∃q. (q WATCH b) t0 ∧ ∃t. ¬q (t + t0) ∧ ¬b (t + t0) ∧ a (t + t0)


Theorems

WATCH_EXISTS
|- ∀b t0. ∃q. (q WATCH b) t0
WELL_ORDER
|- (∃n. P n) ⇔ ∃m. P m ∧ ∀n. n < m ⇒ ¬P n
WELL_ORDER_UNIQUE
|- ∀m2 m1 P.
     (P m1 ∧ ∀n. n < m1 ⇒ ¬P n) ∧ P m2 ∧ (∀n. n < m2 ⇒ ¬P n) ⇒ (m1 = m2)
DELTA_CASES
|- (∃d. (∀t. t < d ⇒ ¬b (t + t0)) ∧ b (d + t0)) ∨ ∀d. ¬b (d + t0)
WHEN_IMP
|- (a WHEN b) t0 ⇔
   ∀q. (q WATCH b) t0 ⇒ ∀t. q (t + t0) ∨ (b (t + t0) ⇒ a (t + t0))
UNTIL_IMP
|- (a UNTIL b) t0 ⇔
   ∀q. (q WATCH b) t0 ⇒ ∀t. q (t + t0) ∨ b (t + t0) ∨ a (t + t0)
BEFORE_IMP
|- (a BEFORE b) t0 ⇔
   ∀q.
     (q WATCH b) t0 ⇒
     (∃t. ¬q (t + t0) ∧ ¬b (t + t0) ∧ a (t + t0)) ∨ ∀t. ¬b (t + t0)
SWHEN_IMP
|- (a SWHEN b) t0 ⇔
   ∀q. (q WATCH b) t0 ⇒ ∃t. ¬q (t + t0) ∧ b (t + t0) ∧ a (t + t0)
SUNTIL_IMP
|- (a SUNTIL b) t0 ⇔
   ∀q.
     (q WATCH b) t0 ⇒
     (∀t. q (t + t0) ∨ b (t + t0) ∨ a (t + t0)) ∧ ∃t. b (t + t0)
SBEFORE_IMP
|- (a SBEFORE b) t0 ⇔
   ∀q. (q WATCH b) t0 ⇒ ∃t. ¬q (t + t0) ∧ ¬b (t + t0) ∧ a (t + t0)
ALWAYS_SIGNAL
|- ALWAYS a t0 ⇔ ∀t. a (t + t0)
EVENTUAL_SIGNAL
|- EVENTUAL a t0 ⇔ ∃t. a (t + t0)
WATCH_SIGNAL
|- (q WATCH b) t0 ⇔
   ((∀t. ¬b (t + t0)) ⇒ ∀t. ¬q (t + t0)) ∧
   ∀d.
     b (d + t0) ∧ (∀t. t < d ⇒ ¬b (t + t0)) ⇒
     (∀t. t ≤ d ⇒ ¬q (t + t0)) ∧ ∀t. q (SUC (t + (d + t0)))
WHEN_SIGNAL
|- (a WHEN b) t0 ⇔
   ∀delta. (∀t. t < delta ⇒ ¬b (t + t0)) ∧ b (delta + t0) ⇒ a (delta + t0)
UNTIL_SIGNAL
|- (a UNTIL b) t0 ⇔
   ((∀t. ¬b (t + t0)) ⇒ ∀t. a (t + t0)) ∧
   ∀d. (∀t. t < d ⇒ ¬b (t + t0)) ∧ b (d + t0) ⇒ ∀t. t < d ⇒ a (t + t0)
BEFORE_SIGNAL
|- (a BEFORE b) t0 ⇔
   ∀delta.
     (∀t. t < delta ⇒ ¬b (t + t0)) ∧ b (delta + t0) ⇒
     ∃t. t < delta ∧ a (t + t0)
SWHEN_SIGNAL
|- (a SWHEN b) t0 ⇔
   ∃delta. (∀t. t < delta ⇒ ¬b (t + t0)) ∧ b (delta + t0) ∧ a (delta + t0)
SUNTIL_SIGNAL
|- (a SUNTIL b) t0 ⇔
   ∃delta. (∀t. t < delta ⇒ a (t + t0) ∧ ¬b (t + t0)) ∧ b (delta + t0)
SBEFORE_SIGNAL
|- (a SBEFORE b) t0 ⇔ ∃delta. a (delta + t0) ∧ ∀t. t ≤ delta ⇒ ¬b (t + t0)
NEXT_LINORD
|- NEXT a t0 ⇔ ∃t1. t0 < t1 ∧ (∀t3. t0 < t3 ⇒ t1 ≤ t3) ∧ a t1
ALWAYS_LINORD
|- ALWAYS a t0 ⇔ ∀t1. t0 ≤ t1 ⇒ a t1
EVENTUAL_LINORD
|- EVENTUAL a t0 ⇔ ∃t1. t0 ≤ t1 ∧ a t1
SUNTIL_LINORD
|- (a SUNTIL b) t0 ⇔ ∃t1. t0 ≤ t1 ∧ b t1 ∧ UPTO (t0,t1,a)
UNTIL_LINORD
|- (a UNTIL b) t0 ⇔ ∀t1. t0 ≤ t1 ∧ ¬b t1 ∧ UPTO (t0,t1,(λt. ¬b t)) ⇒ a t1
SBEFORE_LINORD
|- (a SBEFORE b) t0 ⇔ ∃t1. t0 ≤ t1 ∧ a t1 ∧ ¬b t1 ∧ UPTO (t0,t1,(λt. ¬b t))
BEFORE_LINORD
|- (a BEFORE b) t0 ⇔ ∀t1. t0 ≤ t1 ∧ UPTO (t0,t1,(λt. ¬a t)) ⇒ ¬b t1
SWHEN_LINORD
|- (a SWHEN b) t0 ⇔ ∃t1. t0 ≤ t1 ∧ a t1 ∧ b t1 ∧ UPTO (t0,t1,(λt. ¬b t))
WHEN_LINORD
|- (a WHEN b) t0 ⇔ ∀t1. t0 ≤ t1 ∧ b t1 ∧ UPTO (t0,t1,(λt. ¬b t)) ⇒ a t1
ALWAYS_AS_WHEN
|- ALWAYS a = (λt. F) WHEN (λt. ¬a t)
EVENTUAL_AS_WHEN
|- EVENTUAL a = (λt. ¬((λt. F) WHEN a) t)
UNTIL_AS_WHEN
|- a UNTIL b = b WHEN (λt. a t ⇒ b t)
BEFORE_AS_WHEN
|- a BEFORE b = (λt. ¬b t) WHEN (λt. a t ∨ b t)
SWHEN_AS_WHEN
|- a SWHEN b = (λt0. (a WHEN b) t0 ∧ EVENTUAL b t0)
SWHEN_AS_NOT_WHEN
|- (a SWHEN b) t0 ⇔ ¬((λt. ¬a t) WHEN b) t0
SUNTIL_AS_WHEN
|- a SUNTIL b = (λt. (b WHEN (λt. a t ⇒ b t)) t ∧ EVENTUAL b t)
SBEFORE_AS_WHEN
|- a SBEFORE b = (λt0. ((λt. ¬b t) WHEN (λt. a t ∨ b t)) t0 ∧ EVENTUAL a t0)
BEFORE_AS_WHEN_UNTIL
|- a BEFORE b = (λt. ((λt. ¬b t) UNTIL a) t ∧ ((λt. ¬b t) WHEN a) t)
BEFORE_HW
|- (a BEFORE b) t0 ⇔ ∃q. (q WATCH a) t0 ∧ ∀t. q (t + t0) ∨ ¬b (t + t0)
ALWAYS_AS_UNTIL
|- ALWAYS a = a UNTIL (λt. F)
EVENTUAL_AS_UNTIL
|- EVENTUAL a = (λt. ¬((λt. ¬a t) UNTIL (λt. F)) t)
WHEN_AS_UNTIL
|- a WHEN b = (λt. ¬b t) UNTIL (λt. a t ∧ b t)
BEFORE_AS_UNTIL
|- a BEFORE b = (λt0. ¬((λt. ¬a t) UNTIL b) t0 ∨ ALWAYS (λt. ¬b t) t0)
SWHEN_AS_UNTIL
|- a SWHEN b = (λt. ((λt. ¬b t) UNTIL (λt. a t ∧ b t)) t ∧ EVENTUAL b t)
SUNTIL_AS_UNTIL
|- a SUNTIL b = (λt0. (a UNTIL b) t0 ∧ EVENTUAL b t0)
SBEFORE_AS_UNTIL
|- a SBEFORE b = (λt0. ¬((λt. ¬a t) UNTIL b) t0)
ALWAYS_AS_BEFORE
|- ALWAYS b = (λt. F) BEFORE (λt. ¬b t)
EVENTUAL_AS_BEFORE
|- EVENTUAL b = (λt0. ¬((λt. F) BEFORE b) t0)
WHEN_AS_BEFORE
|- a WHEN b = (λt0. ¬(b BEFORE (λt. a t ∧ b t)) t0 ∨ ALWAYS (λt. ¬b t) t0)
UNTIL_AS_BEFORE
|- a UNTIL b = (λt0. ¬((λt. ¬a t) BEFORE b) t0 ∨ ALWAYS a t0)
SWHEN_AS_BEFORE
|- a SWHEN b = (λt0. ¬(b BEFORE (λt. a t ∧ b t)) t0)
SUNTIL_AS_BEFORE
|- a SUNTIL b = (λt0. ¬((λt. ¬a t) BEFORE b) t0)
SBEFORE_AS_BEFORE
|- a SBEFORE b = (λt0. (a BEFORE b) t0 ∧ EVENTUAL a t0)
WHEN_SWHEN_LEMMA
|- if ∀t1. ∃t2. b (t2 + t1) then ∀t0. (a WHEN b) t0 ⇔ (a SWHEN b) t0
   else ∃t1. ∀t2. (a WHEN b) (t2 + t1) ∧ ¬(a SWHEN b) (t2 + t1)
ALWAYS_AS_SWHEN
|- ALWAYS a = (λt. ¬((λt. T) SWHEN (λt. ¬a t)) t)
EVENTUAL_AS_SWHEN
|- EVENTUAL a = (λt. T) SWHEN a
WHEN_AS_SWHEN
|- a WHEN b = (λt. (a SWHEN b) t ∨ ALWAYS (λt. ¬b t) t)
WHEN_AS_NOT_SWHEN
|- (a WHEN b) t0 ⇔ ¬((λt. ¬a t) SWHEN b) t0
UNTIL_AS_SWHEN
|- a UNTIL b = (λt. (b SWHEN (λt. a t ⇒ b t)) t ∨ ALWAYS a t)
BEFORE_AS_SWHEN
|- a BEFORE b =
   (λt0. ((λt. ¬b t) SWHEN (λt. a t ∨ b t)) t0 ∨ ALWAYS (λt. ¬a t ∧ ¬b t) t0)
BEFORE_AS_NOT_SWHEN
|- a BEFORE b = (λt0. ¬(b SWHEN (λt. a t ∨ b t)) t0)
SUNTIL_AS_SWHEN
|- a SUNTIL b = b SWHEN (λt. a t ⇒ b t)
SBEFORE_AS_SWHEN
|- a SBEFORE b = (λt. ¬b t) SWHEN (λt. a t ∨ b t)
ALWAYS_AS_SUNTIL
|- ALWAYS a = (λt. ¬((λt. T) SUNTIL (λt. ¬a t)) t)
EVENTUAL_AS_SUNTIL
|- EVENTUAL a = (λt. T) SUNTIL a
WHEN_AS_SUNTIL
|- a WHEN b =
   (λt. ((λt. ¬b t) SUNTIL (λt. a t ∧ b t)) t ∨ ALWAYS (λt. ¬b t) t)
UNTIL_AS_SUNTIL
|- a UNTIL b = (λt. (a SUNTIL b) t ∨ ALWAYS a t)
BEFORE_AS_SUNTIL
|- a BEFORE b = (λt. ¬((λt. ¬a t) SUNTIL b) t)
SWHEN_AS_SUNTIL
|- a SWHEN b = (λt. ¬b t) SUNTIL (λt. a t ∧ b t)
SBEFORE_AS_SUNTIL
|- a SBEFORE b = (λt0. ¬((λt. ¬a t) SUNTIL b) t0 ∧ EVENTUAL a t0)
ALWAYS_AS_SBEFORE
|- ALWAYS b = (λt0. ¬((λt. ¬b t) SBEFORE (λt. F)) t0)
EVENTUAL_AS_SBEFORE
|- EVENTUAL b = b SBEFORE (λt. F)
WHEN_AS_SBEFORE
|- a WHEN b = (λt0. (b SBEFORE (λt. ¬a t ∧ b t)) t0 ∨ ALWAYS (λt. ¬b t) t0)
UNTIL_AS_SBEFORE
|- a UNTIL b = (λt0. ¬((λt. ¬a t) SBEFORE b) t0)
SWHEN_AS_SBEFORE
|- a SWHEN b = b SBEFORE (λt. ¬a t ∧ b t)
SUNTIL_AS_SBEFORE
|- a SUNTIL b = (λt0. ¬((λt. ¬a t) SBEFORE b) t0 ∧ EVENTUAL b t0)
BEFORE_AS_SBEFORE
|- a BEFORE b = (λt0. (a SBEFORE b) t0 ∨ ALWAYS (λt. ¬b t) t0)
WHEN_SIMP
|- ((λt. F) WHEN b = ALWAYS (λt. ¬b t)) ∧ ((λt. T) WHEN b = (λt. T)) ∧
   (a WHEN (λt. F) = (λt. T)) ∧ (a WHEN (λt. T) = (λt. a t)) ∧
   (a WHEN a = (λt. T))
UNTIL_SIMP
|- ((λt. F) UNTIL b = (λt. b t)) ∧ ((λt. T) UNTIL b = (λt. T)) ∧
   (a UNTIL (λt. F) = ALWAYS a) ∧ (a UNTIL (λt. T) = (λt. T)) ∧
   (a UNTIL a = (λt. a t))
BEFORE_SIMP
|- ((λt. F) BEFORE b = ALWAYS (λt. ¬b t)) ∧ ((λt. T) BEFORE b = (λt. ¬b t)) ∧
   (a BEFORE (λt. F) = (λt. T)) ∧ (a BEFORE (λt. T) = (λt. F)) ∧
   (a BEFORE a = ALWAYS (λt. ¬a t))
SWHEN_SIMP
|- ((λt. F) SWHEN b = (λt. F)) ∧ ((λt. T) SWHEN b = EVENTUAL b) ∧
   (a SWHEN (λt. F) = (λt. F)) ∧ (a SWHEN (λt. T) = (λt. a t)) ∧
   (a SWHEN a = EVENTUAL a)
SUNTIL_SIMP
|- ((λt. F) SUNTIL b = (λt. b t)) ∧ ((λt. T) SUNTIL b = EVENTUAL b) ∧
   (a SUNTIL (λt. F) = (λt. F)) ∧ (a SUNTIL (λt. T) = (λt. T)) ∧
   (a SUNTIL a = (λt. a t))
SBEFORE_SIMP
|- ((λt. F) SBEFORE b = (λt. F)) ∧ ((λt. T) SBEFORE b = (λt. ¬b t)) ∧
   (a SBEFORE (λt. F) = EVENTUAL a) ∧ (a SBEFORE (λt. T) = (λt. F)) ∧
   (a SBEFORE a = (λt. F))
WHEN_EVENT
|- a WHEN b = (λt. a t ∧ b t) WHEN b
UNTIL_EVENT
|- a UNTIL b = (λt. a t ∧ ¬b t) UNTIL b
BEFORE_EVENT
|- a BEFORE b = (λt. a t ∧ ¬b t) BEFORE b
SWHEN_EVENT
|- a SWHEN b = (λt. a t ∧ b t) SWHEN b
SUNTIL_EVENT
|- a SUNTIL b = (λt. a t ∧ ¬b t) SUNTIL b
SBEFORE_EVENT
|- a SBEFORE b = (λt. a t ∧ ¬b t) SBEFORE b
IMMEDIATE_EVENT
|- b t0 ⇒
   (∀a. (a WHEN b) t0 ⇔ a t0) ∧ (∀a. (a UNTIL b) t0 ⇔ T) ∧
   (∀a. (a BEFORE b) t0 ⇔ F) ∧ (∀a. (a SWHEN b) t0 ⇔ a t0) ∧
   (∀a. (a SUNTIL b) t0 ⇔ T) ∧ ∀a. (a SBEFORE b) t0 ⇔ F
NO_EVENT
|- ALWAYS (λt. ¬b t) t0 ⇒
   (∀a. (a WHEN b) t0 ⇔ T) ∧ (∀a. (a UNTIL b) t0 ⇔ ALWAYS a t0) ∧
   (∀a. (a BEFORE b) t0 ⇔ T) ∧ (∀a. (a SWHEN b) t0 ⇔ F) ∧
   (∀a. (a SUNTIL b) t0 ⇔ F) ∧ ∀a. (a SBEFORE b) t0 ⇔ EVENTUAL a t0
SOME_EVENT
|- (EVENTUAL b t0 ⇔ ∀a. (a WHEN b) t0 ⇔ (a SWHEN b) t0) ∧
   (EVENTUAL b t0 ⇔ ∀a. (a UNTIL b) t0 ⇔ (a SUNTIL b) t0) ∧
   (EVENTUAL b t0 ⇔ ∀a. (a BEFORE b) t0 ⇔ (a SBEFORE b) t0)
MORE_EVENT
|- (a WHEN b = (λt. a t ∧ b t) WHEN b) ∧
   (a UNTIL b = (λt. a t ∧ ¬b t) UNTIL b) ∧
   (a BEFORE b = (λt. a t ∧ ¬b t) BEFORE b) ∧
   (a SWHEN b = (λt. a t ∧ b t) SWHEN b) ∧
   (a SUNTIL b = (λt. a t ∧ ¬b t) SUNTIL b) ∧
   (a SBEFORE b = (λt. a t ∧ ¬b t) SBEFORE b)
NOT_NEXT
|- ∀P. NEXT (λt. ¬P t) = (λt. ¬NEXT P t)
AND_NEXT
|- ∀Q P. NEXT (λt. P t ∧ Q t) = (λt. NEXT P t ∧ NEXT Q t)
OR_NEXT
|- ∀Q P. NEXT (λt. P t ∨ Q t) = (λt. NEXT P t ∨ NEXT Q t)
IMP_NEXT
|- ∀Q P. NEXT (λt. P t ⇒ Q t) = (λt. NEXT P t ⇒ NEXT Q t)
EQUIV_NEXT
|- ∀Q P. NEXT (λt. P t ⇔ Q t) = (λt. NEXT P t ⇔ NEXT Q t)
ALWAYS_NEXT
|- ∀a. NEXT (ALWAYS a) = ALWAYS (NEXT a)
EVENTUAL_NEXT
|- ∀a. NEXT (EVENTUAL a) = EVENTUAL (NEXT a)
WHEN_NEXT
|- ∀a b. NEXT (a WHEN b) = NEXT a WHEN NEXT b
UNTIL_NEXT
|- ∀a b. NEXT (a UNTIL b) = NEXT a UNTIL NEXT b
BEFORE_NEXT
|- ∀a b. NEXT (a BEFORE b) = NEXT a BEFORE NEXT b
SWHEN_NEXT
|- ∀a b. NEXT (a SWHEN b) = NEXT a SWHEN NEXT b
SUNTIL_NEXT
|- ∀a b. NEXT (a SUNTIL b) = NEXT a SUNTIL NEXT b
SBEFORE_NEXT
|- ∀a b. NEXT (a SBEFORE b) = NEXT a SBEFORE NEXT b
ALWAYS_REC
|- ALWAYS P t0 ⇔ P t0 ∧ NEXT (ALWAYS P) t0
EVENTUAL_REC
|- EVENTUAL P t0 ⇔ P t0 ∨ NEXT (EVENTUAL P) t0
WATCH_REC
|- (q WATCH b) t0 ⇔
   ¬q t0 ∧ if b t0 then NEXT (ALWAYS q) t0 else NEXT (q WATCH b) t0
WHEN_REC
|- (a WHEN b) t0 ⇔ if b t0 then a t0 else NEXT (a WHEN b) t0
UNTIL_REC
|- (a UNTIL b) t0 ⇔ ¬b t0 ⇒ a t0 ∧ NEXT (a UNTIL b) t0
BEFORE_REC
|- (a BEFORE b) t0 ⇔ ¬b t0 ∧ (a t0 ∨ NEXT (a BEFORE b) t0)
SWHEN_REC
|- (a SWHEN b) t0 ⇔ if b t0 then a t0 else NEXT (a SWHEN b) t0
SUNTIL_REC
|- (a SUNTIL b) t0 ⇔ ¬b t0 ⇒ a t0 ∧ NEXT (a SUNTIL b) t0
SBEFORE_REC
|- (a SBEFORE b) t0 ⇔ ¬b t0 ∧ (a t0 ∨ NEXT (a SBEFORE b) t0)
ALWAYS_FIX
|- (y = (λt. a t ∧ y (t + 1))) ⇔ (y = ALWAYS a) ∨ (y = (λt. F))
EVENTUAL_FIX
|- (y = (λt. a t ∨ y (t + 1))) ⇔ (y = EVENTUAL a) ∨ (y = (λt. T))
WHEN_FIX
|- (y = (λt. if b t then a t else y (t + 1))) ⇔
   (y = a WHEN b) ∨ (y = a SWHEN b)
UNTIL_FIX
|- (y = (λt. ¬b t ⇒ a t ∧ y (t + 1))) ⇔ (y = a UNTIL b) ∨ (y = a SUNTIL b)
BEFORE_FIX
|- ∀y.
     (y = (λt. ¬b t ∧ (a t ∨ y (t + 1)))) ⇔
     (y = a BEFORE b) ∨ (y = a SBEFORE b)
WHEN_INVARIANT
|- (a WHEN b) t0 ⇔
   ∃J.
     J t0 ∧ (∀t. ¬b (t + t0) ∧ J (t + t0) ⇒ J (SUC (t + t0))) ∧
     ∀d. b (d + t0) ∧ J (d + t0) ⇒ a (d + t0)
UNTIL_INVARIANT
|- ∀t0.
     (a UNTIL b) t0 ⇔
     ∃J. J t0 ∧ ∀t. J (t + t0) ∧ ¬b (t + t0) ⇒ a (t + t0) ∧ J (SUC (t + t0))
BEFORE_INVARIANT
|- (a BEFORE b) t0 ⇔
   ∃J.
     J t0 ∧ (∀t. J (t + t0) ∧ ¬a (t + t0) ⇒ J (SUC (t + t0))) ∧
     ∀d. J (d + t0) ⇒ ¬b (d + t0)
ALWAYS_INVARIANT
|- ALWAYS a t0 ⇔ ∃J. J t0 ∧ ∀t. J (t + t0) ⇒ a (t + t0) ∧ J (t + (t0 + 1))
EVENTUAL_INVARIANT
|- EVENTUAL b t0 ⇔
   ∃J.
     0 < J t0 ∧ (∀t. J (SUC (t + t0)) < J (t + t0) ∨ (J (SUC (t + t0)) = 0)) ∧
     ∀t. 0 < J (t + t0) ∧ (J (SUC (t + t0)) = 0) ⇒ b (t + t0)
SWHEN_INVARIANT
|- (a SWHEN b) t0 ⇔
   (∃J1.
      J1 t0 ∧ (∀t. ¬b (t + t0) ∧ J1 (t + t0) ⇒ J1 (SUC (t + t0))) ∧
      ∀d. b (d + t0) ∧ J1 (d + t0) ⇒ a (d + t0)) ∧
   ∃J2.
     0 < J2 t0 ∧
     (∀t. J2 (SUC (t + t0)) < J2 (t + t0) ∨ (J2 (SUC (t + t0)) = 0)) ∧
     ∀t. 0 < J2 (t + t0) ∧ (J2 (SUC (t + t0)) = 0) ⇒ b (t + t0)
SUNTIL_INVARIANT
|- (a SUNTIL b) t0 ⇔
   (∃J1.
      J1 t0 ∧
      ∀t. J1 (t + t0) ∧ ¬b (t + t0) ⇒ a (t + t0) ∧ J1 (SUC (t + t0))) ∧
   ∃J2.
     0 < J2 t0 ∧
     (∀t. J2 (SUC (t + t0)) < J2 (t + t0) ∨ (J2 (SUC (t + t0)) = 0)) ∧
     ∀t. 0 < J2 (t + t0) ∧ (J2 (SUC (t + t0)) = 0) ⇒ b (t + t0)
SBEFORE_INVARIANT
|- (a SBEFORE b) t0 ⇔
   (∃J1.
      J1 t0 ∧ (∀t. J1 (t + t0) ∧ ¬a (t + t0) ⇒ J1 (SUC (t + t0))) ∧
      ∀d. J1 (d + t0) ⇒ ¬b (d + t0)) ∧
   ∃J2.
     0 < J2 t0 ∧
     (∀t. J2 (SUC (t + t0)) < J2 (t + t0) ∨ (J2 (SUC (t + t0)) = 0)) ∧
     ∀t. 0 < J2 (t + t0) ∧ (J2 (SUC (t + t0)) = 0) ⇒ a (t + t0)
ALWAYS_IDEM
|- ALWAYS a = ALWAYS (ALWAYS a)
EVENTUAL_IDEM
|- EVENTUAL a = EVENTUAL (EVENTUAL a)
WHEN_IDEM
|- a WHEN b = (a WHEN b) WHEN b
UNTIL_IDEM
|- a UNTIL b = (a UNTIL b) UNTIL b
BEFORE_IDEM
|- a BEFORE b = (a BEFORE b) BEFORE b
SWHEN_IDEM
|- a SWHEN b = (a SWHEN b) SWHEN b
SUNTIL_IDEM
|- a SUNTIL b = (a SUNTIL b) SUNTIL b
SBEFORE_IDEM
|- a SBEFORE b = (a SBEFORE b) SBEFORE b
NOT_ALWAYS
|- ¬ALWAYS a t0 ⇔ EVENTUAL (λt. ¬a t) t0
NOT_EVENTUAL
|- ¬EVENTUAL a t0 ⇔ ALWAYS (λt. ¬a t) t0
NOT_WHEN
|- ¬(a WHEN b) t0 ⇔ ((λt. ¬a t) SWHEN b) t0
NOT_UNTIL
|- ¬(a UNTIL b) t0 ⇔ ((λt. ¬a t) SBEFORE b) t0
NOT_BEFORE
|- ¬(a BEFORE b) t0 ⇔ ((λt. ¬a t) SUNTIL b) t0
NOT_SWHEN
|- ¬(a SWHEN b) t0 ⇔ ((λt. ¬a t) WHEN b) t0
NOT_SUNTIL
|- ¬(a SUNTIL b) t0 ⇔ ((λt. ¬a t) BEFORE b) t0
NOT_SBEFORE
|- ¬(a SBEFORE b) t0 ⇔ ((λt. ¬a t) UNTIL b) t0