Theory "bool"

Parents     min

Signature

Type Arity
itself 1
Constant Type
! :(α -> bool) -> bool
/\ :bool reln
? :(α -> bool) -> bool
?! :(α -> bool) -> bool
ARB
BOUNDED :bool -> bool
COND :bool -> α -> α -> α
DATATYPE :α -> bool
F :bool
IN :α -> (α -> bool) -> bool
LET :(α -> β) -> α -> β
ONE_ONE :(α -> β) -> bool
ONTO :(α -> β) -> bool
RES_ABSTRACT :(α -> bool) -> (α -> β) -> α -> β
RES_EXISTS :(α -> bool) reln
RES_EXISTS_UNIQUE :(α -> bool) reln
RES_FORALL :(α -> bool) reln
RES_SELECT :(α -> bool) -> (α -> bool) -> α
T :bool
TYPE_DEFINITION :(α -> bool) -> (β -> α) -> bool
\/ :bool reln
case__magic :α -> (α -> β) -> β
case_arrow__magic :α -> β -> α -> β
case_split__magic :(α -> β) -> (α -> β) -> α -> β
itself_case :α itself -> β -> β
literal_case :(α -> β) -> α -> β
the_value :α itself
~ :bool -> bool

Axioms

BOOL_CASES_AX
|- ∀t. (t ⇔ T) ∨ (t ⇔ F)
ETA_AX
|- ∀t. (λx. t x) = t
SELECT_AX
|- ∀P x. P x ⇒ P ($@ P)
INFINITY_AX
|- ∃f. ONE_ONE f ∧ ¬ONTO f


Definitions

T_DEF
|- T ⇔ ((λx. x) = (λx. x))
FORALL_DEF
|- $! = (λP. P = (λx. T))
EXISTS_DEF
|- $? = (λP. P ($@ P))
AND_DEF
|- $/\ = (λt1 t2. ∀t. (t1 ⇒ t2 ⇒ t) ⇒ t)
OR_DEF
|- $\/ = (λt1 t2. ∀t. (t1 ⇒ t) ⇒ (t2 ⇒ t) ⇒ t)
F_DEF
|- F ⇔ ∀t. t
NOT_DEF
|- $~ = (λt. t ⇒ F)
EXISTS_UNIQUE_DEF
|- $?! = (λP. $? P ∧ ∀x y. P x ∧ P y ⇒ (x = y))
LET_DEF
|- LET = (λf x. f x)
COND_DEF
|- COND = (λt t1 t2. @x. ((t ⇔ T) ⇒ (x = t1)) ∧ ((t ⇔ F) ⇒ (x = t2)))
ONE_ONE_DEF
|- ONE_ONE = (λf. ∀x1 x2. (f x1 = f x2) ⇒ (x1 = x2))
ONTO_DEF
|- ONTO = (λf. ∀y. ∃x. y = f x)
TYPE_DEFINITION
|- TYPE_DEFINITION =
   (λP rep.
      (∀x' x''. (rep x' = rep x'') ⇒ (x' = x'')) ∧ ∀x. P x ⇔ ∃x'. x = rep x')
literal_case_DEF
|- literal_case = (λf x. f x)
IN_DEF
|- $IN = (λx f. f x)
RES_FORALL_DEF
|- RES_FORALL = (λp m. ∀x. x ∈ p ⇒ m x)
RES_EXISTS_DEF
|- RES_EXISTS = (λp m. ∃x. x ∈ p ∧ m x)
RES_EXISTS_UNIQUE_DEF
|- RES_EXISTS_UNIQUE = (λp m. (∃x::p. m x) ∧ ∀x y::p. m x ∧ m y ⇒ (x = y))
RES_SELECT_DEF
|- RES_SELECT = (λp m. @x. x ∈ p ∧ m x)
BOUNDED_DEF
|- BOUNDED = (λv. T)
DATATYPE_TAG_DEF
|- DATATYPE = (λx. T)
RES_ABSTRACT_DEF
|- (∀p m x. x ∈ p ⇒ (RES_ABSTRACT p m x = m x)) ∧
   ∀p m1 m2.
     (∀x. x ∈ p ⇒ (m1 x = m2 x)) ⇒ (RES_ABSTRACT p m1 = RES_ABSTRACT p m2)
itself_TY_DEF
|- ∃rep. TYPE_DEFINITION ($= ARB) rep
itself_case_thm
|- ∀b. (case (:α) of (:α) => b) = b


Theorems

TRUTH
|- T
IMP_ANTISYM_AX
|- ∀t1 t2. (t1 ⇒ t2) ⇒ (t2 ⇒ t1) ⇒ (t1 ⇔ t2)
FALSITY
|- ∀t. F ⇒ t
ETA_THM
|- ∀M. (λx. M x) = M
EXCLUDED_MIDDLE
|- ∀t. t ∨ ¬t
BETA_THM
|- ∀f y. (λx. f x) y = f y
LET_THM
|- ∀f x. LET f x = f x
FORALL_THM
|- $! f ⇔ ∀x. f x
EXISTS_THM
|- $? f ⇔ ∃x. f x
ABS_SIMP
|- ∀t1 t2. (λx. t1) t2 = t1
FORALL_SIMP
|- ∀t. (∀x. t) ⇔ t
EXISTS_SIMP
|- ∀t. (∃x. t) ⇔ t
AND_INTRO_THM
|- ∀t1 t2. t1 ⇒ t2 ⇒ t1 ∧ t2
AND1_THM
|- ∀t1 t2. t1 ∧ t2 ⇒ t1
AND2_THM
|- ∀t1 t2. t1 ∧ t2 ⇒ t2
CONJ_SYM
|- ∀t1 t2. t1 ∧ t2 ⇔ t2 ∧ t1
CONJ_COMM
|- ∀t1 t2. t1 ∧ t2 ⇔ t2 ∧ t1
CONJ_ASSOC
|- ∀t1 t2 t3. t1 ∧ t2 ∧ t3 ⇔ (t1 ∧ t2) ∧ t3
OR_INTRO_THM1
|- ∀t1 t2. t1 ⇒ t1 ∨ t2
OR_INTRO_THM2
|- ∀t1 t2. t2 ⇒ t1 ∨ t2
OR_ELIM_THM
|- ∀t t1 t2. t1 ∨ t2 ⇒ (t1 ⇒ t) ⇒ (t2 ⇒ t) ⇒ t
IMP_F
|- ∀t. (t ⇒ F) ⇒ ¬t
F_IMP
|- ∀t. ¬t ⇒ t ⇒ F
NOT_F
|- ∀t. ¬t ⇒ (t ⇔ F)
NOT_AND
|- ¬(t ∧ ¬t)
AND_CLAUSES
|- ∀t. (T ∧ t ⇔ t) ∧ (t ∧ T ⇔ t) ∧ (F ∧ t ⇔ F) ∧ (t ∧ F ⇔ F) ∧ (t ∧ t ⇔ t)
OR_CLAUSES
|- ∀t. (T ∨ t ⇔ T) ∧ (t ∨ T ⇔ T) ∧ (F ∨ t ⇔ t) ∧ (t ∨ F ⇔ t) ∧ (t ∨ t ⇔ t)
IMP_CLAUSES
|- ∀t. (T ⇒ t ⇔ t) ∧ (t ⇒ T ⇔ T) ∧ (F ⇒ t ⇔ T) ∧ (t ⇒ t ⇔ T) ∧ (t ⇒ F ⇔ ¬t)
NOT_CLAUSES
|- (∀t. ¬ ¬t ⇔ t) ∧ (¬T ⇔ F) ∧ (¬F ⇔ T)
EQ_REFL
|- ∀x. x = x
REFL_CLAUSE
|- ∀x. (x = x) ⇔ T
EQ_SYM
|- ∀x y. (x = y) ⇒ (y = x)
EQ_SYM_EQ
|- ∀x y. (x = y) ⇔ (y = x)
EQ_EXT
|- ∀f g. (∀x. f x = g x) ⇒ (f = g)
FUN_EQ_THM
|- ∀f g. (f = g) ⇔ ∀x. f x = g x
EQ_TRANS
|- ∀x y z. (x = y) ∧ (y = z) ⇒ (x = z)
BOOL_EQ_DISTINCT
|- (T ⇎ F) ∧ (F ⇎ T)
EQ_CLAUSES
|- ∀t. ((T ⇔ t) ⇔ t) ∧ ((t ⇔ T) ⇔ t) ∧ ((F ⇔ t) ⇔ ¬t) ∧ ((t ⇔ F) ⇔ ¬t)
COND_CLAUSES
|- ∀t1 t2. ((if T then t1 else t2) = t1) ∧ ((if F then t1 else t2) = t2)
COND_ID
|- ∀b t. (if b then t else t) = t
SELECT_THM
|- ∀P. P (@x. P x) ⇔ ∃x. P x
SELECT_REFL
|- ∀x. (@y. y = x) = x
SELECT_REFL_2
|- ∀x. (@y. x = y) = x
SELECT_UNIQUE
|- ∀P x. (∀y. P y ⇔ (y = x)) ⇒ ($@ P = x)
SELECT_ELIM_THM
|- ∀P Q. (∃x. P x) ∧ (∀x. P x ⇒ Q x) ⇒ Q ($@ P)
NOT_FORALL_THM
|- ∀P. ¬(∀x. P x) ⇔ ∃x. ¬P x
NOT_EXISTS_THM
|- ∀P. ¬(∃x. P x) ⇔ ∀x. ¬P x
FORALL_AND_THM
|- ∀P Q. (∀x. P x ∧ Q x) ⇔ (∀x. P x) ∧ ∀x. Q x
LEFT_AND_FORALL_THM
|- ∀P Q. (∀x. P x) ∧ Q ⇔ ∀x. P x ∧ Q
RIGHT_AND_FORALL_THM
|- ∀P Q. P ∧ (∀x. Q x) ⇔ ∀x. P ∧ Q x
EXISTS_OR_THM
|- ∀P Q. (∃x. P x ∨ Q x) ⇔ (∃x. P x) ∨ ∃x. Q x
LEFT_OR_EXISTS_THM
|- ∀P Q. (∃x. P x) ∨ Q ⇔ ∃x. P x ∨ Q
RIGHT_OR_EXISTS_THM
|- ∀P Q. P ∨ (∃x. Q x) ⇔ ∃x. P ∨ Q x
BOTH_EXISTS_AND_THM
|- ∀P Q. (∃x. P ∧ Q) ⇔ (∃x. P) ∧ ∃x. Q
LEFT_EXISTS_AND_THM
|- ∀P Q. (∃x. P x ∧ Q) ⇔ (∃x. P x) ∧ Q
RIGHT_EXISTS_AND_THM
|- ∀P Q. (∃x. P ∧ Q x) ⇔ P ∧ ∃x. Q x
BOTH_FORALL_OR_THM
|- ∀P Q. (∀x. P ∨ Q) ⇔ (∀x. P) ∨ ∀x. Q
LEFT_FORALL_OR_THM
|- ∀Q P. (∀x. P x ∨ Q) ⇔ (∀x. P x) ∨ Q
RIGHT_FORALL_OR_THM
|- ∀P Q. (∀x. P ∨ Q x) ⇔ P ∨ ∀x. Q x
BOTH_FORALL_IMP_THM
|- ∀P Q. (∀x. P ⇒ Q) ⇔ (∃x. P) ⇒ ∀x. Q
LEFT_FORALL_IMP_THM
|- ∀P Q. (∀x. P x ⇒ Q) ⇔ (∃x. P x) ⇒ Q
RIGHT_FORALL_IMP_THM
|- ∀P Q. (∀x. P ⇒ Q x) ⇔ P ⇒ ∀x. Q x
BOTH_EXISTS_IMP_THM
|- ∀P Q. (∃x. P ⇒ Q) ⇔ (∀x. P) ⇒ ∃x. Q
LEFT_EXISTS_IMP_THM
|- ∀P Q. (∃x. P x ⇒ Q) ⇔ (∀x. P x) ⇒ Q
RIGHT_EXISTS_IMP_THM
|- ∀P Q. (∃x. P ⇒ Q x) ⇔ P ⇒ ∃x. Q x
OR_IMP_THM
|- ∀A B. (A ⇔ B ∨ A) ⇔ B ⇒ A
NOT_IMP
|- ∀A B. ¬(A ⇒ B) ⇔ A ∧ ¬B
DISJ_ASSOC
|- ∀A B C. A ∨ B ∨ C ⇔ (A ∨ B) ∨ C
DISJ_SYM
|- ∀A B. A ∨ B ⇔ B ∨ A
DISJ_COMM
|- ∀A B. A ∨ B ⇔ B ∨ A
DE_MORGAN_THM
|- ∀A B. (¬(A ∧ B) ⇔ ¬A ∨ ¬B) ∧ (¬(A ∨ B) ⇔ ¬A ∧ ¬B)
LEFT_AND_OVER_OR
|- ∀A B C. A ∧ (B ∨ C) ⇔ A ∧ B ∨ A ∧ C
RIGHT_AND_OVER_OR
|- ∀A B C. (B ∨ C) ∧ A ⇔ B ∧ A ∨ C ∧ A
LEFT_OR_OVER_AND
|- ∀A B C. A ∨ B ∧ C ⇔ (A ∨ B) ∧ (A ∨ C)
RIGHT_OR_OVER_AND
|- ∀A B C. B ∧ C ∨ A ⇔ (B ∨ A) ∧ (C ∨ A)
IMP_DISJ_THM
|- ∀A B. A ⇒ B ⇔ ¬A ∨ B
DISJ_IMP_THM
|- ∀P Q R. P ∨ Q ⇒ R ⇔ (P ⇒ R) ∧ (Q ⇒ R)
IMP_CONJ_THM
|- ∀P Q R. P ⇒ Q ∧ R ⇔ (P ⇒ Q) ∧ (P ⇒ R)
IMP_F_EQ_F
|- ∀t. t ⇒ F ⇔ (t ⇔ F)
AND_IMP_INTRO
|- ∀t1 t2 t3. t1 ⇒ t2 ⇒ t3 ⇔ t1 ∧ t2 ⇒ t3
EQ_IMP_THM
|- ∀t1 t2. (t1 ⇔ t2) ⇔ (t1 ⇒ t2) ∧ (t2 ⇒ t1)
EQ_EXPAND
|- ∀t1 t2. (t1 ⇔ t2) ⇔ t1 ∧ t2 ∨ ¬t1 ∧ ¬t2
COND_RATOR
|- ∀b f g x. (if b then f else g) x = if b then f x else g x
COND_RAND
|- ∀f b x y. f (if b then x else y) = if b then f x else f y
COND_ABS
|- ∀b f g. (λx. if b then f x else g x) = if b then f else g
COND_EXPAND
|- ∀b t1 t2. (if b then t1 else t2) ⇔ (¬b ∨ t1) ∧ (b ∨ t2)
COND_EXPAND_IMP
|- ∀b t1 t2. (if b then t1 else t2) ⇔ (b ⇒ t1) ∧ (¬b ⇒ t2)
COND_EXPAND_OR
|- ∀b t1 t2. (if b then t1 else t2) ⇔ b ∧ t1 ∨ ¬b ∧ t2
TYPE_DEFINITION_THM
|- ∀P rep.
     TYPE_DEFINITION P rep ⇔
     (∀x' x''. (rep x' = rep x'') ⇒ (x' = x'')) ∧ ∀x. P x ⇔ ∃x'. x = rep x'
ONTO_THM
|- ∀f. ONTO f ⇔ ∀y. ∃x. y = f x
ONE_ONE_THM
|- ∀f. ONE_ONE f ⇔ ∀x1 x2. (f x1 = f x2) ⇒ (x1 = x2)
ABS_REP_THM
|- ∀P.
     (∃rep. TYPE_DEFINITION P rep) ⇒
     ∃rep abs. (∀a. abs (rep a) = a) ∧ ∀r. P r ⇔ (rep (abs r) = r)
LET_RAND
|- P (let x = M in N x) ⇔ (let x = M in P (N x))
LET_RATOR
|- (let x = M in N x) b = (let x = M in N x b)
SWAP_FORALL_THM
|- ∀P. (∀x y. P x y) ⇔ ∀y x. P x y
SWAP_EXISTS_THM
|- ∀P. (∃x y. P x y) ⇔ ∃y x. P x y
EXISTS_UNIQUE_THM
|- (∃!x. P x) ⇔ (∃x. P x) ∧ ∀x y. P x ∧ P y ⇒ (x = y)
LET_CONG
|- ∀f g M N. (M = N) ∧ (∀x. (x = N) ⇒ (f x = g x)) ⇒ (LET f M = LET g N)
IMP_CONG
|- ∀x x' y y'. (x ⇔ x') ∧ (x' ⇒ (y ⇔ y')) ⇒ (x ⇒ y ⇔ x' ⇒ y')
AND_CONG
|- ∀P P' Q Q'. (Q ⇒ (P ⇔ P')) ∧ (P' ⇒ (Q ⇔ Q')) ⇒ (P ∧ Q ⇔ P' ∧ Q')
LEFT_AND_CONG
|- ∀P P' Q Q'. (P ⇔ P') ∧ (P' ⇒ (Q ⇔ Q')) ⇒ (P ∧ Q ⇔ P' ∧ Q')
OR_CONG
|- ∀P P' Q Q'. (¬Q ⇒ (P ⇔ P')) ∧ (¬P' ⇒ (Q ⇔ Q')) ⇒ (P ∨ Q ⇔ P' ∨ Q')
LEFT_OR_CONG
|- ∀P P' Q Q'. (P ⇔ P') ∧ (¬P' ⇒ (Q ⇔ Q')) ⇒ (P ∨ Q ⇔ P' ∨ Q')
COND_CONG
|- ∀P Q x x' y y'.
     (P ⇔ Q) ∧ (Q ⇒ (x = x')) ∧ (¬Q ⇒ (y = y')) ⇒
     ((if P then x else y) = if Q then x' else y')
RES_FORALL_CONG
|- (P = Q) ⇒ (∀x. x ∈ Q ⇒ (f x ⇔ g x)) ⇒ (RES_FORALL P f ⇔ RES_FORALL Q g)
RES_EXISTS_CONG
|- (P = Q) ⇒ (∀x. x ∈ Q ⇒ (f x ⇔ g x)) ⇒ (RES_EXISTS P f ⇔ RES_EXISTS Q g)
MONO_AND
|- (x ⇒ y) ∧ (z ⇒ w) ⇒ x ∧ z ⇒ y ∧ w
MONO_OR
|- (x ⇒ y) ∧ (z ⇒ w) ⇒ x ∨ z ⇒ y ∨ w
MONO_IMP
|- (y ⇒ x) ∧ (z ⇒ w) ⇒ (x ⇒ z) ⇒ y ⇒ w
MONO_NOT
|- (y ⇒ x) ⇒ ¬x ⇒ ¬y
MONO_NOT_EQ
|- y ⇒ x ⇔ ¬x ⇒ ¬y
MONO_ALL
|- (∀x. P x ⇒ Q x) ⇒ (∀x. P x) ⇒ ∀x. Q x
MONO_EXISTS
|- (∀x. P x ⇒ Q x) ⇒ (∃x. P x) ⇒ ∃x. Q x
MONO_COND
|- (x ⇒ y) ⇒ (z ⇒ w) ⇒ (if b then x else z) ⇒ if b then y else w
EXISTS_REFL
|- ∀a. ∃x. x = a
EXISTS_UNIQUE_REFL
|- ∀a. ∃!x. x = a
UNWIND_THM1
|- ∀P a. (∃x. (a = x) ∧ P x) ⇔ P a
UNWIND_THM2
|- ∀P a. (∃x. (x = a) ∧ P x) ⇔ P a
UNWIND_FORALL_THM1
|- ∀f v. (∀x. (v = x) ⇒ f x) ⇔ f v
UNWIND_FORALL_THM2
|- ∀f v. (∀x. (x = v) ⇒ f x) ⇔ f v
SKOLEM_THM
|- ∀P. (∀x. ∃y. P x y) ⇔ ∃f. ∀x. P x (f x)
bool_case_thm
|- (∀t1 t2. (if T then t1 else t2) = t1) ∧ ∀t1 t2. (if F then t1 else t2) = t2
bool_case_ID
|- ∀b t. (if b then t else t) = t
boolAxiom
|- ∀t1 t2. ∃fn. (fn T = t1) ∧ (fn F = t2)
bool_INDUCT
|- ∀P. P T ∧ P F ⇒ ∀b. P b
bool_case_CONG
|- ∀P Q x x' y y'.
     (P ⇔ Q) ∧ (Q ⇒ (x = x')) ∧ (¬Q ⇒ (y = y')) ⇒
     ((if P then x else y) = if Q then x' else y')
FORALL_BOOL
|- (∀b. P b) ⇔ P T ∧ P F
UEXISTS_OR_THM
|- ∀P Q. (∃!x. P x ∨ Q x) ⇒ (∃!x. P x) ∨ ∃!x. Q x
UEXISTS_SIMP
|- (∃!x. t) ⇔ t ∧ ∀x y. x = y
RES_FORALL_THM
|- ∀P f. RES_FORALL P f ⇔ ∀x. x ∈ P ⇒ f x
RES_EXISTS_THM
|- ∀P f. RES_EXISTS P f ⇔ ∃x. x ∈ P ∧ f x
RES_EXISTS_UNIQUE_THM
|- ∀P f. RES_EXISTS_UNIQUE P f ⇔ (∃x::P. f x) ∧ ∀x y::P. f x ∧ f y ⇒ (x = y)
RES_SELECT_THM
|- ∀P f. RES_SELECT P f = @x. x ∈ P ∧ f x
RES_FORALL_TRUE
|- (∀x::P. T) ⇔ T
RES_EXISTS_FALSE
|- (∃x::P. F) ⇔ F
BOOL_FUN_CASES_THM
|- ∀f. (f = (λb. T)) ∨ (f = (λb. F)) ∨ (f = (λb. b)) ∨ (f = (λb. ¬b))
BOOL_FUN_INDUCT
|- ∀P. P (λb. T) ∧ P (λb. F) ∧ P (λb. b) ∧ P (λb. ¬b) ⇒ ∀f. P f
literal_case_THM
|- ∀f x. literal_case f x = f x
literal_case_RAND
|- P (case M of x => N x) ⇔ case M of x => P (N x)
literal_case_RATOR
|- (case M of x => N x) b = case M of x => N x b
literal_case_CONG
|- ∀f g M N.
     (M = N) ∧ (∀x. (x = N) ⇒ (f x = g x)) ⇒
     (literal_case f M = literal_case g N)
literal_case_id
|- (case a of a => t | x => u) = t
BOUNDED_THM
|- ∀v. BOUNDED v ⇔ T
LCOMM_THM
|- ∀f.
     (∀x y z. f x (f y z) = f (f x y) z) ⇒
     (∀x y. f x y = f y x) ⇒
     ∀x y z. f x (f y z) = f y (f x z)
DATATYPE_TAG_THM
|- ∀x. DATATYPE x ⇔ T
DATATYPE_BOOL
|- DATATYPE (bool T F) ⇔ T
ITSELF_UNIQUE
|- ∀i. i = (:α)
itself_Axiom
|- ∀e. ∃f. f (:β) = e
itself_induction
|- ∀P. P (:α) ⇒ ∀i. P i
PULL_EXISTS
|- ∀P Q.
     ((∃x. P x) ⇒ Q ⇔ ∀x. P x ⇒ Q) ∧ ((∃x. P x) ∧ Q ⇔ ∃x. P x ∧ Q) ∧
     (Q ∧ (∃x. P x) ⇔ ∃x. Q ∧ P x)
PULL_FORALL
|- ∀P Q.
     (Q ⇒ (∀x. P x) ⇔ ∀x. Q ⇒ P x) ∧ ((∀x. P x) ∧ Q ⇔ ∀x. P x ∧ Q) ∧
     (Q ∧ (∀x. P x) ⇔ ∀x. Q ∧ P x)
PEIRCE
|- ((P ⇒ Q) ⇒ P) ⇒ P
JRH_INDUCT_UTIL
|- ∀P t. (∀x. (x = t) ⇒ P x) ⇒ $? P