Theory "gcd"

Parents     divides   basicSize

Signature

Constant Type
gcd :num -> num -> num
gcd_tupled :num # num -> num
is_gcd :num -> num reln
lcm :num -> num -> num

Definitions

is_gcd_def
|- ∀a b c.
     is_gcd a b c ⇔
     divides c a ∧ divides c b ∧ ∀d. divides d a ∧ divides d b ⇒ divides d c
gcd_tupled_primitive_def
|- gcd_tupled =
   WFREC
     (@R.
        WF R ∧ (∀x y. ¬(y ≤ x) ⇒ R (SUC x,y − x) (SUC x,SUC y)) ∧
        ∀x y. y ≤ x ⇒ R (x − y,SUC y) (SUC x,SUC y))
     (λgcd_tupled a.
        case a of
          (0,y) => I y
        | (SUC x,0) => I (SUC x)
        | (SUC x,SUC y') =>
            I
              (if y' ≤ x then gcd_tupled (x − y',SUC y')
               else gcd_tupled (SUC x,y' − x)))
gcd_curried_def
|- ∀x x1. gcd x x1 = gcd_tupled (x,x1)
lcm_def
|- ∀m n. lcm m n = if (m = 0) ∨ (n = 0) then 0 else m * n DIV gcd m n


Theorems

IS_GCD_UNIQUE
|- ∀a b c d. is_gcd a b c ∧ is_gcd a b d ⇒ (c = d)
IS_GCD_REF
|- ∀a. is_gcd a a a
IS_GCD_SYM
|- ∀a b c. is_gcd a b c ⇔ is_gcd b a c
IS_GCD_0R
|- ∀a. is_gcd a 0 a
IS_GCD_0L
|- ∀a. is_gcd 0 a a
PRIME_IS_GCD
|- ∀p b. prime p ⇒ divides p b ∨ is_gcd p b 1
IS_GCD_MINUS_L
|- ∀a b c. b ≤ a ∧ is_gcd (a − b) b c ⇒ is_gcd a b c
IS_GCD_MINUS_R
|- ∀a b c. a ≤ b ∧ is_gcd a (b − a) c ⇒ is_gcd a b c
gcd_ind
|- ∀P.
     (∀y. P 0 y) ∧ (∀x. P (SUC x) 0) ∧
     (∀x y.
        (¬(y ≤ x) ⇒ P (SUC x) (y − x)) ∧ (y ≤ x ⇒ P (x − y) (SUC y)) ⇒
        P (SUC x) (SUC y)) ⇒
     ∀v v1. P v v1
gcd_def
|- (∀y. gcd 0 y = y) ∧ (∀x. gcd (SUC x) 0 = SUC x) ∧
   ∀y x.
     gcd (SUC x) (SUC y) =
     if y ≤ x then gcd (x − y) (SUC y) else gcd (SUC x) (y − x)
gcd_def_compute
|- (∀y. gcd 0 y = y) ∧ (∀x. gcd (NUMERAL (BIT1 x)) 0 = NUMERAL (BIT1 x)) ∧
   (∀x. gcd (NUMERAL (BIT2 x)) 0 = NUMERAL (BIT2 x)) ∧
   (∀y x.
      gcd (NUMERAL (BIT1 x)) (NUMERAL (BIT1 y)) =
      if NUMERAL (BIT1 y) − 1 ≤ NUMERAL (BIT1 x) − 1 then
        gcd (NUMERAL (BIT1 x) − 1 − (NUMERAL (BIT1 y) − 1)) (NUMERAL (BIT1 y))
      else
        gcd (NUMERAL (BIT1 x))
          (NUMERAL (BIT1 y) − 1 − (NUMERAL (BIT1 x) − 1))) ∧
   (∀y x.
      gcd (NUMERAL (BIT2 x)) (NUMERAL (BIT1 y)) =
      if NUMERAL (BIT1 y) − 1 ≤ NUMERAL (BIT1 x) then
        gcd (NUMERAL (BIT1 x) − (NUMERAL (BIT1 y) − 1)) (NUMERAL (BIT1 y))
      else gcd (NUMERAL (BIT2 x)) (NUMERAL (BIT1 y) − 1 − NUMERAL (BIT1 x))) ∧
   (∀y x.
      gcd (NUMERAL (BIT1 x)) (NUMERAL (BIT2 y)) =
      if NUMERAL (BIT1 y) ≤ NUMERAL (BIT1 x) − 1 then
        gcd (NUMERAL (BIT1 x) − 1 − NUMERAL (BIT1 y)) (NUMERAL (BIT2 y))
      else
        gcd (NUMERAL (BIT1 x)) (NUMERAL (BIT1 y) − (NUMERAL (BIT1 x) − 1))) ∧
   ∀y x.
     gcd (NUMERAL (BIT2 x)) (NUMERAL (BIT2 y)) =
     if NUMERAL (BIT1 y) ≤ NUMERAL (BIT1 x) then
       gcd (NUMERAL (BIT1 x) − NUMERAL (BIT1 y)) (NUMERAL (BIT2 y))
     else gcd (NUMERAL (BIT2 x)) (NUMERAL (BIT1 y) − NUMERAL (BIT1 x))
GCD_IS_GCD
|- ∀a b. is_gcd a b (gcd a b)
GCD_REF
|- ∀a. gcd a a = a
GCD_SYM
|- ∀a b. gcd a b = gcd b a
GCD_0R
|- ∀a. gcd a 0 = a
GCD_0L
|- ∀a. gcd 0 a = a
GCD_ADD_R
|- ∀a b. gcd a (a + b) = gcd a b
GCD_ADD_R_THM
|- (∀a b. gcd a (a + b) = gcd a b) ∧ ∀a b. gcd a (b + a) = gcd a b
GCD_ADD_L
|- ∀a b. gcd (a + b) a = gcd a b
GCD_ADD_L_THM
|- (∀a b. gcd (a + b) a = gcd a b) ∧ ∀a b. gcd (b + a) a = gcd a b
GCD_EQ_0
|- ∀n m. (gcd n m = 0) ⇔ (n = 0) ∧ (m = 0)
GCD_1
|- (gcd 1 x = 1) ∧ (gcd x 1 = 1)
PRIME_GCD
|- ∀p b. prime p ⇒ divides p b ∨ (gcd p b = 1)
L_EUCLIDES
|- ∀a b c. (gcd a b = 1) ∧ divides b (a * c) ⇒ divides b c
P_EUCLIDES
|- ∀p a b. prime p ∧ divides p (a * b) ⇒ divides p a ∨ divides p b
FACTOR_OUT_GCD
|- ∀n m.
     n ≠ 0 ∧ m ≠ 0 ⇒
     ∃p q. (n = p * gcd n m) ∧ (m = q * gcd n m) ∧ (gcd p q = 1)
GCD_SUCfree_ind
|- ∀P.
     (∀y. P 0 y) ∧ (∀x y. P x y ⇒ P y x) ∧ (∀x. P x x) ∧
     (∀x y. 0 < x ∧ 0 < y ∧ P x y ⇒ P x (x + y)) ⇒
     ∀m n. P m n
LINEAR_GCD
|- ∀n m. n ≠ 0 ⇒ ∃p q. p * n = q * m + gcd m n
GCD_EFFICIENTLY
|- ∀a b. gcd a b = if a = 0 then b else gcd (b MOD a) a
LCM_IS_LEAST_COMMON_MULTIPLE
|- divides m (lcm m n) ∧ divides n (lcm m n) ∧
   ∀p. divides m p ∧ divides n p ⇒ divides (lcm m n) p
LCM_0
|- (lcm 0 x = 0) ∧ (lcm x 0 = 0)
LCM_1
|- (lcm 1 x = x) ∧ (lcm x 1 = x)
LCM_COMM
|- lcm a b = lcm b a
LCM_LE
|- 0 < m ∧ 0 < n ⇒ m ≤ lcm m n ∧ m ≤ lcm n m
LCM_LEAST
|- 0 < m ∧ 0 < n ⇒ ∀p. 0 < p ∧ p < lcm m n ⇒ ¬divides m p ∨ ¬divides n p
GCD_COMMON_FACTOR
|- ∀m n k. gcd (k * m) (k * n) = k * gcd m n
GCD_CANCEL_MULT
|- ∀m n k. (gcd m k = 1) ⇒ (gcd m (k * n) = gcd m n)
BINARY_GCD
|- ∀m n.
     (EVEN m ∧ EVEN n ⇒ (gcd m n = 2 * gcd (m DIV 2) (n DIV 2))) ∧
     (EVEN m ∧ ODD n ⇒ (gcd m n = gcd (m DIV 2) n))