Theory "pair"

Parents     relation

Signature

Type Arity
prod 2
Constant Type
## :(α -> γ) -> (β -> δ) -> α # β -> γ # δ
, :α -> β -> α # β
ABS_prod :(α -> β -> bool) -> α # β
CURRY :(α # β -> γ) -> α -> β -> γ
FST :α # β -> α
LEX :α reln -> β reln -> (α # β) reln
REP_prod :α # β -> α -> β -> bool
RPROD :α reln -> β reln -> (α # β) reln
SND :α # β -> β
SWAP :β # α -> α # β
UNCURRY :(α -> β -> γ) -> α # β -> γ
pair_CASE :β # γ -> (β -> γ -> α) -> α

Definitions

prod_TY_DEF
|- ∃rep. TYPE_DEFINITION (λp. ∃x y. p = (λa b. (a = x) ∧ (b = y))) rep
ABS_REP_prod
|- (∀a. ABS_prod (REP_prod a) = a) ∧
   ∀r.
     (λp. ∃x y. p = (λa b. (a = x) ∧ (b = y))) r ⇔ (REP_prod (ABS_prod r) = r)
COMMA_DEF
|- ∀x y. (x,y) = ABS_prod (λa b. (a = x) ∧ (b = y))
PAIR
|- ∀x. (FST x,SND x) = x
SWAP_def
|- ∀a. SWAP a = (SND a,FST a)
CURRY_DEF
|- ∀f x y. CURRY f x y = f (x,y)
UNCURRY
|- ∀f v. UNCURRY f v = f (FST v) (SND v)
PAIR_MAP
|- ∀f g p. (f ## g) p = (f (FST p),g (SND p))
pair_CASE_def
|- ∀p f. pair_CASE p f = f (FST p) (SND p)
LEX_DEF
|- ∀R1 R2. R1 LEX R2 = (λ(s,t) (u,v). R1 s u ∨ (s = u) ∧ R2 t v)
RPROD_DEF
|- ∀R1 R2. RPROD R1 R2 = (λ(s,t) (u,v). R1 s u ∧ R2 t v)


Theorems

PAIR_EQ
|- ((x,y) = (a,b)) ⇔ (x = a) ∧ (y = b)
CLOSED_PAIR_EQ
|- ∀x y a b. ((x,y) = (a,b)) ⇔ (x = a) ∧ (y = b)
ABS_PAIR_THM
|- ∀x. ∃q r. x = (q,r)
pair_CASES
|- ∀x. ∃q r. x = (q,r)
FST
|- ∀x y. FST (x,y) = x
SND
|- ∀x y. SND (x,y) = y
PAIR_FST_SND_EQ
|- ∀p q. (p = q) ⇔ (FST p = FST q) ∧ (SND p = SND q)
UNCURRY_VAR
|- ∀f v. UNCURRY f v = f (FST v) (SND v)
ELIM_UNCURRY
|- ∀f. UNCURRY f = (λx. f (FST x) (SND x))
UNCURRY_DEF
|- ∀f x y. UNCURRY f (x,y) = f x y
CURRY_UNCURRY_THM
|- ∀f. CURRY (UNCURRY f) = f
UNCURRY_CURRY_THM
|- ∀f. UNCURRY (CURRY f) = f
CURRY_ONE_ONE_THM
|- (CURRY f = CURRY g) ⇔ (f = g)
UNCURRY_ONE_ONE_THM
|- (UNCURRY f = UNCURRY g) ⇔ (f = g)
pair_Axiom
|- ∀f. ∃fn. ∀x y. fn (x,y) = f x y
UNCURRY_CONG
|- ∀f' f M' M.
     (M = M') ∧ (∀x y. (M' = (x,y)) ⇒ (f x y = f' x y)) ⇒
     (UNCURRY f M = UNCURRY f' M')
LAMBDA_PROD
|- ∀P. (λp. P p) = (λ(p1,p2). P (p1,p2))
EXISTS_PROD
|- (∃p. P p) ⇔ ∃p_1 p_2. P (p_1,p_2)
FORALL_PROD
|- (∀p. P p) ⇔ ∀p_1 p_2. P (p_1,p_2)
pair_induction
|- (∀p_1 p_2. P (p_1,p_2)) ⇒ ∀p. P p
ELIM_PEXISTS
|- (∃p. P (FST p) (SND p)) ⇔ ∃p1 p2. P p1 p2
ELIM_PFORALL
|- (∀p. P (FST p) (SND p)) ⇔ ∀p1 p2. P p1 p2
PFORALL_THM
|- ∀P. (∀x y. P x y) ⇔ ∀(x,y). P x y
PEXISTS_THM
|- ∀P. (∃x y. P x y) ⇔ ∃(x,y). P x y
ELIM_PEXISTS_EVAL
|- $? (UNCURRY (λx. P x)) ⇔ ∃x. $? (P x)
ELIM_PFORALL_EVAL
|- $! (UNCURRY (λx. P x)) ⇔ ∀x. $! (P x)
PAIR_MAP_THM
|- ∀f g x y. (f ## g) (x,y) = (f x,g y)
FST_PAIR_MAP
|- ∀p f g. FST ((f ## g) p) = f (FST p)
SND_PAIR_MAP
|- ∀p f g. SND ((f ## g) p) = g (SND p)
LET2_RAND
|- ∀P M N. P (let (x,y) = M in N x y) = (let (x,y) = M in P (N x y))
LET2_RATOR
|- ∀M N b. (let (x,y) = M in N x y) b = (let (x,y) = M in N x y b)
o_UNCURRY_R
|- f o UNCURRY g = UNCURRY ($o f o g)
C_UNCURRY_L
|- combin$C (UNCURRY f) x = UNCURRY (combin$C (combin$C o f) x)
S_UNCURRY_R
|- S f (UNCURRY g) = UNCURRY (S (S o $o f o $,) g)
FORALL_UNCURRY
|- $! (UNCURRY f) ⇔ $! ($! o f)
PAIR_FUN_THM
|- ∀P. (∃!f. P f) ⇔ ∃!p. P (λa. (FST p a,SND p a))
pair_case_thm
|- pair_CASE (x,y) f = f x y
pair_case_def
|- pair_CASE (x,y) f = f x y
pair_case_cong
|- ∀M M' f.
     (M = M') ∧ (∀x y. (M' = (x,y)) ⇒ (f x y = f' x y)) ⇒
     (pair_CASE M f = pair_CASE M' f')
datatype_pair
|- DATATYPE (pair $,)
LEX_DEF_THM
|- (R1 LEX R2) (a,b) (c,d) ⇔ R1 a c ∨ (a = c) ∧ R2 b d
WF_LEX
|- ∀R Q. WF R ∧ WF Q ⇒ WF (R LEX Q)
WF_RPROD
|- ∀R Q. WF R ∧ WF Q ⇒ WF (RPROD R Q)
total_LEX
|- total R1 ∧ total R2 ⇒ total (R1 LEX R2)
transitive_LEX
|- transitive R1 ∧ transitive R2 ⇒ transitive (R1 LEX R2)
reflexive_LEX
|- reflexive (R1 LEX R2) ⇔ reflexive R1 ∨ reflexive R2
symmetric_LEX
|- symmetric R1 ∧ symmetric R2 ⇒ symmetric (R1 LEX R2)