Theory "probability"

Parents     lebesgue

Signature

Constant Type
conditional_distribution :(α -> bool) # ((α -> bool) -> bool) # ((α -> bool) -> real) -> (α -> β) -> (α -> γ) -> (β -> bool) -> (γ -> bool) -> real
conditional_expectation :(α -> bool) # ((α -> bool) -> bool) # ((α -> bool) -> real) -> (α -> extreal) -> ((α -> bool) -> bool) -> α -> extreal
conditional_prob :(α -> bool) # ((α -> bool) -> bool) # ((α -> bool) -> real) -> (α -> bool) -> ((α -> bool) -> bool) -> α -> extreal
distribution :(β -> bool) # ((β -> bool) -> bool) # ((β -> bool) -> real) -> (β -> α) -> (α -> bool) -> real
events :(α -> bool) # ((α -> bool) -> bool) # ((α -> bool) -> real) -> (α -> bool) -> bool
expectation :(α -> bool) # ((α -> bool) -> bool) # ((α -> bool) -> real) -> (α -> extreal) -> extreal
indep :(α -> bool) # ((α -> bool) -> bool) # ((α -> bool) -> real) -> (α -> bool) reln
indep_rv :(α -> bool) # ((α -> bool) -> bool) # ((α -> bool) -> real) -> (α -> β) -> (α -> γ) -> (β -> bool) # ((β -> bool) -> bool) -> (γ -> bool) # ((γ -> bool) -> bool) -> bool
joint_distribution :(γ -> bool) # ((γ -> bool) -> bool) # ((γ -> bool) -> real) -> (γ -> α) -> (γ -> β) -> (α # β -> bool) -> real
joint_distribution3 :(δ -> bool) # ((δ -> bool) -> bool) # ((δ -> bool) -> real) -> (δ -> α) -> (δ -> β) -> (δ -> γ) -> (α # β # γ -> bool) -> real
p_space :(α -> bool) # ((α -> bool) -> bool) # ((α -> bool) -> real) -> α -> bool
possibly :(α -> bool) # ((α -> bool) -> bool) # ((α -> bool) -> real) -> (α -> bool) -> bool
prob :(α -> bool) # ((α -> bool) -> bool) # ((α -> bool) -> real) -> (α -> bool) -> real
prob_space :(α -> bool) # ((α -> bool) -> bool) # ((α -> bool) -> real) -> bool
probably :(α -> bool) # ((α -> bool) -> bool) # ((α -> bool) -> real) -> (α -> bool) -> bool
random_variable :(α -> β) -> (α -> bool) # ((α -> bool) -> bool) # ((α -> bool) -> real) -> (β -> bool) # ((β -> bool) -> bool) -> bool
real_random_variable :(α -> extreal) -> (α -> bool) # ((α -> bool) -> bool) # ((α -> bool) -> real) -> bool
rv_conditional_expectation :(α -> bool) # ((α -> bool) -> bool) # ((α -> bool) -> real) -> (β -> bool) # ((β -> bool) -> bool) -> (α -> extreal) -> (α -> β) -> α -> extreal
uniform_distribution :β -> γ -> (δ -> bool) # ((δ -> bool) -> bool) -> (α -> bool) -> real

Definitions

p_space_def
|- p_space = m_space
events_def
|- events = measurable_sets
prob_def
|- prob = measure
prob_space_def
|- ∀p. prob_space p ⇔ measure_space p ∧ (measure p (p_space p) = 1)
indep_def
|- ∀p a b.
     indep p a b ⇔
     a ∈ events p ∧ b ∈ events p ∧ (prob p (a ∩ b) = prob p a * prob p b)
probably_def
|- ∀p e. probably p e ⇔ e ∈ events p ∧ (prob p e = 1)
possibly_def
|- ∀p e. possibly p e ⇔ e ∈ events p ∧ prob p e ≠ 0
random_variable_def
|- ∀X p s.
     random_variable X p s ⇔
     prob_space p ∧ X ∈ measurable (p_space p,events p) s
real_random_variable_def
|- ∀X p.
     real_random_variable X p ⇔
     prob_space p ∧ (∀x. x ∈ p_space p ⇒ X x ≠ NegInf ∧ X x ≠ PosInf) ∧
     X ∈ measurable (p_space p,events p) Borel
distribution_def
|- ∀p X. distribution p X = (λs. prob p (PREIMAGE X s ∩ p_space p))
joint_distribution_def
|- ∀p X Y.
     joint_distribution p X Y =
     (λa. prob p (PREIMAGE (λx. (X x,Y x)) a ∩ p_space p))
joint_distribution3_def
|- ∀p X Y Z.
     joint_distribution3 p X Y Z =
     (λa. prob p (PREIMAGE (λx. (X x,Y x,Z x)) a ∩ p_space p))
conditional_distribution_def
|- ∀p X Y a b.
     conditional_distribution p X Y a b =
     joint_distribution p X Y (a × b) / distribution p Y b
expectation_def
|- expectation = integral
conditional_expectation_def
|- ∀p X s.
     conditional_expectation p X s =
     @f.
       real_random_variable f p ∧
       ∀g.
         g ∈ s ⇒
         (integral p (λx. f x * indicator_fn g x) =
          integral p (λx. X x * indicator_fn g x))
conditional_prob_def
|- ∀p e1 e2.
     conditional_prob p e1 e2 = conditional_expectation p (indicator_fn e1) e2
rv_conditional_expectation_def
|- ∀p s X Y.
     rv_conditional_expectation p s X Y =
     conditional_expectation p X
       (IMAGE (λa. PREIMAGE Y a ∩ p_space p) (subsets s))
indep_rv_def
|- ∀p X Y s t.
     indep_rv p X Y s t ⇔
     ∀A B.
       A ∈ subsets s ∧ B ∈ subsets t ⇒ indep p (PREIMAGE X A) (PREIMAGE Y B)
uniform_distribution_def
|- ∀p X s. uniform_distribution p X s = (λa. &CARD a / &CARD (space s))


Theorems

POSITIVE_PROB
|- ∀p. positive p ⇔ (prob p ∅ = 0) ∧ ∀s. s ∈ events p ⇒ 0 ≤ prob p s
INCREASING_PROB
|- ∀p.
     increasing p ⇔
     ∀s t. s ∈ events p ∧ t ∈ events p ∧ s ⊆ t ⇒ prob p s ≤ prob p t
ADDITIVE_PROB
|- ∀p.
     additive p ⇔
     ∀s t.
       s ∈ events p ∧ t ∈ events p ∧ DISJOINT s t ⇒
       (prob p (s ∪ t) = prob p s + prob p t)
COUNTABLY_ADDITIVE_PROB
|- ∀p.
     countably_additive p ⇔
     ∀f.
       f ∈ (𝕌(:num) -> events p) ∧ (∀m n. m ≠ n ⇒ DISJOINT (f m) (f n)) ∧
       BIGUNION (IMAGE f 𝕌(:num)) ∈ events p ⇒
       prob p o f sums prob p (BIGUNION (IMAGE f 𝕌(:num)))
PROB_SPACE
|- ∀p.
     prob_space p ⇔
     sigma_algebra (p_space p,events p) ∧ positive p ∧ countably_additive p ∧
     (prob p (p_space p) = 1)
EVENTS_SIGMA_ALGEBRA
|- ∀p. prob_space p ⇒ sigma_algebra (p_space p,events p)
EVENTS_ALGEBRA
|- ∀p. prob_space p ⇒ algebra (p_space p,events p)
PROB_EMPTY
|- ∀p. prob_space p ⇒ (prob p ∅ = 0)
PROB_UNIV
|- ∀p. prob_space p ⇒ (prob p (p_space p) = 1)
PROB_SPACE_POSITIVE
|- ∀p. prob_space p ⇒ positive p
PROB_SPACE_COUNTABLY_ADDITIVE
|- ∀p. prob_space p ⇒ countably_additive p
PROB_SPACE_ADDITIVE
|- ∀p. prob_space p ⇒ additive p
PROB_SPACE_INCREASING
|- ∀p. prob_space p ⇒ increasing p
PROB_POSITIVE
|- ∀p s. prob_space p ∧ s ∈ events p ⇒ 0 ≤ prob p s
PROB_INCREASING
|- ∀p s t.
     prob_space p ∧ s ∈ events p ∧ t ∈ events p ∧ s ⊆ t ⇒ prob p s ≤ prob p t
PROB_ADDITIVE
|- ∀p s t u.
     prob_space p ∧ s ∈ events p ∧ t ∈ events p ∧ DISJOINT s t ∧ (u = s ∪ t) ⇒
     (prob p u = prob p s + prob p t)
PROB_COUNTABLY_ADDITIVE
|- ∀p s f.
     prob_space p ∧ f ∈ (𝕌(:num) -> events p) ∧
     (∀m n. m ≠ n ⇒ DISJOINT (f m) (f n)) ∧ (s = BIGUNION (IMAGE f 𝕌(:num))) ⇒
     prob p o f sums prob p s
PROB_COMPL
|- ∀p s.
     prob_space p ∧ s ∈ events p ⇒ (prob p (p_space p DIFF s) = 1 − prob p s)
PROB_INDEP
|- ∀p s t u. indep p s t ∧ (u = s ∩ t) ⇒ (prob p u = prob p s * prob p t)
PSPACE
|- ∀a b c. p_space (a,b,c) = a
EVENTS
|- ∀a b c. events (a,b,c) = b
PROB
|- ∀a b c. prob (a,b,c) = c
EVENTS_INTER
|- ∀p s t. prob_space p ∧ s ∈ events p ∧ t ∈ events p ⇒ s ∩ t ∈ events p
EVENTS_EMPTY
|- ∀p. prob_space p ⇒ ∅ ∈ events p
EVENTS_SPACE
|- ∀p. prob_space p ⇒ p_space p ∈ events p
EVENTS_UNION
|- ∀p s t. prob_space p ∧ s ∈ events p ∧ t ∈ events p ⇒ s ∪ t ∈ events p
INDEP_EMPTY
|- ∀p s. prob_space p ∧ s ∈ events p ⇒ indep p ∅ s
INTER_PSPACE
|- ∀p s. prob_space p ∧ s ∈ events p ⇒ (p_space p ∩ s = s)
INDEP_SPACE
|- ∀p s. prob_space p ∧ s ∈ events p ⇒ indep p (p_space p) s
EVENTS_DIFF
|- ∀p s t. prob_space p ∧ s ∈ events p ∧ t ∈ events p ⇒ s DIFF t ∈ events p
EVENTS_COMPL
|- ∀p s. prob_space p ∧ s ∈ events p ⇒ p_space p DIFF s ∈ events p
EVENTS_COUNTABLE_UNION
|- ∀p c. prob_space p ∧ c ⊆ events p ∧ countable c ⇒ BIGUNION c ∈ events p
PROB_ZERO_UNION
|- ∀p s t.
     prob_space p ∧ s ∈ events p ∧ t ∈ events p ∧ (prob p t = 0) ⇒
     (prob p (s ∪ t) = prob p s)
PROB_EQ_COMPL
|- ∀p s t.
     prob_space p ∧ s ∈ events p ∧ t ∈ events p ∧
     (prob p (p_space p DIFF s) = prob p (p_space p DIFF t)) ⇒
     (prob p s = prob p t)
PROB_ONE_INTER
|- ∀p s t.
     prob_space p ∧ s ∈ events p ∧ t ∈ events p ∧ (prob p t = 1) ⇒
     (prob p (s ∩ t) = prob p s)
EVENTS_COUNTABLE_INTER
|- ∀p c.
     prob_space p ∧ c ⊆ events p ∧ countable c ∧ c ≠ ∅ ⇒ BIGINTER c ∈ events p
ABS_PROB
|- ∀p s. prob_space p ∧ s ∈ events p ⇒ (abs (prob p s) = prob p s)
PROB_COMPL_LE1
|- ∀p s r.
     prob_space p ∧ s ∈ events p ⇒
     (prob p (p_space p DIFF s) ≤ r ⇔ 1 − r ≤ prob p s)
PROB_LE_1
|- ∀p s. prob_space p ∧ s ∈ events p ⇒ prob p s ≤ 1
PROB_EQ_BIGUNION_IMAGE
|- ∀p.
     prob_space p ∧ f ∈ (𝕌(:num) -> events p) ∧ g ∈ (𝕌(:num) -> events p) ∧
     (∀m n. m ≠ n ⇒ DISJOINT (f m) (f n)) ∧
     (∀m n. m ≠ n ⇒ DISJOINT (g m) (g n)) ∧
     (∀n. prob p (f n) = prob p (g n)) ⇒
     (prob p (BIGUNION (IMAGE f 𝕌(:num))) =
      prob p (BIGUNION (IMAGE g 𝕌(:num))))
PROB_FINITELY_ADDITIVE
|- ∀p s f n.
     prob_space p ∧ f ∈ (count n -> events p) ∧
     (∀a b. a < n ∧ b < n ∧ a ≠ b ⇒ DISJOINT (f a) (f b)) ∧
     (s = BIGUNION (IMAGE f (count n))) ⇒
     (sum (0,n) (prob p o f) = prob p s)
ABS_1_MINUS_PROB
|- ∀p s. prob_space p ∧ s ∈ events p ∧ prob p s ≠ 0 ⇒ abs (1 − prob p s) < 1
PROB_INCREASING_UNION
|- ∀p s f.
     prob_space p ∧ f ∈ (𝕌(:num) -> events p) ∧ (∀n. f n ⊆ f (SUC n)) ∧
     (s = BIGUNION (IMAGE f 𝕌(:num))) ⇒
     prob p o f --> prob p s
PROB_SUBADDITIVE
|- ∀p s t u.
     prob_space p ∧ t ∈ events p ∧ u ∈ events p ∧ (s = t ∪ u) ⇒
     prob p s ≤ prob p t + prob p u
PROB_COUNTABLY_SUBADDITIVE
|- ∀p f.
     prob_space p ∧ IMAGE f 𝕌(:num) ⊆ events p ∧ summable (prob p o f) ⇒
     prob p (BIGUNION (IMAGE f 𝕌(:num))) ≤ suminf (prob p o f)
PROB_COUNTABLY_ZERO
|- ∀p c.
     prob_space p ∧ countable c ∧ c ⊆ events p ∧
     (∀x. x ∈ c ⇒ (prob p x = 0)) ⇒
     (prob p (BIGUNION c) = 0)
INDEP_SYM
|- ∀p a b. prob_space p ∧ indep p a b ⇒ indep p b a
INDEP_REFL
|- ∀p a.
     prob_space p ∧ a ∈ events p ⇒
     (indep p a a ⇔ (prob p a = 0) ∨ (prob p a = 1))
PROB_REAL_SUM_IMAGE
|- ∀p s.
     prob_space p ∧ s ∈ events p ∧ (∀x. x ∈ s ⇒ {x} ∈ events p) ∧ FINITE s ⇒
     (prob p s = SIGMA (λx. prob p {x}) s)
PROB_EQUIPROBABLE_FINITE_UNIONS
|- ∀p s.
     prob_space p ∧ s ∈ events p ∧ (∀x. x ∈ s ⇒ {x} ∈ events p) ∧ FINITE s ∧
     (∀x y. x ∈ s ∧ y ∈ s ⇒ (prob p {x} = prob p {y})) ⇒
     (prob p s = &CARD s * prob p {CHOICE s})
PROB_REAL_SUM_IMAGE_FN
|- ∀p f e s.
     prob_space p ∧ e ∈ events p ∧ (∀x. x ∈ s ⇒ e ∩ f x ∈ events p) ∧
     FINITE s ∧ (∀x y. x ∈ s ∧ y ∈ s ∧ x ≠ y ⇒ DISJOINT (f x) (f y)) ∧
     (BIGUNION (IMAGE f s) ∩ p_space p = p_space p) ⇒
     (prob p e = SIGMA (λx. prob p (e ∩ f x)) s)
PROB_REAL_SUM_IMAGE_SPACE
|- ∀p.
     prob_space p ∧ (∀x. x ∈ p_space p ⇒ {x} ∈ events p) ∧
     FINITE (p_space p) ⇒
     (SIGMA (λx. prob p {x}) (p_space p) = 1)
PROB_DISCRETE_EVENTS
|- ∀p.
     prob_space p ∧ FINITE (p_space p) ∧
     (∀x. x ∈ p_space p ⇒ {x} ∈ events p) ⇒
     ∀s. s ⊆ p_space p ⇒ s ∈ events p
PROB_DISCRETE_EVENTS_COUNTABLE
|- ∀p.
     prob_space p ∧ countable (p_space p) ∧
     (∀x. x ∈ p_space p ⇒ {x} ∈ events p) ⇒
     ∀s. s ⊆ p_space p ⇒ s ∈ events p
marginal_joint_zero
|- ∀p X Y s t.
     prob_space p ∧ (events p = POW (p_space p)) ∧
     ((distribution p X s = 0) ∨ (distribution p Y t = 0)) ⇒
     (joint_distribution p X Y (s × t) = 0)
marginal_joint_zero3
|- ∀p X Y Z s t u.
     prob_space p ∧ (events p = POW (p_space p)) ∧
     ((distribution p X s = 0) ∨ (distribution p Y t = 0) ∨
      (distribution p Z u = 0)) ⇒
     (joint_distribution3 p X Y Z (s × (t × u)) = 0)
distribution_prob_space
|- ∀p X s.
     random_variable X p s ⇒ prob_space (space s,subsets s,distribution p X)
uniform_distribution_prob_space
|- ∀X p s.
     FINITE (p_space p) ∧ FINITE (space s) ∧ random_variable X p s ⇒
     prob_space (space s,subsets s,uniform_distribution p X s)
distribution_partition
|- ∀p X.
     prob_space p ∧ (∀x. x ∈ p_space p ⇒ {x} ∈ events p) ∧
     FINITE (p_space p) ∧ random_variable X p Borel ⇒
     (SIGMA (λx. distribution p X {x}) (IMAGE X (p_space p)) = 1)
distribution_lebesgue_thm1
|- ∀X p s A.
     random_variable X p s ∧ A ∈ subsets s ⇒
     (Normal (distribution p X A) =
      integral p (indicator_fn (PREIMAGE X A ∩ p_space p)))
distribution_lebesgue_thm2
|- ∀X p s A.
     random_variable X p s ∧ A ∈ subsets s ⇒
     (Normal (distribution p X A) =
      integral (space s,subsets s,distribution p X) (indicator_fn A))
finite_expectation1
|- ∀p X.
     FINITE (p_space p) ∧ real_random_variable X p ⇒
     (expectation p X =
      SIGMA (λr. r * Normal (prob p (PREIMAGE X {r} ∩ p_space p)))
        (IMAGE X (p_space p)))
finite_expectation2
|- ∀p X.
     FINITE (IMAGE X (p_space p)) ∧ real_random_variable X p ⇒
     (expectation p X =
      SIGMA (λr. r * Normal (prob p (PREIMAGE X {r} ∩ p_space p)))
        (IMAGE X (p_space p)))
finite_expectation
|- ∀p X.
     FINITE (p_space p) ∧ real_random_variable X p ⇒
     (expectation p X =
      SIGMA (λr. r * Normal (distribution p X {r})) (IMAGE X (p_space p)))
finite_support_expectation
|- ∀p X.
     FINITE (IMAGE X (p_space p)) ∧ real_random_variable X p ⇒
     (expectation p X =
      SIGMA (λr. r * Normal (distribution p X {r})) (IMAGE X (p_space p)))
finite_marginal_product_space_POW
|- ∀p X Y.
     (POW (p_space p) = events p) ∧
     random_variable X p (IMAGE X (p_space p),POW (IMAGE X (p_space p))) ∧
     random_variable Y p (IMAGE Y (p_space p),POW (IMAGE Y (p_space p))) ∧
     FINITE (p_space p) ⇒
     measure_space
       (IMAGE X (p_space p) × IMAGE Y (p_space p),
        POW (IMAGE X (p_space p) × IMAGE Y (p_space p)),
        (λa. prob p (PREIMAGE (λx. (X x,Y x)) a ∩ p_space p)))
finite_marginal_product_space_POW2
|- ∀p s1 s2 X Y.
     (POW (p_space p) = events p) ∧ random_variable X p (s1,POW s1) ∧
     random_variable Y p (s2,POW s2) ∧ FINITE (p_space p) ∧ FINITE s1 ∧
     FINITE s2 ⇒
     measure_space (s1 × s2,POW (s1 × s2),joint_distribution p X Y)
finite_marginal_product_space_POW3
|- ∀p s1 s2 s3 X Y Z.
     (POW (p_space p) = events p) ∧ random_variable X p (s1,POW s1) ∧
     random_variable Y p (s2,POW s2) ∧ random_variable Z p (s3,POW s3) ∧
     FINITE (p_space p) ∧ FINITE s1 ∧ FINITE s2 ∧ FINITE s3 ⇒
     measure_space
       (s1 × (s2 × s3),POW (s1 × (s2 × s3)),joint_distribution3 p X Y Z)
prob_x_eq_1_imp_prob_y_eq_0
|- ∀p x.
     prob_space p ∧ {x} ∈ events p ∧ (prob p {x} = 1) ⇒
     ∀y. {y} ∈ events p ∧ y ≠ x ⇒ (prob p {y} = 0)
distribution_x_eq_1_imp_distribution_y_eq_0
|- ∀X p x.
     random_variable X p (IMAGE X (p_space p),POW (IMAGE X (p_space p))) ∧
     (distribution p X {x} = 1) ⇒
     ∀y. y ≠ x ⇒ (distribution p X {y} = 0)
joint_distribution_sym
|- ∀p X Y a b.
     prob_space p ⇒
     (joint_distribution p X Y (a × b) = joint_distribution p Y X (b × a))
joint_distribution_pos
|- ∀p X Y a.
     prob_space p ∧ (events p = POW (p_space p)) ⇒
     0 ≤ joint_distribution p X Y a
joint_distribution_le_1
|- ∀p X Y a.
     prob_space p ∧ (events p = POW (p_space p)) ⇒
     joint_distribution p X Y a ≤ 1
joint_distribution_le
|- ∀p X Y a b.
     prob_space p ∧ (events p = POW (p_space p)) ⇒
     joint_distribution p X Y (a × b) ≤ distribution p X a
joint_distribution_le2
|- ∀p X Y a b.
     prob_space p ∧ (events p = POW (p_space p)) ⇒
     joint_distribution p X Y (a × b) ≤ distribution p Y b
joint_conditional
|- ∀p X Y a b.
     prob_space p ∧ (events p = POW (p_space p)) ⇒
     (joint_distribution p X Y (a × b) =
      conditional_distribution p Y X b a * distribution p X a)
distribution_pos
|- ∀p X a.
     prob_space p ∧ (events p = POW (p_space p)) ⇒ 0 ≤ distribution p X a
conditional_distribution_pos
|- ∀p X Y a b.
     prob_space p ∧ (events p = POW (p_space p)) ⇒
     0 ≤ conditional_distribution p X Y a b
conditional_distribution_le_1
|- ∀p X Y a b.
     prob_space p ∧ (events p = POW (p_space p)) ⇒
     conditional_distribution p X Y a b ≤ 1
marginal_distribution1
|- ∀p X Y a.
     prob_space p ∧ FINITE (p_space p) ∧ (events p = POW (p_space p)) ⇒
     (distribution p X a =
      SIGMA (λx. joint_distribution p X Y (a × {x})) (IMAGE Y (p_space p)))
marginal_distribution2
|- ∀p X Y b.
     prob_space p ∧ FINITE (p_space p) ∧ (events p = POW (p_space p)) ⇒
     (distribution p Y b =
      SIGMA (λx. joint_distribution p X Y ({x} × b)) (IMAGE X (p_space p)))
joint_distribution_sums_1
|- ∀p X Y.
     prob_space p ∧ FINITE (p_space p) ∧ (events p = POW (p_space p)) ⇒
     (SIGMA (λ(x,y). joint_distribution p X Y {(x,y)})
        (IMAGE X (p_space p) × IMAGE Y (p_space p)) =
      1)
joint_distribution_sum_mul1
|- ∀p X Y f.
     prob_space p ∧ FINITE (p_space p) ∧ (events p = POW (p_space p)) ⇒
     (SIGMA (λ(x,y). joint_distribution p X Y {(x,y)} * f x)
        (IMAGE X (p_space p) × IMAGE Y (p_space p)) =
      SIGMA (λx. distribution p X {x} * f x) (IMAGE X (p_space p)))