Theory "quote"

Parents     prelim

Signature

Type Arity
index 0
varmap 1
Constant Type
Empty_vm :α varmap
End_idx :index
Left_idx :index -> index
Node_vm :α -> α varmap -> α varmap -> α varmap
Right_idx :index -> index
index_CASE :index -> (index -> α) -> (index -> α) -> α -> α
index_compare :index -> index -> ordering
index_compare_tupled :index # index -> ordering
index_lt :index reln
index_size :index -> num
varmap_CASE :α varmap -> β -> (α -> α varmap -> α varmap -> β) -> β
varmap_find :index -> α varmap -> α
varmap_find_tupled :index # α varmap -> α
varmap_size :(α -> num) -> α varmap -> num

Definitions

index_TY_DEF
|- ∃rep.
     TYPE_DEFINITION
       (λa0.
          ∀'index' .
            (∀a0.
               (∃a.
                  (a0 =
                   (λa.
                      ind_type$CONSTR 0 ARB
                        (ind_type$FCONS a (λn. ind_type$BOTTOM))) a) ∧
                  'index' a) ∨
               (∃a.
                  (a0 =
                   (λa.
                      ind_type$CONSTR (SUC 0) ARB
                        (ind_type$FCONS a (λn. ind_type$BOTTOM))) a) ∧
                  'index' a) ∨
               (a0 =
                ind_type$CONSTR (SUC (SUC 0)) ARB (λn. ind_type$BOTTOM)) ⇒
               'index' a0) ⇒
            'index' a0) rep
index_case_def
|- (∀a f f1 v. index_CASE (Left_idx a) f f1 v = f a) ∧
   (∀a f f1 v. index_CASE (Right_idx a) f f1 v = f1 a) ∧
   ∀f f1 v. index_CASE End_idx f f1 v = v
index_size_def
|- (∀a. index_size (Left_idx a) = 1 + index_size a) ∧
   (∀a. index_size (Right_idx a) = 1 + index_size a) ∧
   (index_size End_idx = 0)
index_compare_tupled_primitive_def
|- index_compare_tupled =
   WFREC
     (@R.
        WF R ∧ (∀m' n'. R (n',m') (Left_idx n',Left_idx m')) ∧
        ∀m' n'. R (n',m') (Right_idx n',Right_idx m'))
     (λindex_compare_tupled a.
        case a of
          (Left_idx n',Left_idx m') => I (index_compare_tupled (n',m'))
        | (Left_idx n',Right_idx m'') => I LESS
        | (Left_idx n',End_idx) => I GREATER
        | (Right_idx n'',Left_idx m'''') => I GREATER
        | (Right_idx n'',Right_idx m''') =>
            I (index_compare_tupled (n'',m'''))
        | (Right_idx n'',End_idx) => I GREATER
        | (End_idx,Left_idx v12) => I LESS
        | (End_idx,Right_idx v13) => I LESS
        | (End_idx,End_idx) => I EQUAL)
index_compare_curried_def
|- ∀x x1. index_compare x x1 = index_compare_tupled (x,x1)
index_lt_def
|- ∀i1 i2. index_lt i1 i2 ⇔ (index_compare i1 i2 = LESS)
varmap_TY_DEF
|- ∃rep.
     TYPE_DEFINITION
       (λa0'.
          ∀'varmap' .
            (∀a0'.
               (a0' = ind_type$CONSTR 0 ARB (λn. ind_type$BOTTOM)) ∨
               (∃a0 a1 a2.
                  (a0' =
                   (λa0 a1 a2.
                      ind_type$CONSTR (SUC 0) a0
                        (ind_type$FCONS a1
                           (ind_type$FCONS a2 (λn. ind_type$BOTTOM)))) a0 a1
                     a2) ∧ 'varmap' a1 ∧ 'varmap' a2) ⇒
               'varmap' a0') ⇒
            'varmap' a0') rep
varmap_case_def
|- (∀v f. varmap_CASE Empty_vm v f = v) ∧
   ∀a0 a1 a2 v f. varmap_CASE (Node_vm a0 a1 a2) v f = f a0 a1 a2
varmap_size_def
|- (∀f. varmap_size f Empty_vm = 0) ∧
   ∀f a0 a1 a2.
     varmap_size f (Node_vm a0 a1 a2) =
     1 + (f a0 + (varmap_size f a1 + varmap_size f a2))
varmap_find_tupled_primitive_def
|- varmap_find_tupled =
   WFREC
     (@R.
        WF R ∧ (∀v1 x v2 i1. R (i1,v2) (Right_idx i1,Node_vm x v1 v2)) ∧
        ∀v2 x v1 i1. R (i1,v1) (Left_idx i1,Node_vm x v1 v2))
     (λvarmap_find_tupled a.
        case a of
          (v3,Empty_vm) => I (@x. T)
        | (Left_idx i1',Node_vm x v1 v2) => I (varmap_find_tupled (i1',v1))
        | (Right_idx i1,Node_vm x v1 v2) => I (varmap_find_tupled (i1,v2))
        | (End_idx,Node_vm x v1 v2) => I x)
varmap_find_curried_def
|- ∀x x1. varmap_find x x1 = varmap_find_tupled (x,x1)


Theorems

datatype_index
|- DATATYPE (index Left_idx Right_idx End_idx)
index_11
|- (∀a a'. (Left_idx a = Left_idx a') ⇔ (a = a')) ∧
   ∀a a'. (Right_idx a = Right_idx a') ⇔ (a = a')
index_distinct
|- (∀a' a. Left_idx a ≠ Right_idx a') ∧ (∀a. Left_idx a ≠ End_idx) ∧
   ∀a. Right_idx a ≠ End_idx
index_case_cong
|- ∀M M' f f1 v.
     (M = M') ∧ (∀a. (M' = Left_idx a) ⇒ (f a = f' a)) ∧
     (∀a. (M' = Right_idx a) ⇒ (f1 a = f1' a)) ∧ ((M' = End_idx) ⇒ (v = v')) ⇒
     (index_CASE M f f1 v = index_CASE M' f' f1' v')
index_nchotomy
|- ∀ii. (∃i. ii = Left_idx i) ∨ (∃i. ii = Right_idx i) ∨ (ii = End_idx)
index_Axiom
|- ∀f0 f1 f2.
     ∃fn.
       (∀a. fn (Left_idx a) = f0 a (fn a)) ∧
       (∀a. fn (Right_idx a) = f1 a (fn a)) ∧ (fn End_idx = f2)
index_induction
|- ∀P.
     (∀i. P i ⇒ P (Left_idx i)) ∧ (∀i. P i ⇒ P (Right_idx i)) ∧ P End_idx ⇒
     ∀i. P i
index_compare_ind
|- ∀P.
     P End_idx End_idx ∧ (∀v10. P End_idx (Left_idx v10)) ∧
     (∀v11. P End_idx (Right_idx v11)) ∧ (∀v2. P (Left_idx v2) End_idx) ∧
     (∀v3. P (Right_idx v3) End_idx) ∧
     (∀n' m'. P n' m' ⇒ P (Left_idx n') (Left_idx m')) ∧
     (∀n' m'. P (Left_idx n') (Right_idx m')) ∧
     (∀n' m'. P n' m' ⇒ P (Right_idx n') (Right_idx m')) ∧
     (∀n' m'. P (Right_idx n') (Left_idx m')) ⇒
     ∀v v1. P v v1
index_compare_def
|- (index_compare End_idx End_idx = EQUAL) ∧
   (∀v10. index_compare End_idx (Left_idx v10) = LESS) ∧
   (∀v11. index_compare End_idx (Right_idx v11) = LESS) ∧
   (∀v2. index_compare (Left_idx v2) End_idx = GREATER) ∧
   (∀v3. index_compare (Right_idx v3) End_idx = GREATER) ∧
   (∀n' m'. index_compare (Left_idx n') (Left_idx m') = index_compare n' m') ∧
   (∀n' m'. index_compare (Left_idx n') (Right_idx m') = LESS) ∧
   (∀n' m'.
      index_compare (Right_idx n') (Right_idx m') = index_compare n' m') ∧
   ∀n' m'. index_compare (Right_idx n') (Left_idx m') = GREATER
compare_index_equal
|- ∀i1 i2. (index_compare i1 i2 = EQUAL) ⇔ (i1 = i2)
compare_list_index
|- ∀l1 l2. (list_compare index_compare l1 l2 = EQUAL) ⇔ (l1 = l2)
datatype_varmap
|- DATATYPE (varmap Empty_vm Node_vm)
varmap_11
|- ∀a0 a1 a2 a0' a1' a2'.
     (Node_vm a0 a1 a2 = Node_vm a0' a1' a2') ⇔
     (a0 = a0') ∧ (a1 = a1') ∧ (a2 = a2')
varmap_distinct
|- ∀a2 a1 a0. Empty_vm ≠ Node_vm a0 a1 a2
varmap_case_cong
|- ∀M M' v f.
     (M = M') ∧ ((M' = Empty_vm) ⇒ (v = v')) ∧
     (∀a0 a1 a2. (M' = Node_vm a0 a1 a2) ⇒ (f a0 a1 a2 = f' a0 a1 a2)) ⇒
     (varmap_CASE M v f = varmap_CASE M' v' f')
varmap_nchotomy
|- ∀vv. (vv = Empty_vm) ∨ ∃a v v0. vv = Node_vm a v v0
varmap_Axiom
|- ∀f0 f1.
     ∃fn.
       (fn Empty_vm = f0) ∧
       ∀a0 a1 a2. fn (Node_vm a0 a1 a2) = f1 a0 a1 a2 (fn a1) (fn a2)
varmap_induction
|- ∀P. P Empty_vm ∧ (∀v v0. P v ∧ P v0 ⇒ ∀a. P (Node_vm a v v0)) ⇒ ∀v. P v
varmap_find_ind
|- ∀P.
     (∀x v1 v2. P End_idx (Node_vm x v1 v2)) ∧
     (∀i1 x v1 v2. P i1 v2 ⇒ P (Right_idx i1) (Node_vm x v1 v2)) ∧
     (∀i1 x v1 v2. P i1 v1 ⇒ P (Left_idx i1) (Node_vm x v1 v2)) ∧
     (∀i. P i Empty_vm) ⇒
     ∀v v1. P v v1
varmap_find_def
|- (∀x v2 v1. varmap_find End_idx (Node_vm x v1 v2) = x) ∧
   (∀x v2 v1 i1.
      varmap_find (Right_idx i1) (Node_vm x v1 v2) = varmap_find i1 v2) ∧
   (∀x v2 v1 i1.
      varmap_find (Left_idx i1) (Node_vm x v1 v2) = varmap_find i1 v1) ∧
   ∀i. varmap_find i Empty_vm = @x. T