Theory "quotient_list"

Parents     quotient   rich_list

Theorems

LIST_MAP_I
|- MAP I = I
LIST_REL_EQ
|- LIST_REL $= = $=
LIST_REL_REFL
|- ∀R. (∀x y. R x y ⇔ (R x = R y)) ⇒ ∀x. LIST_REL R x x
LIST_EQUIV
|- ∀R. EQUIV R ⇒ EQUIV (LIST_REL R)
LIST_REL_REL
|- ∀R abs rep.
     QUOTIENT R abs rep ⇒
     ∀r s.
       LIST_REL R r s ⇔
       LIST_REL R r r ∧ LIST_REL R s s ∧ (MAP abs r = MAP abs s)
LIST_QUOTIENT
|- ∀R abs rep. QUOTIENT R abs rep ⇒ QUOTIENT (LIST_REL R) (MAP abs) (MAP rep)
CONS_PRS
|- ∀R abs rep. QUOTIENT R abs rep ⇒ ∀t h. h::t = MAP abs (rep h::MAP rep t)
CONS_RSP
|- ∀R abs rep.
     QUOTIENT R abs rep ⇒
     ∀t1 t2 h1 h2. R h1 h2 ∧ LIST_REL R t1 t2 ⇒ LIST_REL R (h1::t1) (h2::t2)
NIL_PRS
|- ∀R abs rep. QUOTIENT R abs rep ⇒ ([] = MAP abs [])
NIL_RSP
|- ∀R abs rep. QUOTIENT R abs rep ⇒ LIST_REL R [] []
MAP_PRS
|- ∀R1 abs1 rep1.
     QUOTIENT R1 abs1 rep1 ⇒
     ∀R2 abs2 rep2.
       QUOTIENT R2 abs2 rep2 ⇒
       ∀l f. MAP f l = MAP abs2 (MAP ((abs1 --> rep2) f) (MAP rep1 l))
MAP_RSP
|- ∀R1 abs1 rep1.
     QUOTIENT R1 abs1 rep1 ⇒
     ∀R2 abs2 rep2.
       QUOTIENT R2 abs2 rep2 ⇒
       ∀l1 l2 f1 f2.
         (R1 ===> R2) f1 f2 ∧ LIST_REL R1 l1 l2 ⇒
         LIST_REL R2 (MAP f1 l1) (MAP f2 l2)
LENGTH_PRS
|- ∀R abs rep. QUOTIENT R abs rep ⇒ ∀l. LENGTH l = LENGTH (MAP rep l)
LENGTH_RSP
|- ∀R abs rep.
     QUOTIENT R abs rep ⇒ ∀l1 l2. LIST_REL R l1 l2 ⇒ (LENGTH l1 = LENGTH l2)
APPEND_PRS
|- ∀R abs rep.
     QUOTIENT R abs rep ⇒ ∀l m. l ++ m = MAP abs (MAP rep l ++ MAP rep m)
APPEND_RSP
|- ∀R abs rep.
     QUOTIENT R abs rep ⇒
     ∀l1 l2 m1 m2.
       LIST_REL R l1 l2 ∧ LIST_REL R m1 m2 ⇒ LIST_REL R (l1 ++ m1) (l2 ++ m2)
FLAT_PRS
|- ∀R abs rep.
     QUOTIENT R abs rep ⇒ ∀l. FLAT l = MAP abs (FLAT (MAP (MAP rep) l))
FLAT_RSP
|- ∀R abs rep.
     QUOTIENT R abs rep ⇒
     ∀l1 l2. LIST_REL (LIST_REL R) l1 l2 ⇒ LIST_REL R (FLAT l1) (FLAT l2)
REVERSE_PRS
|- ∀R abs rep.
     QUOTIENT R abs rep ⇒ ∀l. REVERSE l = MAP abs (REVERSE (MAP rep l))
REVERSE_RSP
|- ∀R abs rep.
     QUOTIENT R abs rep ⇒
     ∀l1 l2. LIST_REL R l1 l2 ⇒ LIST_REL R (REVERSE l1) (REVERSE l2)
FILTER_PRS
|- ∀R abs rep.
     QUOTIENT R abs rep ⇒
     ∀P l. FILTER P l = MAP abs (FILTER ((abs --> I) P) (MAP rep l))
FILTER_RSP
|- ∀R abs rep.
     QUOTIENT R abs rep ⇒
     ∀P1 P2 l1 l2.
       (R ===> $<=>) P1 P2 ∧ LIST_REL R l1 l2 ⇒
       LIST_REL R (FILTER P1 l1) (FILTER P2 l2)
NULL_PRS
|- ∀R abs rep. QUOTIENT R abs rep ⇒ ∀l. NULL l ⇔ NULL (MAP rep l)
NULL_RSP
|- ∀R abs rep.
     QUOTIENT R abs rep ⇒ ∀l1 l2. LIST_REL R l1 l2 ⇒ (NULL l1 ⇔ NULL l2)
ALL_EL_PRS
|- ∀R abs rep.
     QUOTIENT R abs rep ⇒ ∀l P. EVERY P l ⇔ EVERY ((abs --> I) P) (MAP rep l)
ALL_EL_RSP
|- ∀R abs rep.
     QUOTIENT R abs rep ⇒
     ∀l1 l2 P1 P2.
       (R ===> $<=>) P1 P2 ∧ LIST_REL R l1 l2 ⇒ (EVERY P1 l1 ⇔ EVERY P2 l2)
SOME_EL_PRS
|- ∀R abs rep.
     QUOTIENT R abs rep ⇒
     ∀l P. EXISTS P l ⇔ EXISTS ((abs --> I) P) (MAP rep l)
SOME_EL_RSP
|- ∀R abs rep.
     QUOTIENT R abs rep ⇒
     ∀l1 l2 P1 P2.
       (R ===> $<=>) P1 P2 ∧ LIST_REL R l1 l2 ⇒ (EXISTS P1 l1 ⇔ EXISTS P2 l2)
FOLDL_PRS
|- ∀R1 abs1 rep1.
     QUOTIENT R1 abs1 rep1 ⇒
     ∀R2 abs2 rep2.
       QUOTIENT R2 abs2 rep2 ⇒
       ∀l f e.
         FOLDL f e l =
         abs1 (FOLDL ((abs1 --> abs2 --> rep1) f) (rep1 e) (MAP rep2 l))
FOLDL_RSP
|- ∀R1 abs1 rep1.
     QUOTIENT R1 abs1 rep1 ⇒
     ∀R2 abs2 rep2.
       QUOTIENT R2 abs2 rep2 ⇒
       ∀l1 l2 f1 f2 e1 e2.
         (R1 ===> R2 ===> R1) f1 f2 ∧ R1 e1 e2 ∧ LIST_REL R2 l1 l2 ⇒
         R1 (FOLDL f1 e1 l1) (FOLDL f2 e2 l2)
FOLDR_PRS
|- ∀R1 abs1 rep1.
     QUOTIENT R1 abs1 rep1 ⇒
     ∀R2 abs2 rep2.
       QUOTIENT R2 abs2 rep2 ⇒
       ∀l f e.
         FOLDR f e l =
         abs2 (FOLDR ((abs1 --> abs2 --> rep2) f) (rep2 e) (MAP rep1 l))
FOLDR_RSP
|- ∀R1 abs1 rep1.
     QUOTIENT R1 abs1 rep1 ⇒
     ∀R2 abs2 rep2.
       QUOTIENT R2 abs2 rep2 ⇒
       ∀l1 l2 f1 f2 e1 e2.
         (R1 ===> R2 ===> R2) f1 f2 ∧ R2 e1 e2 ∧ LIST_REL R1 l1 l2 ⇒
         R2 (FOLDR f1 e1 l1) (FOLDR f2 e2 l2)