Theory "quotient_option"

Parents     quotient

Theorems

OPTION_MAP_I
|- OPTION_MAP I = I
OPTION_REL_def
|- (OPTREL R NONE NONE ⇔ T) ∧ (OPTREL R (SOME x) NONE ⇔ F) ∧
   (OPTREL R NONE (SOME y) ⇔ F) ∧ (OPTREL R (SOME x) (SOME y) ⇔ R x y)
OPTION_REL_EQ
|- OPTREL $= = $=
OPTION_EQUIV
|- ∀R. EQUIV R ⇒ EQUIV (OPTREL R)
OPTION_QUOTIENT
|- ∀R abs rep.
     QUOTIENT R abs rep ⇒
     QUOTIENT (OPTREL R) (OPTION_MAP abs) (OPTION_MAP rep)
NONE_PRS
|- ∀R abs rep. QUOTIENT R abs rep ⇒ (NONE = OPTION_MAP abs NONE)
NONE_RSP
|- ∀R abs rep. QUOTIENT R abs rep ⇒ OPTREL R NONE NONE
SOME_PRS
|- ∀R abs rep. QUOTIENT R abs rep ⇒ ∀x. SOME x = OPTION_MAP abs (SOME (rep x))
SOME_RSP
|- ∀R abs rep. QUOTIENT R abs rep ⇒ ∀x y. R x y ⇒ OPTREL R (SOME x) (SOME y)
IS_SOME_PRS
|- ∀R abs rep. QUOTIENT R abs rep ⇒ ∀x. IS_SOME x ⇔ IS_SOME (OPTION_MAP rep x)
IS_SOME_RSP
|- ∀R abs rep.
     QUOTIENT R abs rep ⇒ ∀x y. OPTREL R x y ⇒ (IS_SOME x ⇔ IS_SOME y)
IS_NONE_PRS
|- ∀R abs rep. QUOTIENT R abs rep ⇒ ∀x. IS_NONE x ⇔ IS_NONE (OPTION_MAP rep x)
IS_NONE_RSP
|- ∀R abs rep.
     QUOTIENT R abs rep ⇒ ∀x y. OPTREL R x y ⇒ (IS_NONE x ⇔ IS_NONE y)
OPTION_MAP_PRS
|- ∀R1 abs1 rep1.
     QUOTIENT R1 abs1 rep1 ⇒
     ∀R2 abs2 rep2.
       QUOTIENT R2 abs2 rep2 ⇒
       ∀a f.
         OPTION_MAP f a =
         OPTION_MAP abs2 (OPTION_MAP ((abs1 --> rep2) f) (OPTION_MAP rep1 a))
OPTION_MAP_RSP
|- ∀R1 abs1 rep1.
     QUOTIENT R1 abs1 rep1 ⇒
     ∀R2 abs2 rep2.
       QUOTIENT R2 abs2 rep2 ⇒
       ∀a1 a2 f1 f2.
         (R1 ===> R2) f1 f2 ∧ OPTREL R1 a1 a2 ⇒
         OPTREL R2 (OPTION_MAP f1 a1) (OPTION_MAP f2 a2)