Theory "real"

Parents     realax

Signature

Constant Type
/ :real -> real -> real
NUM_CEILING :real -> num
NUM_FLOOR :real -> num
abs :real -> real
inf :(real -> bool) -> real
max :real -> real -> real
min :real -> real -> real
pos :real -> real
pow :real -> num -> real
real_ge :real reln
real_gt :real reln
real_lte :real reln
real_of_num :num -> real
real_sub :real -> real -> real
sum :num # num -> (num -> real) -> real
sum_tupled :(num # num) # (num -> real) -> real
sup :(real -> bool) -> real

Definitions

real_of_num
|- (0 = real_0) ∧ ∀n. &SUC n = &n + real_1
real_sub
|- ∀x y. x − y = x + -y
real_lte
|- ∀x y. x ≤ y ⇔ ¬(y < x)
real_gt
|- ∀x y. x > y ⇔ y < x
real_ge
|- ∀x y. x ≥ y ⇔ y ≤ x
real_div
|- ∀x y. x / y = x * inv y
abs
|- ∀x. abs x = if 0 ≤ x then x else -x
pow
|- (∀x. x pow 0 = 1) ∧ ∀x n. x pow SUC n = x * x pow n
sup
|- ∀P. sup P = @s. ∀y. (∃x. P x ∧ y < x) ⇔ y < s
sum_tupled_primitive
|- sum_tupled =
   WFREC (@R. WF R ∧ ∀f m n. R ((n,m),f) ((n,SUC m),f))
     (λsum_tupled a.
        case a of
          ((n,0),f) => I 0
        | ((n,SUC m),f) => I (sum_tupled ((n,m),f) + f (n + m)))
sum_curried
|- ∀x x1. sum x x1 = sum_tupled (x,x1)
pos_def
|- ∀x. pos x = if 0 ≤ x then x else 0
min_def
|- ∀x y. min x y = if x ≤ y then x else y
max_def
|- ∀x y. max x y = if x ≤ y then y else x
inf_def
|- ∀p. inf p = -sup (λr. p (-r))
NUM_FLOOR_def
|- ∀x. flr x = LEAST n. &(n + 1) > x
NUM_CEILING_def
|- ∀x. clg x = LEAST n. x ≤ &n


Theorems

REAL_0
|- real_0 = 0
REAL_1
|- real_1 = 1
REAL_10
|- 1 ≠ 0
REAL_ADD_SYM
|- ∀x y. x + y = y + x
REAL_ADD_COMM
|- ∀x y. x + y = y + x
REAL_ADD_ASSOC
|- ∀x y z. x + (y + z) = x + y + z
REAL_ADD_LID
|- ∀x. 0 + x = x
REAL_ADD_LINV
|- ∀x. -x + x = 0
REAL_LDISTRIB
|- ∀x y z. x * (y + z) = x * y + x * z
REAL_LT_TOTAL
|- ∀x y. (x = y) ∨ x < y ∨ y < x
REAL_LT_REFL
|- ∀x. ¬(x < x)
REAL_LT_TRANS
|- ∀x y z. x < y ∧ y < z ⇒ x < z
REAL_LT_IADD
|- ∀x y z. y < z ⇒ x + y < x + z
REAL_SUP_ALLPOS
|- ∀P.
     (∀x. P x ⇒ 0 < x) ∧ (∃x. P x) ∧ (∃z. ∀x. P x ⇒ x < z) ⇒
     ∃s. ∀y. (∃x. P x ∧ y < x) ⇔ y < s
REAL_MUL_SYM
|- ∀x y. x * y = y * x
REAL_MUL_COMM
|- ∀x y. x * y = y * x
REAL_MUL_ASSOC
|- ∀x y z. x * (y * z) = x * y * z
REAL_MUL_LID
|- ∀x. 1 * x = x
REAL_MUL_LINV
|- ∀x. x ≠ 0 ⇒ (inv x * x = 1)
REAL_LT_MUL
|- ∀x y. 0 < x ∧ 0 < y ⇒ 0 < x * y
REAL_INV_0
|- inv 0 = 0
REAL_ADD_RID
|- ∀x. x + 0 = x
REAL_ADD_RINV
|- ∀x. x + -x = 0
REAL_MUL_RID
|- ∀x. x * 1 = x
REAL_MUL_RINV
|- ∀x. x ≠ 0 ⇒ (x * inv x = 1)
REAL_RDISTRIB
|- ∀x y z. (x + y) * z = x * z + y * z
REAL_EQ_LADD
|- ∀x y z. (x + y = x + z) ⇔ (y = z)
REAL_EQ_RADD
|- ∀x y z. (x + z = y + z) ⇔ (x = y)
REAL_ADD_LID_UNIQ
|- ∀x y. (x + y = y) ⇔ (x = 0)
REAL_ADD_RID_UNIQ
|- ∀x y. (x + y = x) ⇔ (y = 0)
REAL_LNEG_UNIQ
|- ∀x y. (x + y = 0) ⇔ (x = -y)
REAL_RNEG_UNIQ
|- ∀x y. (x + y = 0) ⇔ (y = -x)
REAL_NEG_ADD
|- ∀x y. -(x + y) = -x + -y
REAL_MUL_LZERO
|- ∀x. 0 * x = 0
REAL_MUL_RZERO
|- ∀x. x * 0 = 0
REAL_NEG_LMUL
|- ∀x y. -(x * y) = -x * y
REAL_NEG_RMUL
|- ∀x y. -(x * y) = x * -y
REAL_NEGNEG
|- ∀x. - -x = x
REAL_NEG_MUL2
|- ∀x y. -x * -y = x * y
REAL_ENTIRE
|- ∀x y. (x * y = 0) ⇔ (x = 0) ∨ (y = 0)
REAL_LT_LADD
|- ∀x y z. x + y < x + z ⇔ y < z
REAL_LT_RADD
|- ∀x y z. x + z < y + z ⇔ x < y
REAL_NOT_LT
|- ∀x y. ¬(x < y) ⇔ y ≤ x
REAL_LT_ANTISYM
|- ∀x y. ¬(x < y ∧ y < x)
REAL_LT_GT
|- ∀x y. x < y ⇒ ¬(y < x)
REAL_NOT_LE
|- ∀x y. ¬(x ≤ y) ⇔ y < x
REAL_LE_TOTAL
|- ∀x y. x ≤ y ∨ y ≤ x
REAL_LET_TOTAL
|- ∀x y. x ≤ y ∨ y < x
REAL_LTE_TOTAL
|- ∀x y. x < y ∨ y ≤ x
REAL_LE_REFL
|- ∀x. x ≤ x
REAL_LE_LT
|- ∀x y. x ≤ y ⇔ x < y ∨ (x = y)
REAL_LT_LE
|- ∀x y. x < y ⇔ x ≤ y ∧ x ≠ y
REAL_LT_IMP_LE
|- ∀x y. x < y ⇒ x ≤ y
REAL_LTE_TRANS
|- ∀x y z. x < y ∧ y ≤ z ⇒ x < z
REAL_LET_TRANS
|- ∀x y z. x ≤ y ∧ y < z ⇒ x < z
REAL_LE_TRANS
|- ∀x y z. x ≤ y ∧ y ≤ z ⇒ x ≤ z
REAL_LE_ANTISYM
|- ∀x y. x ≤ y ∧ y ≤ x ⇔ (x = y)
REAL_LET_ANTISYM
|- ∀x y. ¬(x < y ∧ y ≤ x)
REAL_LTE_ANTSYM
|- ∀x y. ¬(x ≤ y ∧ y < x)
REAL_NEG_LT0
|- ∀x. -x < 0 ⇔ 0 < x
REAL_NEG_GT0
|- ∀x. 0 < -x ⇔ x < 0
REAL_NEG_LE0
|- ∀x. -x ≤ 0 ⇔ 0 ≤ x
REAL_NEG_GE0
|- ∀x. 0 ≤ -x ⇔ x ≤ 0
REAL_LT_NEGTOTAL
|- ∀x. (x = 0) ∨ 0 < x ∨ 0 < -x
REAL_LE_NEGTOTAL
|- ∀x. 0 ≤ x ∨ 0 ≤ -x
REAL_LE_MUL
|- ∀x y. 0 ≤ x ∧ 0 ≤ y ⇒ 0 ≤ x * y
REAL_LE_SQUARE
|- ∀x. 0 ≤ x * x
REAL_LE_01
|- 0 ≤ 1
REAL_LT_01
|- 0 < 1
REAL_LE_LADD
|- ∀x y z. x + y ≤ x + z ⇔ y ≤ z
REAL_LE_RADD
|- ∀x y z. x + z ≤ y + z ⇔ x ≤ y
REAL_LT_ADD2
|- ∀w x y z. w < x ∧ y < z ⇒ w + y < x + z
REAL_LE_ADD2
|- ∀w x y z. w ≤ x ∧ y ≤ z ⇒ w + y ≤ x + z
REAL_LE_ADD
|- ∀x y. 0 ≤ x ∧ 0 ≤ y ⇒ 0 ≤ x + y
REAL_LT_ADD
|- ∀x y. 0 < x ∧ 0 < y ⇒ 0 < x + y
REAL_LT_ADDNEG
|- ∀x y z. y < x + -z ⇔ y + z < x
REAL_LT_ADDNEG2
|- ∀x y z. x + -y < z ⇔ x < z + y
REAL_LT_ADD1
|- ∀x y. x ≤ y ⇒ x < y + 1
REAL_SUB_ADD
|- ∀x y. x − y + y = x
REAL_SUB_ADD2
|- ∀x y. y + (x − y) = x
REAL_SUB_REFL
|- ∀x. x − x = 0
REAL_SUB_0
|- ∀x y. (x − y = 0) ⇔ (x = y)
REAL_LE_DOUBLE
|- ∀x. 0 ≤ x + x ⇔ 0 ≤ x
REAL_LE_NEGL
|- ∀x. -x ≤ x ⇔ 0 ≤ x
REAL_LE_NEGR
|- ∀x. x ≤ -x ⇔ x ≤ 0
REAL_NEG_EQ0
|- ∀x. (-x = 0) ⇔ (x = 0)
REAL_NEG_0
|- -0 = 0
REAL_NEG_SUB
|- ∀x y. -(x − y) = y − x
REAL_SUB_LT
|- ∀x y. 0 < x − y ⇔ y < x
REAL_SUB_LE
|- ∀x y. 0 ≤ x − y ⇔ y ≤ x
REAL_ADD_SUB
|- ∀x y. x + y − x = y
REAL_EQ_LMUL
|- ∀x y z. (x * y = x * z) ⇔ (x = 0) ∨ (y = z)
REAL_EQ_RMUL
|- ∀x y z. (x * z = y * z) ⇔ (z = 0) ∨ (x = y)
REAL_SUB_LDISTRIB
|- ∀x y z. x * (y − z) = x * y − x * z
REAL_SUB_RDISTRIB
|- ∀x y z. (x − y) * z = x * z − y * z
REAL_NEG_EQ
|- ∀x y. (-x = y) ⇔ (x = -y)
REAL_NEG_MINUS1
|- ∀x. -x = -1 * x
REAL_INV_NZ
|- ∀x. x ≠ 0 ⇒ inv x ≠ 0
REAL_INVINV
|- ∀x. x ≠ 0 ⇒ (inv (inv x) = x)
REAL_LT_IMP_NE
|- ∀x y. x < y ⇒ x ≠ y
REAL_INV_POS
|- ∀x. 0 < x ⇒ 0 < inv x
REAL_LT_LMUL_0
|- ∀x y. 0 < x ⇒ (0 < x * y ⇔ 0 < y)
REAL_LT_RMUL_0
|- ∀x y. 0 < y ⇒ (0 < x * y ⇔ 0 < x)
REAL_LT_LMUL
|- ∀x y z. 0 < x ⇒ (x * y < x * z ⇔ y < z)
REAL_LT_RMUL
|- ∀x y z. 0 < z ⇒ (x * z < y * z ⇔ x < y)
REAL_LT_RMUL_IMP
|- ∀x y z. x < y ∧ 0 < z ⇒ x * z < y * z
REAL_LT_LMUL_IMP
|- ∀x y z. y < z ∧ 0 < x ⇒ x * y < x * z
REAL_LINV_UNIQ
|- ∀x y. (x * y = 1) ⇒ (x = inv y)
REAL_RINV_UNIQ
|- ∀x y. (x * y = 1) ⇒ (y = inv x)
REAL_INV_INV
|- ∀x. inv (inv x) = x
REAL_INV_EQ_0
|- ∀x. (inv x = 0) ⇔ (x = 0)
REAL_NEG_INV
|- ∀x. x ≠ 0 ⇒ (-inv x = inv (-x))
REAL_INV_1OVER
|- ∀x. inv x = 1 / x
REAL_LT_INV_EQ
|- ∀x. 0 < inv x ⇔ 0 < x
REAL_LE_INV_EQ
|- ∀x. 0 ≤ inv x ⇔ 0 ≤ x
REAL_LE_INV
|- ∀x. 0 ≤ x ⇒ 0 ≤ inv x
REAL_LE_ADDR
|- ∀x y. x ≤ x + y ⇔ 0 ≤ y
REAL_LE_ADDL
|- ∀x y. y ≤ x + y ⇔ 0 ≤ x
REAL_LT_ADDR
|- ∀x y. x < x + y ⇔ 0 < y
REAL_LT_ADDL
|- ∀x y. y < x + y ⇔ 0 < x
REAL
|- ∀n. &SUC n = &n + 1
REAL_POS
|- ∀n. 0 ≤ &n
REAL_LE
|- ∀m n. &m ≤ &n ⇔ m ≤ n
REAL_LT
|- ∀m n. &m < &n ⇔ m < n
REAL_INJ
|- ∀m n. (&m = &n) ⇔ (m = n)
REAL_ADD
|- ∀m n. &m + &n = &(m + n)
REAL_MUL
|- ∀m n. &m * &n = &(m * n)
REAL_INV1
|- inv 1 = 1
REAL_OVER1
|- ∀x. x / 1 = x
REAL_DIV_REFL
|- ∀x. x ≠ 0 ⇒ (x / x = 1)
REAL_DIV_LZERO
|- ∀x. 0 / x = 0
REAL_LT_NZ
|- ∀n. &n ≠ 0 ⇔ 0 < &n
REAL_NZ_IMP_LT
|- ∀n. n ≠ 0 ⇒ 0 < &n
REAL_LT_RDIV_0
|- ∀y z. 0 < z ⇒ (0 < y / z ⇔ 0 < y)
REAL_LT_RDIV
|- ∀x y z. 0 < z ⇒ (x / z < y / z ⇔ x < y)
REAL_LT_FRACTION_0
|- ∀n d. n ≠ 0 ⇒ (0 < d / &n ⇔ 0 < d)
REAL_LT_MULTIPLE
|- ∀n d. 1 < n ⇒ (d < &n * d ⇔ 0 < d)
REAL_LT_FRACTION
|- ∀n d. 1 < n ⇒ (d / &n < d ⇔ 0 < d)
REAL_LT_HALF1
|- ∀d. 0 < d / 2 ⇔ 0 < d
REAL_LT_HALF2
|- ∀d. d / 2 < d ⇔ 0 < d
REAL_DOUBLE
|- ∀x. x + x = 2 * x
REAL_DIV_LMUL
|- ∀x y. y ≠ 0 ⇒ (y * (x / y) = x)
REAL_DIV_RMUL
|- ∀x y. y ≠ 0 ⇒ (x / y * y = x)
REAL_HALF_DOUBLE
|- ∀x. x / 2 + x / 2 = x
REAL_DOWN
|- ∀x. 0 < x ⇒ ∃y. 0 < y ∧ y < x
REAL_DOWN2
|- ∀x y. 0 < x ∧ 0 < y ⇒ ∃z. 0 < z ∧ z < x ∧ z < y
REAL_SUB_SUB
|- ∀x y. x − y − x = -y
REAL_LT_ADD_SUB
|- ∀x y z. x + y < z ⇔ x < z − y
REAL_LT_SUB_RADD
|- ∀x y z. x − y < z ⇔ x < z + y
REAL_LT_SUB_LADD
|- ∀x y z. x < y − z ⇔ x + z < y
REAL_LE_SUB_LADD
|- ∀x y z. x ≤ y − z ⇔ x + z ≤ y
REAL_LE_SUB_RADD
|- ∀x y z. x − y ≤ z ⇔ x ≤ z + y
REAL_LT_NEG
|- ∀x y. -x < -y ⇔ y < x
REAL_LE_NEG
|- ∀x y. -x ≤ -y ⇔ y ≤ x
REAL_ADD2_SUB2
|- ∀a b c d. a + b − (c + d) = a − c + (b − d)
REAL_SUB_LZERO
|- ∀x. 0 − x = -x
REAL_SUB_RZERO
|- ∀x. x − 0 = x
REAL_LET_ADD2
|- ∀w x y z. w ≤ x ∧ y < z ⇒ w + y < x + z
REAL_LTE_ADD2
|- ∀w x y z. w < x ∧ y ≤ z ⇒ w + y < x + z
REAL_LET_ADD
|- ∀x y. 0 ≤ x ∧ 0 < y ⇒ 0 < x + y
REAL_LTE_ADD
|- ∀x y. 0 < x ∧ 0 ≤ y ⇒ 0 < x + y
REAL_LT_MUL2
|- ∀x1 x2 y1 y2. 0 ≤ x1 ∧ 0 ≤ y1 ∧ x1 < x2 ∧ y1 < y2 ⇒ x1 * y1 < x2 * y2
REAL_LT_INV
|- ∀x y. 0 < x ∧ x < y ⇒ inv y < inv x
REAL_SUB_LNEG
|- ∀x y. -x − y = -(x + y)
REAL_SUB_RNEG
|- ∀x y. x − -y = x + y
REAL_SUB_NEG2
|- ∀x y. -x − -y = y − x
REAL_SUB_TRIANGLE
|- ∀a b c. a − b + (b − c) = a − c
REAL_EQ_SUB_LADD
|- ∀x y z. (x = y − z) ⇔ (x + z = y)
REAL_EQ_SUB_RADD
|- ∀x y z. (x − y = z) ⇔ (x = z + y)
REAL_INV_MUL
|- ∀x y. x ≠ 0 ∧ y ≠ 0 ⇒ (inv (x * y) = inv x * inv y)
REAL_LE_LMUL
|- ∀x y z. 0 < x ⇒ (x * y ≤ x * z ⇔ y ≤ z)
REAL_LE_RMUL
|- ∀x y z. 0 < z ⇒ (x * z ≤ y * z ⇔ x ≤ y)
REAL_SUB_INV2
|- ∀x y. x ≠ 0 ∧ y ≠ 0 ⇒ (inv x − inv y = (y − x) / (x * y))
REAL_SUB_SUB2
|- ∀x y. x − (x − y) = y
REAL_ADD_SUB2
|- ∀x y. x − (x + y) = -y
REAL_MEAN
|- ∀x y. x < y ⇒ ∃z. x < z ∧ z < y
REAL_EQ_LMUL2
|- ∀x y z. x ≠ 0 ⇒ ((y = z) ⇔ (x * y = x * z))
REAL_LE_MUL2
|- ∀x1 x2 y1 y2. 0 ≤ x1 ∧ 0 ≤ y1 ∧ x1 ≤ x2 ∧ y1 ≤ y2 ⇒ x1 * y1 ≤ x2 * y2
REAL_LE_LDIV
|- ∀x y z. 0 < x ∧ y ≤ z * x ⇒ y / x ≤ z
REAL_LE_RDIV
|- ∀x y z. 0 < x ∧ y * x ≤ z ⇒ y ≤ z / x
REAL_LT_DIV
|- ∀x y. 0 < x ∧ 0 < y ⇒ 0 < x / y
REAL_LE_DIV
|- ∀x y. 0 ≤ x ∧ 0 ≤ y ⇒ 0 ≤ x / y
REAL_LT_1
|- ∀x y. 0 ≤ x ∧ x < y ⇒ x / y < 1
REAL_LE_LMUL_IMP
|- ∀x y z. 0 ≤ x ∧ y ≤ z ⇒ x * y ≤ x * z
REAL_LE_RMUL_IMP
|- ∀x y z. 0 ≤ x ∧ y ≤ z ⇒ y * x ≤ z * x
REAL_EQ_IMP_LE
|- ∀x y. (x = y) ⇒ x ≤ y
REAL_INV_LT1
|- ∀x. 0 < x ∧ x < 1 ⇒ 1 < inv x
REAL_POS_NZ
|- ∀x. 0 < x ⇒ x ≠ 0
REAL_EQ_RMUL_IMP
|- ∀x y z. z ≠ 0 ∧ (x * z = y * z) ⇒ (x = y)
REAL_EQ_LMUL_IMP
|- ∀x y z. x ≠ 0 ∧ (x * y = x * z) ⇒ (y = z)
REAL_FACT_NZ
|- ∀n. &FACT n ≠ 0
REAL_DIFFSQ
|- ∀x y. (x + y) * (x − y) = x * x − y * y
REAL_POASQ
|- ∀x. 0 < x * x ⇔ x ≠ 0
REAL_SUMSQ
|- ∀x y. (x * x + y * y = 0) ⇔ (x = 0) ∧ (y = 0)
REAL_EQ_NEG
|- ∀x y. (-x = -y) ⇔ (x = y)
REAL_DIV_MUL2
|- ∀x z. x ≠ 0 ∧ z ≠ 0 ⇒ ∀y. y / z = x * y / (x * z)
REAL_MIDDLE1
|- ∀a b. a ≤ b ⇒ a ≤ (a + b) / 2
REAL_MIDDLE2
|- ∀a b. a ≤ b ⇒ (a + b) / 2 ≤ b
ABS_ZERO
|- ∀x. (abs x = 0) ⇔ (x = 0)
ABS_0
|- abs 0 = 0
ABS_1
|- abs 1 = 1
ABS_NEG
|- ∀x. abs (-x) = abs x
ABS_TRIANGLE
|- ∀x y. abs (x + y) ≤ abs x + abs y
ABS_POS
|- ∀x. 0 ≤ abs x
ABS_MUL
|- ∀x y. abs (x * y) = abs x * abs y
ABS_LT_MUL2
|- ∀w x y z. abs w < y ∧ abs x < z ⇒ abs (w * x) < y * z
ABS_SUB
|- ∀x y. abs (x − y) = abs (y − x)
ABS_NZ
|- ∀x. x ≠ 0 ⇔ 0 < abs x
ABS_INV
|- ∀x. x ≠ 0 ⇒ (abs (inv x) = inv (abs x))
ABS_ABS
|- ∀x. abs (abs x) = abs x
ABS_LE
|- ∀x. x ≤ abs x
ABS_REFL
|- ∀x. (abs x = x) ⇔ 0 ≤ x
ABS_N
|- ∀n. abs (&n) = &n
ABS_BETWEEN
|- ∀x y d. 0 < d ∧ x − d < y ∧ y < x + d ⇔ abs (y − x) < d
ABS_BOUND
|- ∀x y d. abs (x − y) < d ⇒ y < x + d
ABS_STILLNZ
|- ∀x y. abs (x − y) < abs y ⇒ x ≠ 0
ABS_CASES
|- ∀x. (x = 0) ∨ 0 < abs x
ABS_BETWEEN1
|- ∀x y z. x < z ∧ abs (y − x) < z − x ⇒ y < z
ABS_SIGN
|- ∀x y. abs (x − y) < y ⇒ 0 < x
ABS_SIGN2
|- ∀x y. abs (x − y) < -y ⇒ x < 0
ABS_DIV
|- ∀y. y ≠ 0 ⇒ ∀x. abs (x / y) = abs x / abs y
ABS_CIRCLE
|- ∀x y h. abs h < abs y − abs x ⇒ abs (x + h) < abs y
REAL_SUB_ABS
|- ∀x y. abs x − abs y ≤ abs (x − y)
ABS_SUB_ABS
|- ∀x y. abs (abs x − abs y) ≤ abs (x − y)
ABS_BETWEEN2
|- ∀x0 x y0 y.
     x0 < y0 ∧ abs (x − x0) < (y0 − x0) / 2 ∧ abs (y − y0) < (y0 − x0) / 2 ⇒
     x < y
ABS_BOUNDS
|- ∀x k. abs x ≤ k ⇔ -k ≤ x ∧ x ≤ k
POW_0
|- ∀n. 0 pow SUC n = 0
POW_NZ
|- ∀c n. c ≠ 0 ⇒ c pow n ≠ 0
POW_INV
|- ∀c. c ≠ 0 ⇒ ∀n. inv (c pow n) = inv c pow n
POW_ABS
|- ∀c n. abs c pow n = abs (c pow n)
POW_PLUS1
|- ∀e. 0 < e ⇒ ∀n. 1 + &n * e ≤ (1 + e) pow n
POW_ADD
|- ∀c m n. c pow (m + n) = c pow m * c pow n
POW_1
|- ∀x. x pow 1 = x
POW_2
|- ∀x. x pow 2 = x * x
POW_ONE
|- ∀n. 1 pow n = 1
POW_POS
|- ∀x. 0 ≤ x ⇒ ∀n. 0 ≤ x pow n
POW_LE
|- ∀n x y. 0 ≤ x ∧ x ≤ y ⇒ x pow n ≤ y pow n
POW_M1
|- ∀n. abs (-1 pow n) = 1
POW_MUL
|- ∀n x y. (x * y) pow n = x pow n * y pow n
REAL_LE_POW2
|- ∀x. 0 ≤ x pow 2
ABS_POW2
|- ∀x. abs (x pow 2) = x pow 2
REAL_POW2_ABS
|- ∀x. abs x pow 2 = x pow 2
REAL_LE1_POW2
|- ∀x. 1 ≤ x ⇒ 1 ≤ x pow 2
REAL_LT1_POW2
|- ∀x. 1 < x ⇒ 1 < x pow 2
POW_POS_LT
|- ∀x n. 0 < x ⇒ 0 < x pow SUC n
POW_2_LE1
|- ∀n. 1 ≤ 2 pow n
POW_2_LT
|- ∀n. &n < 2 pow n
POW_MINUS1
|- ∀n. -1 pow (2 * n) = 1
POW_LT
|- ∀n x y. 0 ≤ x ∧ x < y ⇒ x pow SUC n < y pow SUC n
REAL_POW_LT
|- ∀x n. 0 < x ⇒ 0 < x pow n
POW_EQ
|- ∀n x y. 0 ≤ x ∧ 0 ≤ y ∧ (x pow SUC n = y pow SUC n) ⇒ (x = y)
POW_ZERO
|- ∀n x. (x pow n = 0) ⇒ (x = 0)
POW_ZERO_EQ
|- ∀n x. (x pow SUC n = 0) ⇔ (x = 0)
REAL_POW_LT2
|- ∀n x y. n ≠ 0 ∧ 0 ≤ x ∧ x < y ⇒ x pow n < y pow n
REAL_POW_MONO_LT
|- ∀m n x. 1 < x ∧ m < n ⇒ x pow m < x pow n
REAL_POW_POW
|- ∀x m n. (x pow m) pow n = x pow (m * n)
REAL_SUP_SOMEPOS
|- ∀P.
     (∃x. P x ∧ 0 < x) ∧ (∃z. ∀x. P x ⇒ x < z) ⇒
     ∃s. ∀y. (∃x. P x ∧ y < x) ⇔ y < s
SUP_LEMMA1
|- ∀P s d.
     (∀y. (∃x. (λx. P (x + d)) x ∧ y < x) ⇔ y < s) ⇒
     ∀y. (∃x. P x ∧ y < x) ⇔ y < s + d
SUP_LEMMA2
|- ∀P. (∃x. P x) ⇒ ∃d x. (λx. P (x + d)) x ∧ 0 < x
SUP_LEMMA3
|- ∀d. (∃z. ∀x. P x ⇒ x < z) ⇒ ∃z. ∀x. (λx. P (x + d)) x ⇒ x < z
REAL_SUP_EXISTS
|- ∀P. (∃x. P x) ∧ (∃z. ∀x. P x ⇒ x < z) ⇒ ∃s. ∀y. (∃x. P x ∧ y < x) ⇔ y < s
REAL_SUP
|- ∀P. (∃x. P x) ∧ (∃z. ∀x. P x ⇒ x < z) ⇒ ∀y. (∃x. P x ∧ y < x) ⇔ y < sup P
REAL_SUP_UBOUND
|- ∀P. (∃x. P x) ∧ (∃z. ∀x. P x ⇒ x < z) ⇒ ∀y. P y ⇒ y ≤ sup P
SETOK_LE_LT
|- ∀P. (∃x. P x) ∧ (∃z. ∀x. P x ⇒ x ≤ z) ⇔ (∃x. P x) ∧ ∃z. ∀x. P x ⇒ x < z
REAL_SUP_LE
|- ∀P. (∃x. P x) ∧ (∃z. ∀x. P x ⇒ x ≤ z) ⇒ ∀y. (∃x. P x ∧ y < x) ⇔ y < sup P
REAL_SUP_UBOUND_LE
|- ∀P. (∃x. P x) ∧ (∃z. ∀x. P x ⇒ x ≤ z) ⇒ ∀y. P y ⇒ y ≤ sup P
REAL_ARCH
|- ∀x. 0 < x ⇒ ∀y. ∃n. y < &n * x
REAL_ARCH_LEAST
|- ∀y. 0 < y ⇒ ∀x. 0 ≤ x ⇒ ∃n. &n * y ≤ x ∧ x < &SUC n * y
sum_ind
|- ∀P.
     (∀n f. P (n,0) f) ∧ (∀n m f. P (n,m) f ⇒ P (n,SUC m) f) ⇒
     ∀v v1 v2. P (v,v1) v2
sum
|- (∀n f. sum (n,0) f = 0) ∧ ∀n m f. sum (n,SUC m) f = sum (n,m) f + f (n + m)
sum_compute
|- (∀n f. sum (n,0) f = 0) ∧
   (∀n m f.
      sum (n,NUMERAL (BIT1 m)) f =
      sum (n,NUMERAL (BIT1 m) − 1) f + f (n + (NUMERAL (BIT1 m) − 1))) ∧
   ∀n m f.
     sum (n,NUMERAL (BIT2 m)) f =
     sum (n,NUMERAL (BIT1 m)) f + f (n + NUMERAL (BIT1 m))
SUM_TWO
|- ∀f n p. sum (0,n) f + sum (n,p) f = sum (0,n + p) f
SUM_DIFF
|- ∀f m n. sum (m,n) f = sum (0,m + n) f − sum (0,m) f
ABS_SUM
|- ∀f m n. abs (sum (m,n) f) ≤ sum (m,n) (λn. abs (f n))
SUM_LE
|- ∀f g m n. (∀r. m ≤ r ∧ r < n + m ⇒ f r ≤ g r) ⇒ sum (m,n) f ≤ sum (m,n) g
SUM_EQ
|- ∀f g m n.
     (∀r. m ≤ r ∧ r < n + m ⇒ (f r = g r)) ⇒ (sum (m,n) f = sum (m,n) g)
SUM_POS
|- ∀f. (∀n. 0 ≤ f n) ⇒ ∀m n. 0 ≤ sum (m,n) f
SUM_POS_GEN
|- ∀f m. (∀n. m ≤ n ⇒ 0 ≤ f n) ⇒ ∀n. 0 ≤ sum (m,n) f
SUM_ABS
|- ∀f m n. abs (sum (m,n) (λm. abs (f m))) = sum (m,n) (λm. abs (f m))
SUM_ABS_LE
|- ∀f m n. abs (sum (m,n) f) ≤ sum (m,n) (λn. abs (f n))
SUM_ZERO
|- ∀f N. (∀n. n ≥ N ⇒ (f n = 0)) ⇒ ∀m n. m ≥ N ⇒ (sum (m,n) f = 0)
SUM_ADD
|- ∀f g m n. sum (m,n) (λn. f n + g n) = sum (m,n) f + sum (m,n) g
SUM_CMUL
|- ∀f c m n. sum (m,n) (λn. c * f n) = c * sum (m,n) f
SUM_NEG
|- ∀f n d. sum (n,d) (λn. -f n) = -sum (n,d) f
SUM_SUB
|- ∀f g m n. sum (m,n) (λn. f n − g n) = sum (m,n) f − sum (m,n) g
SUM_SUBST
|- ∀f g m n.
     (∀p. m ≤ p ∧ p < m + n ⇒ (f p = g p)) ⇒ (sum (m,n) f = sum (m,n) g)
SUM_NSUB
|- ∀n f c. sum (0,n) f − &n * c = sum (0,n) (λp. f p − c)
SUM_BOUND
|- ∀f k m n. (∀p. m ≤ p ∧ p < m + n ⇒ f p ≤ k) ⇒ sum (m,n) f ≤ &n * k
SUM_GROUP
|- ∀n k f. sum (0,n) (λm. sum (m * k,k) f) = sum (0,n * k) f
SUM_1
|- ∀f n. sum (n,1) f = f n
SUM_2
|- ∀f n. sum (n,2) f = f n + f (n + 1)
SUM_OFFSET
|- ∀f n k. sum (0,n) (λm. f (m + k)) = sum (0,n + k) f − sum (0,k) f
SUM_REINDEX
|- ∀f m k n. sum (m + k,n) f = sum (m,n) (λr. f (r + k))
SUM_0
|- ∀m n. sum (m,n) (λr. 0) = 0
SUM_PERMUTE_0
|- ∀n p.
     (∀y. y < n ⇒ ∃!x. x < n ∧ (p x = y)) ⇒
     ∀f. sum (0,n) (λn. f (p n)) = sum (0,n) f
SUM_CANCEL
|- ∀f n d. sum (n,d) (λn. f (SUC n) − f n) = f (n + d) − f n
REAL_MUL_RNEG
|- ∀x y. x * -y = -(x * y)
REAL_MUL_LNEG
|- ∀x y. -x * y = -(x * y)
real_lt
|- ∀y x. x < y ⇔ ¬(y ≤ x)
REAL_LE_LADD_IMP
|- ∀x y z. y ≤ z ⇒ x + y ≤ x + z
REAL_LE_LNEG
|- ∀x y. -x ≤ y ⇔ 0 ≤ x + y
REAL_LE_NEG2
|- ∀x y. -x ≤ -y ⇔ y ≤ x
REAL_NEG_NEG
|- ∀x. - -x = x
REAL_LE_RNEG
|- ∀x y. x ≤ -y ⇔ x + y ≤ 0
REAL_POW_INV
|- ∀x n. inv x pow n = inv (x pow n)
REAL_POW_DIV
|- ∀x y n. (x / y) pow n = x pow n / y pow n
REAL_POW_ADD
|- ∀x m n. x pow (m + n) = x pow m * x pow n
REAL_LE_RDIV_EQ
|- ∀x y z. 0 < z ⇒ (x ≤ y / z ⇔ x * z ≤ y)
REAL_LE_LDIV_EQ
|- ∀x y z. 0 < z ⇒ (x / z ≤ y ⇔ x ≤ y * z)
REAL_LT_RDIV_EQ
|- ∀x y z. 0 < z ⇒ (x < y / z ⇔ x * z < y)
REAL_LT_LDIV_EQ
|- ∀x y z. 0 < z ⇒ (x / z < y ⇔ x < y * z)
REAL_EQ_RDIV_EQ
|- ∀x y z. 0 < z ⇒ ((x = y / z) ⇔ (x * z = y))
REAL_EQ_LDIV_EQ
|- ∀x y z. 0 < z ⇒ ((x / z = y) ⇔ (x = y * z))
REAL_OF_NUM_POW
|- ∀x n. &x pow n = &(x ** n)
REAL_ADD_LDISTRIB
|- ∀x y z. x * (y + z) = x * y + x * z
REAL_ADD_RDISTRIB
|- ∀x y z. (x + y) * z = x * z + y * z
REAL_OF_NUM_ADD
|- ∀m n. &m + &n = &(m + n)
REAL_OF_NUM_LE
|- ∀m n. &m ≤ &n ⇔ m ≤ n
REAL_OF_NUM_MUL
|- ∀m n. &m * &n = &(m * n)
REAL_OF_NUM_SUC
|- ∀n. &n + 1 = &SUC n
REAL_OF_NUM_EQ
|- ∀m n. (&m = &n) ⇔ (m = n)
REAL_EQ_MUL_LCANCEL
|- ∀x y z. (x * y = x * z) ⇔ (x = 0) ∨ (y = z)
REAL_ABS_0
|- abs 0 = 0
REAL_ABS_TRIANGLE
|- ∀x y. abs (x + y) ≤ abs x + abs y
REAL_ABS_MUL
|- ∀x y. abs (x * y) = abs x * abs y
REAL_ABS_POS
|- ∀x. 0 ≤ abs x
REAL_LE_EPSILON
|- ∀x y. (∀e. 0 < e ⇒ x ≤ y + e) ⇒ x ≤ y
REAL_BIGNUM
|- ∀r. ∃n. r < &n
REAL_INV_LT_ANTIMONO
|- ∀x y. 0 < x ∧ 0 < y ⇒ (inv x < inv y ⇔ y < x)
REAL_INV_INJ
|- ∀x y. (inv x = inv y) ⇔ (x = y)
REAL_DIV_RMUL_CANCEL
|- ∀c a b. c ≠ 0 ⇒ (a * c / (b * c) = a / b)
REAL_DIV_LMUL_CANCEL
|- ∀c a b. c ≠ 0 ⇒ (c * a / (c * b) = a / b)
REAL_DIV_ADD
|- ∀x y z. y / x + z / x = (y + z) / x
REAL_ADD_RAT
|- ∀a b c d. b ≠ 0 ∧ d ≠ 0 ⇒ (a / b + c / d = (a * d + b * c) / (b * d))
REAL_SUB_RAT
|- ∀a b c d. b ≠ 0 ∧ d ≠ 0 ⇒ (a / b − c / d = (a * d − b * c) / (b * d))
REAL_SUB
|- ∀m n. &m − &n = if m − n = 0 then -&(n − m) else &(m − n)
REAL_POS_POS
|- ∀x. 0 ≤ pos x
REAL_POS_ID
|- ∀x. 0 ≤ x ⇒ (pos x = x)
REAL_POS_INFLATE
|- ∀x. x ≤ pos x
REAL_POS_MONO
|- ∀x y. x ≤ y ⇒ pos x ≤ pos y
REAL_POS_EQ_ZERO
|- ∀x. (pos x = 0) ⇔ x ≤ 0
REAL_POS_LE_ZERO
|- ∀x. pos x ≤ 0 ⇔ x ≤ 0
REAL_MIN_REFL
|- ∀x. min x x = x
REAL_LE_MIN
|- ∀z x y. z ≤ min x y ⇔ z ≤ x ∧ z ≤ y
REAL_MIN_LE
|- ∀z x y. min x y ≤ z ⇔ x ≤ z ∨ y ≤ z
REAL_MIN_LE1
|- ∀x y. min x y ≤ x
REAL_MIN_LE2
|- ∀x y. min x y ≤ y
REAL_MIN_ALT
|- ∀x y. (x ≤ y ⇒ (min x y = x)) ∧ (y ≤ x ⇒ (min x y = y))
REAL_MIN_LE_LIN
|- ∀z x y. 0 ≤ z ∧ z ≤ 1 ⇒ min x y ≤ z * x + (1 − z) * y
REAL_MIN_ADD
|- ∀z x y. min (x + z) (y + z) = min x y + z
REAL_MIN_SUB
|- ∀z x y. min (x − z) (y − z) = min x y − z
REAL_IMP_MIN_LE2
|- ∀x1 x2 y1 y2. x1 ≤ y1 ∧ x2 ≤ y2 ⇒ min x1 x2 ≤ min y1 y2
REAL_MAX_REFL
|- ∀x. max x x = x
REAL_LE_MAX
|- ∀z x y. z ≤ max x y ⇔ z ≤ x ∨ z ≤ y
REAL_LE_MAX1
|- ∀x y. x ≤ max x y
REAL_LE_MAX2
|- ∀x y. y ≤ max x y
REAL_MAX_LE
|- ∀z x y. max x y ≤ z ⇔ x ≤ z ∧ y ≤ z
REAL_MAX_ALT
|- ∀x y. (x ≤ y ⇒ (max x y = y)) ∧ (y ≤ x ⇒ (max x y = x))
REAL_MAX_MIN
|- ∀x y. max x y = -min (-x) (-y)
REAL_MIN_MAX
|- ∀x y. min x y = -max (-x) (-y)
REAL_LIN_LE_MAX
|- ∀z x y. 0 ≤ z ∧ z ≤ 1 ⇒ z * x + (1 − z) * y ≤ max x y
REAL_MAX_ADD
|- ∀z x y. max (x + z) (y + z) = max x y + z
REAL_MAX_SUB
|- ∀z x y. max (x − z) (y − z) = max x y − z
REAL_IMP_MAX_LE2
|- ∀x1 x2 y1 y2. x1 ≤ y1 ∧ x2 ≤ y2 ⇒ max x1 x2 ≤ max y1 y2
REAL_SUP_EXISTS_UNIQUE
|- ∀p. (∃x. p x) ∧ (∃z. ∀x. p x ⇒ x ≤ z) ⇒ ∃!s. ∀y. (∃x. p x ∧ y < x) ⇔ y < s
REAL_SUP_MAX
|- ∀p z. p z ∧ (∀x. p x ⇒ x ≤ z) ⇒ (sup p = z)
REAL_IMP_SUP_LE
|- ∀p x. (∃r. p r) ∧ (∀r. p r ⇒ r ≤ x) ⇒ sup p ≤ x
REAL_IMP_LE_SUP
|- ∀p x. (∃r. p r) ∧ (∃z. ∀r. p r ⇒ r ≤ z) ∧ (∃r. p r ∧ x ≤ r) ⇒ x ≤ sup p
REAL_INF_MIN
|- ∀p z. p z ∧ (∀x. p x ⇒ z ≤ x) ⇒ (inf p = z)
REAL_IMP_LE_INF
|- ∀p r. (∃x. p x) ∧ (∀x. p x ⇒ r ≤ x) ⇒ r ≤ inf p
REAL_IMP_INF_LE
|- ∀p r. (∃z. ∀x. p x ⇒ z ≤ x) ∧ (∃x. p x ∧ x ≤ r) ⇒ inf p ≤ r
REAL_INF_LT
|- ∀p z. (∃x. p x) ∧ inf p < z ⇒ ∃x. p x ∧ x < z
REAL_INF_CLOSE
|- ∀p e. (∃x. p x) ∧ 0 < e ⇒ ∃x. p x ∧ x < inf p + e
SUP_EPSILON
|- ∀p e. 0 < e ∧ (∃x. p x) ∧ (∃z. ∀x. p x ⇒ x ≤ z) ⇒ ∃x. p x ∧ sup p ≤ x + e
REAL_LE_SUP
|- ∀p x.
     (∃y. p y) ∧ (∃y. ∀z. p z ⇒ z ≤ y) ⇒
     (x ≤ sup p ⇔ ∀y. (∀z. p z ⇒ z ≤ y) ⇒ x ≤ y)
REAL_INF_LE
|- ∀p x.
     (∃y. p y) ∧ (∃y. ∀z. p z ⇒ y ≤ z) ⇒
     (inf p ≤ x ⇔ ∀y. (∀z. p z ⇒ y ≤ z) ⇒ y ≤ x)
REAL_SUP_CONST
|- ∀x. sup (λr. r = x) = x
REAL_MUL_SUB2_CANCEL
|- ∀z x y. x * y + (z − x) * y = z * y
REAL_MUL_SUB1_CANCEL
|- ∀z x y. y * x + y * (z − x) = y * z
REAL_NEG_HALF
|- ∀x. x − x / 2 = x / 2
REAL_NEG_THIRD
|- ∀x. x − x / 3 = 2 * x / 3
REAL_DIV_DENOM_CANCEL
|- ∀x y z. x ≠ 0 ⇒ (y / x / (z / x) = y / z)
REAL_DIV_DENOM_CANCEL2
|- ∀y z. y / 2 / (z / 2) = y / z
REAL_DIV_DENOM_CANCEL3
|- ∀y z. y / 3 / (z / 3) = y / z
REAL_DIV_INNER_CANCEL
|- ∀x y z. x ≠ 0 ⇒ (y / x * (x / z) = y / z)
REAL_DIV_INNER_CANCEL2
|- ∀y z. y / 2 * (2 / z) = y / z
REAL_DIV_INNER_CANCEL3
|- ∀y z. y / 3 * (3 / z) = y / z
REAL_DIV_OUTER_CANCEL
|- ∀x y z. x ≠ 0 ⇒ (x / y * (z / x) = z / y)
REAL_DIV_OUTER_CANCEL2
|- ∀y z. 2 / y * (z / 2) = z / y
REAL_DIV_OUTER_CANCEL3
|- ∀y z. 3 / y * (z / 3) = z / y
REAL_DIV_REFL2
|- 2 / 2 = 1
REAL_DIV_REFL3
|- 3 / 3 = 1
REAL_HALF_BETWEEN
|- (0 < 1 / 2 ∧ 1 / 2 < 1) ∧ 0 ≤ 1 / 2 ∧ 1 / 2 ≤ 1
REAL_THIRDS_BETWEEN
|- (0 < 1 / 3 ∧ 1 / 3 < 1 ∧ 0 < 2 / 3 ∧ 2 / 3 < 1) ∧ 0 ≤ 1 / 3 ∧ 1 / 3 ≤ 1 ∧
   0 ≤ 2 / 3 ∧ 2 / 3 ≤ 1
REAL_LE_SUB_CANCEL2
|- ∀x y z. x − z ≤ y − z ⇔ x ≤ y
REAL_ADD_SUB_ALT
|- ∀x y. x + y − y = x
INFINITE_REAL_UNIV
|- INFINITE 𝕌(:real)
add_rat
|- x / y + u / v =
   if y = 0 then unint (x / y) + u / v
   else if v = 0 then x / y + unint (u / v)
   else if y = v then (x + u) / v
   else (x * v + u * y) / (y * v)
add_ratl
|- x / y + z = if y = 0 then unint (x / y) + z else (x + z * y) / y
add_ratr
|- x + y / z = if z = 0 then x + unint (y / z) else (x * z + y) / z
add_ints
|- (&n + &m = &(n + m)) ∧ (-&n + &m = if n ≤ m then &(m − n) else -&(n − m)) ∧
   (&n + -&m = if n < m then -&(m − n) else &(n − m)) ∧
   (-&n + -&m = -&(n + m))
mult_rat
|- x / y * (u / v) =
   if y = 0 then unint (x / y) * (u / v)
   else if v = 0 then x / y * unint (u / v)
   else x * u / (y * v)
mult_ratl
|- x / y * z = if y = 0 then unint (x / y) * z else x * z / y
mult_ratr
|- x * (y / z) = if z = 0 then x * unint (y / z) else x * y / z
mult_ints
|- (&a * &b = &(a * b)) ∧ (-&a * &b = -&(a * b)) ∧ (&a * -&b = -&(a * b)) ∧
   (-&a * -&b = &(a * b))
pow_rat
|- (x pow 0 = 1) ∧ (0 pow NUMERAL (BIT1 n) = 0) ∧
   (0 pow NUMERAL (BIT2 n) = 0) ∧
   (&NUMERAL a pow NUMERAL n = &(NUMERAL a ** NUMERAL n)) ∧
   (-&NUMERAL a pow NUMERAL n =
    (if ODD (NUMERAL n) then numeric_negate else (λx. x))
      (&(NUMERAL a ** NUMERAL n))) ∧ ((x / y) pow n = x pow n / y pow n)
neg_rat
|- (-(x / y) = if y = 0 then -unint (x / y) else -x / y) ∧
   (x / -y = if y = 0 then unint (x / y) else -x / y)
eq_rat
|- (x / y = u / v) ⇔
   if y = 0 then unint (x / y) = u / v
   else if v = 0 then x / y = unint (u / v)
   else if y = v then x = u
   else x * v = y * u
eq_ratl
|- (x / y = z) ⇔ if y = 0 then unint (x / y) = z else x = y * z
eq_ratr
|- (z = x / y) ⇔ if y = 0 then z = unint (x / y) else y * z = x
eq_ints
|- ((&n = &m) ⇔ (n = m)) ∧ ((-&n = &m) ⇔ (n = 0) ∧ (m = 0)) ∧
   ((&n = -&m) ⇔ (n = 0) ∧ (m = 0)) ∧ ((-&n = -&m) ⇔ (n = m))
div_ratr
|- x / (y / z) = if (y = 0) ∨ (z = 0) then x / unint (y / z) else x * z / y
div_ratl
|- x / y / z =
   if y = 0 then unint (x / y) / z
   else if z = 0 then unint (x / y / z)
   else x / (y * z)
div_rat
|- x / y / (u / v) =
   if (u = 0) ∨ (v = 0) then x / y / unint (u / v)
   else if y = 0 then unint (x / y) / (u / v)
   else x * v / (y * u)
le_rat
|- x / &n ≤ u / &m ⇔
   if n = 0 then unint (x / 0) ≤ u / &m
   else if m = 0 then x / &n ≤ unint (u / 0)
   else &m * x ≤ &n * u
le_ratl
|- x / &n ≤ u ⇔ if n = 0 then unint (x / 0) ≤ u else x ≤ &n * u
le_ratr
|- x ≤ u / &m ⇔ if m = 0 then x ≤ unint (u / 0) else &m * x ≤ u
le_int
|- (&n ≤ &m ⇔ n ≤ m) ∧ (-&n ≤ &m ⇔ T) ∧ (&n ≤ -&m ⇔ (n = 0) ∧ (m = 0)) ∧
   (-&n ≤ -&m ⇔ m ≤ n)
lt_rat
|- x / &n < u / &m ⇔
   if n = 0 then unint (x / 0) < u / &m
   else if m = 0 then x / &n < unint (u / 0)
   else &m * x < &n * u
lt_ratl
|- x / &n < u ⇔ if n = 0 then unint (x / 0) < u else x < &n * u
lt_ratr
|- x < u / &m ⇔ if m = 0 then x < unint (u / 0) else &m * x < u
lt_int
|- (&n < &m ⇔ n < m) ∧ (-&n < &m ⇔ n ≠ 0 ∨ m ≠ 0) ∧ (&n < -&m ⇔ F) ∧
   (-&n < -&m ⇔ m < n)
NUM_FLOOR_LE
|- 0 ≤ x ⇒ &flr x ≤ x
NUM_FLOOR_LE2
|- 0 ≤ y ⇒ (x ≤ flr y ⇔ &x ≤ y)
NUM_FLOOR_LET
|- flr x ≤ y ⇔ x < &y + 1
NUM_FLOOR_DIV
|- 0 ≤ x ∧ 0 < y ⇒ &flr (x / y) * y ≤ x
NUM_FLOOR_DIV_LOWERBOUND
|- 0 ≤ x ∧ 0 < y ⇒ x < &(flr (x / y) + 1) * y
NUM_FLOOR_EQNS
|- (flr (&n) = n) ∧ (0 < m ⇒ (flr (&n / &m) = n DIV m))
NUM_FLOOR_LOWER_BOUND
|- x < &n ⇔ flr (x + 1) ≤ n
NUM_FLOOR_upper_bound
|- &n ≤ x ⇔ n < flr (x + 1)
LE_NUM_CEILING
|- ∀x. x ≤ &clg x
NUM_CEILING_LE
|- ∀x n. x ≤ &n ⇒ clg x ≤ n