Theory "res_quan"

Parents     list

Theorems

RES_SELECT_UNIV
|- βˆ€p. RES_SELECT π•Œ(:Ξ±) p = $@ p
RES_SELECT_EMPTY
|- βˆ€p. RES_SELECT βˆ… p = @x. F
RES_EXISTS_UNIQUE_ALT
|- βˆ€p m. RES_EXISTS_UNIQUE p m ⇔ βˆƒx::p. m x ∧ βˆ€y::p. m y β‡’ (y = x)
RES_EXISTS_UNIQUE_NULL
|- βˆ€p m. (βˆƒ!x::p. m) ⇔ (βˆƒx. p = {x}) ∧ m
RES_EXISTS_UNIQUE_UNIV
|- βˆ€p. RES_EXISTS_UNIQUE π•Œ(:Ξ±) p ⇔ $?! p
RES_EXISTS_UNIQUE_EMPTY
|- βˆ€p. Β¬RES_EXISTS_UNIQUE βˆ… p
RES_EXISTS_ALT
|- βˆ€p m. RES_EXISTS p m ⇔ RES_SELECT p m ∈ p ∧ m (RES_SELECT p m)
RES_EXISTS_NULL
|- βˆ€p m. (βˆƒx::p. m) ⇔ p β‰  βˆ… ∧ m
RES_EXISTS_UNIV
|- βˆ€p. RES_EXISTS π•Œ(:Ξ±) p ⇔ $? p
RES_EXISTS_EMPTY
|- βˆ€p. Β¬RES_EXISTS βˆ… p
RES_EXISTS_REORDER
|- βˆ€P Q R. (βˆƒ(i::P) (j::Q). R i j) ⇔ βˆƒ(j::Q) (i::P). R i j
RES_EXISTS_EQUAL
|- βˆ€P j. (βˆƒi:: $= j. P i) ⇔ P j
RES_DISJ_EXISTS_DIST
|- βˆ€P Q R. (βˆƒi::(Ξ»i. P i ∨ Q i). R i) ⇔ (βˆƒi::P. R i) ∨ βˆƒi::Q. R i
RES_EXISTS_DISJ_DIST
|- βˆ€P Q R. (βˆƒi::P. Q i ∨ R i) ⇔ (βˆƒi::P. Q i) ∨ βˆƒi::P. R i
RES_FORALL_NULL
|- βˆ€p m. (βˆ€x::p. m) ⇔ (p = βˆ…) ∨ m
RES_FORALL_UNIV
|- βˆ€p. RES_FORALL π•Œ(:Ξ±) p ⇔ $! p
RES_FORALL_EMPTY
|- βˆ€p. RES_FORALL βˆ… p
RES_FORALL_REORDER
|- βˆ€P Q R. (βˆ€(i::P) (j::Q). R i j) ⇔ βˆ€(j::Q) (i::P). R i j
RES_FORALL_FORALL
|- βˆ€P R x. (βˆ€x (i::P). R i x) ⇔ βˆ€(i::P) x. R i x
RES_FORALL_UNIQUE
|- βˆ€P j. (βˆ€i:: $= j. P i) ⇔ P j
RES_FORALL_DISJ_DIST
|- βˆ€P Q R. (βˆ€i::(Ξ»j. P j ∨ Q j). R i) ⇔ (βˆ€i::P. R i) ∧ βˆ€i::Q. R i
RES_FORALL_CONJ_DIST
|- βˆ€P Q R. (βˆ€i::P. Q i ∧ R i) ⇔ (βˆ€i::P. Q i) ∧ βˆ€i::P. R i
RES_FORALL
|- βˆ€P f. RES_FORALL P f ⇔ βˆ€x. x ∈ P β‡’ f x
RES_EXISTS
|- βˆ€P f. RES_EXISTS P f ⇔ βˆƒx. x ∈ P ∧ f x
RES_EXISTS_UNIQUE
|- βˆ€P f. RES_EXISTS_UNIQUE P f ⇔ (βˆƒx::P. f x) ∧ βˆ€x y::P. f x ∧ f y β‡’ (x = y)
RES_SELECT
|- βˆ€P f. RES_SELECT P f = @x. x ∈ P ∧ f x
RES_ABSTRACT
|- βˆ€p m x. x ∈ p β‡’ (RES_ABSTRACT p m x = m x)
RES_ABSTRACT_EQUAL
|- βˆ€p m1 m2.
     (βˆ€x. x ∈ p β‡’ (m1 x = m2 x)) β‡’ (RES_ABSTRACT p m1 = RES_ABSTRACT p m2)
RES_ABSTRACT_IDEMPOT
|- βˆ€p m. RES_ABSTRACT p (RES_ABSTRACT p m) = RES_ABSTRACT p m
RES_ABSTRACT_EQUAL_EQ
|- βˆ€p m1 m2.
     (RES_ABSTRACT p m1 = RES_ABSTRACT p m2) ⇔ βˆ€x. x ∈ p β‡’ (m1 x = m2 x)