Theory "sptree"

Parents     logroot   alist

Signature

Type Arity
spt 1
Constant Type
BN :α spt -> α spt -> α spt
BS :α spt -> α -> α spt -> α spt
LN :α spt
LS :α -> α spt
delete :num -> α spt -> α spt
difference :α spt -> β spt -> α spt
domain :α spt -> num -> bool
foldi :(num -> β -> α -> α) -> num -> α -> β spt -> α
fromAList :(num, α) alist -> α spt
fromList :α list -> α spt
insert :num -> α -> α spt -> α spt
insert_tupled :num # α # α spt -> α spt
inter :α spt -> β spt -> α spt
inter_eq :α spt -> α spt -> α spt
lookup :num -> α spt -> α option
lookup_tupled :num # α spt -> α option
lrnext :num -> num
mk_BN :α spt -> α spt -> α spt
mk_BN_tupled :α spt # α spt -> α spt
mk_BS :α spt -> α -> α spt -> α spt
mk_BS_tupled :α spt # α # α spt -> α spt
mk_wf :α spt -> α spt
size :α spt -> num
spt_CASE :α spt -> β -> (α -> β) -> (α spt -> α spt -> β) -> (α spt -> α -> α spt -> β) -> β
spt_size :(α -> num) -> α spt -> num
toAList :α spt -> (num, α) alist
toList :α spt -> α list
toListA :α list -> α spt -> α list
union :α spt -> α spt -> α spt
wf :α spt -> bool

Definitions

spt_TY_DEF
|- ∃rep.
     TYPE_DEFINITION
       (λa0'.
          ∀'spt' .
            (∀a0'.
               (a0' = ind_type$CONSTR 0 ARB (λn. ind_type$BOTTOM)) ∨
               (∃a.
                  a0' =
                  (λa. ind_type$CONSTR (SUC 0) a (λn. ind_type$BOTTOM)) a) ∨
               (∃a0 a1.
                  (a0' =
                   (λa0 a1.
                      ind_type$CONSTR (SUC (SUC 0)) ARB
                        (ind_type$FCONS a0
                           (ind_type$FCONS a1 (λn. ind_type$BOTTOM)))) a0
                     a1) ∧ 'spt' a0 ∧ 'spt' a1) ∨
               (∃a0 a1 a2.
                  (a0' =
                   (λa0 a1 a2.
                      ind_type$CONSTR (SUC (SUC (SUC 0))) a1
                        (ind_type$FCONS a0
                           (ind_type$FCONS a2 (λn. ind_type$BOTTOM)))) a0 a1
                     a2) ∧ 'spt' a0 ∧ 'spt' a2) ⇒
               'spt' a0') ⇒
            'spt' a0') rep
spt_case_def
|- (∀v f f1 f2. spt_CASE LN v f f1 f2 = v) ∧
   (∀a v f f1 f2. spt_CASE (LS a) v f f1 f2 = f a) ∧
   (∀a0 a1 v f f1 f2. spt_CASE (BN a0 a1) v f f1 f2 = f1 a0 a1) ∧
   ∀a0 a1 a2 v f f1 f2. spt_CASE (BS a0 a1 a2) v f f1 f2 = f2 a0 a1 a2
spt_size_def
|- (∀f. spt_size f LN = 0) ∧ (∀f a. spt_size f (LS a) = 1 + f a) ∧
   (∀f a0 a1. spt_size f (BN a0 a1) = 1 + (spt_size f a0 + spt_size f a1)) ∧
   ∀f a0 a1 a2.
     spt_size f (BS a0 a1 a2) = 1 + (spt_size f a0 + (f a1 + spt_size f a2))
wf_def
|- (wf LN ⇔ T) ∧ (∀a. wf (LS a) ⇔ T) ∧
   (∀t1 t2. wf (BN t1 t2) ⇔ wf t1 ∧ wf t2 ∧ ¬(isEmpty t1 ∧ isEmpty t2)) ∧
   ∀t1 a t2. wf (BS t1 a t2) ⇔ wf t1 ∧ wf t2 ∧ ¬(isEmpty t1 ∧ isEmpty t2)
lookup_tupled_primitive_def
|- lookup_tupled =
   WFREC
     (@R.
        WF R ∧
        (∀t2 t1 k.
           k ≠ 0 ⇒ R ((k − 1) DIV 2,if EVEN k then t1 else t2) (k,BN t1 t2)) ∧
        ∀a t2 t1 k.
          k ≠ 0 ⇒ R ((k − 1) DIV 2,if EVEN k then t1 else t2) (k,BS t1 a t2))
     (λlookup_tupled a'.
        case a' of
          (k,LN) => I NONE
        | (k,LS a) => I (if k = 0 then SOME a else NONE)
        | (k,BN t1 t2) =>
            I
              (if k = 0 then NONE
               else lookup_tupled ((k − 1) DIV 2,if EVEN k then t1 else t2))
        | (k,BS t1' a'' t2') =>
            I
              (if k = 0 then SOME a''
               else
                 lookup_tupled ((k − 1) DIV 2,if EVEN k then t1' else t2')))
lookup_curried_def
|- ∀x x1. lookup x x1 = lookup_tupled (x,x1)
insert_tupled_primitive_def
|- insert_tupled =
   WFREC
     (@R.
        WF R ∧ (∀a k. k ≠ 0 ∧ ¬EVEN k ⇒ R ((k − 1) DIV 2,a,LN) (k,a,LN)) ∧
        (∀a k. k ≠ 0 ∧ EVEN k ⇒ R ((k − 1) DIV 2,a,LN) (k,a,LN)) ∧
        (∀a' a k. k ≠ 0 ∧ ¬EVEN k ⇒ R ((k − 1) DIV 2,a,LN) (k,a,LS a')) ∧
        (∀a' a k. k ≠ 0 ∧ EVEN k ⇒ R ((k − 1) DIV 2,a,LN) (k,a,LS a')) ∧
        (∀t1 t2 a k.
           k ≠ 0 ∧ ¬EVEN k ⇒ R ((k − 1) DIV 2,a,t2) (k,a,BN t1 t2)) ∧
        (∀t2 t1 a k. k ≠ 0 ∧ EVEN k ⇒ R ((k − 1) DIV 2,a,t1) (k,a,BN t1 t2)) ∧
        (∀t2 a' t1 a k.
           k ≠ 0 ∧ EVEN k ⇒ R ((k − 1) DIV 2,a,t1) (k,a,BS t1 a' t2)) ∧
        ∀a' t1 t2 a k.
          k ≠ 0 ∧ ¬EVEN k ⇒ R ((k − 1) DIV 2,a,t2) (k,a,BS t1 a' t2))
     (λinsert_tupled a''.
        case a'' of
          (k,a,LN) =>
            I
              (if k = 0 then LS a
               else if EVEN k then BN (insert_tupled ((k − 1) DIV 2,a,LN)) LN
               else BN LN (insert_tupled ((k − 1) DIV 2,a,LN)))
        | (k,a,LS a') =>
            I
              (if k = 0 then LS a
               else if EVEN k then
                 BS (insert_tupled ((k − 1) DIV 2,a,LN)) a' LN
               else BS LN a' (insert_tupled ((k − 1) DIV 2,a,LN)))
        | (k,a,BN t1 t2) =>
            I
              (if k = 0 then BS t1 a t2
               else if EVEN k then BN (insert_tupled ((k − 1) DIV 2,a,t1)) t2
               else BN t1 (insert_tupled ((k − 1) DIV 2,a,t2)))
        | (k,a,BS t1' a''' t2') =>
            I
              (if k = 0 then BS t1' a t2'
               else if EVEN k then
                 BS (insert_tupled ((k − 1) DIV 2,a,t1')) a''' t2'
               else BS t1' a''' (insert_tupled ((k − 1) DIV 2,a,t2'))))
insert_curried_def
|- ∀x x1 x2. insert x x1 x2 = insert_tupled (x,x1,x2)
mk_BN_tupled_primitive_def
|- mk_BN_tupled =
   WFREC (@R. WF R)
     (λmk_BN_tupled a.
        case a of
          (LN,LN) => I LN
        | (LN,LS v20) => I (BN LN (LS v20))
        | (LN,BN v21 v22) => I (BN LN (BN v21 v22))
        | (LN,BS v23 v24 v25) => I (BN LN (BS v23 v24 v25))
        | (LS v8,v1) => I (BN (LS v8) v1)
        | (BN v9 v10,v1) => I (BN (BN v9 v10) v1)
        | (BS v11 v12 v13,v1) => I (BN (BS v11 v12 v13) v1))
mk_BN_curried_def
|- ∀x x1. mk_BN x x1 = mk_BN_tupled (x,x1)
mk_BS_tupled_primitive_def
|- mk_BS_tupled =
   WFREC (@R. WF R)
     (λmk_BS_tupled a.
        case a of
          (LN,x,LN) => I (LS x)
        | (LS v22,x,LN) => I (BS (LS v22) x LN)
        | (BN v23 v24,x,LN) => I (BS (BN v23 v24) x LN)
        | (BS v25 v26 v27,x,LN) => I (BS (BS v25 v26 v27) x LN)
        | (v,x,LS v10) => I (BS v x (LS v10))
        | (v,x,BN v11 v12) => I (BS v x (BN v11 v12))
        | (v,x,BS v13 v14 v15) => I (BS v x (BS v13 v14 v15)))
mk_BS_curried_def
|- ∀x x1 x2. mk_BS x x1 x2 = mk_BS_tupled (x,x1,x2)
delete_def
|- (∀k. isEmpty (delete k LN)) ∧
   (∀k a. delete k (LS a) = if k = 0 then LN else LS a) ∧
   (∀k t1 t2.
      delete k (BN t1 t2) =
      if k = 0 then BN t1 t2
      else if EVEN k then mk_BN (delete ((k − 1) DIV 2) t1) t2
      else mk_BN t1 (delete ((k − 1) DIV 2) t2)) ∧
   ∀k t1 a t2.
     delete k (BS t1 a t2) =
     if k = 0 then BN t1 t2
     else if EVEN k then mk_BS (delete ((k − 1) DIV 2) t1) a t2
     else mk_BS t1 a (delete ((k − 1) DIV 2) t2)
fromList_def
|- ∀l. fromList l = SND (FOLDL (λ(i,t) a. (i + 1,insert i a t)) (0,LN) l)
size_def
|- (size LN = 0) ∧ (∀a. size (LS a) = 1) ∧
   (∀t1 t2. size (BN t1 t2) = size t1 + size t2) ∧
   ∀t1 a t2. size (BS t1 a t2) = size t1 + size t2 + 1
union_def
|- (∀t. union LN t = t) ∧
   (∀a t.
      union (LS a) t =
      case t of
        LN => LS a
      | LS b => LS a
      | BN t1 t2 => BS t1 a t2
      | BS t1' v4 t2' => BS t1' a t2') ∧
   (∀t1 t2 t.
      union (BN t1 t2) t =
      case t of
        LN => BN t1 t2
      | LS a => BS t1 a t2
      | BN t1' t2' => BN (union t1 t1') (union t2 t2')
      | BS t1'' a'' t2'' => BS (union t1 t1'') a'' (union t2 t2'')) ∧
   ∀t1 a t2 t.
     union (BS t1 a t2) t =
     case t of
       LN => BS t1 a t2
     | LS a' => BS t1 a t2
     | BN t1' t2' => BS (union t1 t1') a (union t2 t2')
     | BS t1'' a''' t2'' => BS (union t1 t1'') a (union t2 t2'')
inter_def
|- (∀t. isEmpty (inter LN t)) ∧
   (∀a t.
      inter (LS a) t =
      case t of
        LN => LN
      | LS b => LS a
      | BN t1 t2 => LN
      | BS t1' v4 t2' => LS a) ∧
   (∀t1 t2 t.
      inter (BN t1 t2) t =
      case t of
        LN => LN
      | LS a => LN
      | BN t1' t2' => mk_BN (inter t1 t1') (inter t2 t2')
      | BS t1'' a'' t2'' => mk_BN (inter t1 t1'') (inter t2 t2'')) ∧
   ∀t1 a t2 t.
     inter (BS t1 a t2) t =
     case t of
       LN => LN
     | LS a' => LS a
     | BN t1' t2' => mk_BN (inter t1 t1') (inter t2 t2')
     | BS t1'' a''' t2'' => mk_BS (inter t1 t1'') a (inter t2 t2'')
inter_eq_def
|- (∀t. isEmpty (inter_eq LN t)) ∧
   (∀a t.
      inter_eq (LS a) t =
      case t of
        LN => LN
      | LS b => if a = b then LS a else LN
      | BN t1 t2 => LN
      | BS t1' b' t2' => if a = b' then LS a else LN) ∧
   (∀t1 t2 t.
      inter_eq (BN t1 t2) t =
      case t of
        LN => LN
      | LS a => LN
      | BN t1' t2' => mk_BN (inter_eq t1 t1') (inter_eq t2 t2')
      | BS t1'' a'' t2'' => mk_BN (inter_eq t1 t1'') (inter_eq t2 t2'')) ∧
   ∀t1 a t2 t.
     inter_eq (BS t1 a t2) t =
     case t of
       LN => LN
     | LS a' => if a' = a then LS a else LN
     | BN t1' t2' => mk_BN (inter_eq t1 t1') (inter_eq t2 t2')
     | BS t1'' a''' t2'' =>
         if a''' = a then mk_BS (inter_eq t1 t1'') a (inter_eq t2 t2'')
         else mk_BN (inter_eq t1 t1'') (inter_eq t2 t2'')
difference_def
|- (∀t. isEmpty (difference LN t)) ∧
   (∀a t.
      difference (LS a) t =
      case t of
        LN => LS a
      | LS b => LN
      | BN t1 t2 => LS a
      | BS t1' b' t2' => LN) ∧
   (∀t1 t2 t.
      difference (BN t1 t2) t =
      case t of
        LN => BN t1 t2
      | LS a => BN t1 t2
      | BN t1' t2' => mk_BN (difference t1 t1') (difference t2 t2')
      | BS t1'' a'' t2'' => mk_BN (difference t1 t1'') (difference t2 t2'')) ∧
   ∀t1 a t2 t.
     difference (BS t1 a t2) t =
     case t of
       LN => BS t1 a t2
     | LS a' => BN t1 t2
     | BN t1' t2' => mk_BS (difference t1 t1') a (difference t2 t2')
     | BS t1'' a''' t2'' => mk_BN (difference t1 t1'') (difference t2 t2'')
lrnext_def
|- (sptree$lrnext ZERO = 1) ∧
   (∀n. sptree$lrnext (BIT1 n) = 2 * sptree$lrnext n) ∧
   ∀n. sptree$lrnext (BIT2 n) = 2 * sptree$lrnext n
domain_def
|- (domain LN = ∅) ∧ (∀v0. domain (LS v0) = {0}) ∧
   (∀t1 t2.
      domain (BN t1 t2) =
      IMAGE (λn. 2 * n + 2) (domain t1) ∪ IMAGE (λn. 2 * n + 1) (domain t2)) ∧
   ∀t1 v1 t2.
     domain (BS t1 v1 t2) =
     {0} ∪ IMAGE (λn. 2 * n + 2) (domain t1) ∪
     IMAGE (λn. 2 * n + 1) (domain t2)
foldi_def
|- (∀f i acc. foldi f i acc LN = acc) ∧
   (∀f i acc a. foldi f i acc (LS a) = f i a acc) ∧
   (∀f i acc t1 t2.
      foldi f i acc (BN t1 t2) =
      (let inc = sptree$lrnext i
       in
         foldi f (i + inc) (foldi f (i + 2 * inc) acc t1) t2)) ∧
   ∀f i acc t1 a t2.
     foldi f i acc (BS t1 a t2) =
     (let inc = sptree$lrnext i
      in
        foldi f (i + inc) (f i a (foldi f (i + 2 * inc) acc t1)) t2)
toAList_def
|- toAList = foldi (λk v a. (k,v)::a) 0 []
toListA_def
|- (∀acc. toListA acc LN = acc) ∧ (∀acc a. toListA acc (LS a) = a::acc) ∧
   (∀acc t1 t2. toListA acc (BN t1 t2) = toListA (toListA acc t2) t1) ∧
   ∀acc t1 a t2. toListA acc (BS t1 a t2) = toListA (a::toListA acc t2) t1
toList_def
|- ∀m. toList m = toListA [] m
mk_wf_def
|- isEmpty (mk_wf LN) ∧ (∀x. mk_wf (LS x) = LS x) ∧
   (∀t1 t2. mk_wf (BN t1 t2) = mk_BN (mk_wf t1) (mk_wf t2)) ∧
   ∀t1 x t2. mk_wf (BS t1 x t2) = mk_BS (mk_wf t1) x (mk_wf t2)
fromAList_primitive_def
|- fromAList =
   WFREC (@R. WF R ∧ ∀y x xs. R xs ((x,y)::xs))
     (λfromAList a.
        case a of [] => I LN | (x,y)::xs => I (insert x y (fromAList xs)))


Theorems

datatype_spt
|- DATATYPE (spt LN LS BN BS)
spt_11
|- (∀a a'. (LS a = LS a') ⇔ (a = a')) ∧
   (∀a0 a1 a0' a1'. (BN a0 a1 = BN a0' a1') ⇔ (a0 = a0') ∧ (a1 = a1')) ∧
   ∀a0 a1 a2 a0' a1' a2'.
     (BS a0 a1 a2 = BS a0' a1' a2') ⇔ (a0 = a0') ∧ (a1 = a1') ∧ (a2 = a2')
spt_distinct
|- (∀a. LN ≠ LS a) ∧ (∀a1 a0. LN ≠ BN a0 a1) ∧ (∀a2 a1 a0. LN ≠ BS a0 a1 a2) ∧
   (∀a1 a0 a. LS a ≠ BN a0 a1) ∧ (∀a2 a1 a0 a. LS a ≠ BS a0 a1 a2) ∧
   ∀a2 a1' a1 a0' a0. BN a0 a1 ≠ BS a0' a1' a2
spt_case_cong
|- ∀M M' v f f1 f2.
     (M = M') ∧ (isEmpty M' ⇒ (v = v')) ∧ (∀a. (M' = LS a) ⇒ (f a = f' a)) ∧
     (∀a0 a1. (M' = BN a0 a1) ⇒ (f1 a0 a1 = f1' a0 a1)) ∧
     (∀a0 a1 a2. (M' = BS a0 a1 a2) ⇒ (f2 a0 a1 a2 = f2' a0 a1 a2)) ⇒
     (spt_CASE M v f f1 f2 = spt_CASE M' v' f' f1' f2')
spt_nchotomy
|- ∀ss.
     isEmpty ss ∨ (∃a. ss = LS a) ∨ (∃s s0. ss = BN s s0) ∨
     ∃s a s0. ss = BS s a s0
spt_Axiom
|- ∀f0 f1 f2 f3.
     ∃fn.
       (fn LN = f0) ∧ (∀a. fn (LS a) = f1 a) ∧
       (∀a0 a1. fn (BN a0 a1) = f2 a0 a1 (fn a0) (fn a1)) ∧
       ∀a0 a1 a2. fn (BS a0 a1 a2) = f3 a1 a0 a2 (fn a0) (fn a2)
spt_induction
|- ∀P.
     P LN ∧ (∀a. P (LS a)) ∧ (∀s s0. P s ∧ P s0 ⇒ P (BN s s0)) ∧
     (∀s s0. P s ∧ P s0 ⇒ ∀a. P (BS s a s0)) ⇒
     ∀s. P s
lookup_ind
|- ∀P.
     (∀k. P k LN) ∧ (∀k a. P k (LS a)) ∧
     (∀k t1 t2.
        (k ≠ 0 ⇒ P ((k − 1) DIV 2) (if EVEN k then t1 else t2)) ⇒
        P k (BN t1 t2)) ∧
     (∀k t1 a t2.
        (k ≠ 0 ⇒ P ((k − 1) DIV 2) (if EVEN k then t1 else t2)) ⇒
        P k (BS t1 a t2)) ⇒
     ∀v v1. P v v1
lookup_def
|- (∀k. lookup k LN = NONE) ∧
   (∀k a. lookup k (LS a) = if k = 0 then SOME a else NONE) ∧
   (∀t2 t1 k.
      lookup k (BN t1 t2) =
      if k = 0 then NONE
      else lookup ((k − 1) DIV 2) (if EVEN k then t1 else t2)) ∧
   ∀t2 t1 k a.
     lookup k (BS t1 a t2) =
     if k = 0 then SOME a
     else lookup ((k − 1) DIV 2) (if EVEN k then t1 else t2)
insert_ind
|- ∀P.
     (∀k a.
        (k ≠ 0 ∧ EVEN k ⇒ P ((k − 1) DIV 2) a LN) ∧
        (k ≠ 0 ∧ ¬EVEN k ⇒ P ((k − 1) DIV 2) a LN) ⇒
        P k a LN) ∧
     (∀k a a'.
        (k ≠ 0 ∧ EVEN k ⇒ P ((k − 1) DIV 2) a LN) ∧
        (k ≠ 0 ∧ ¬EVEN k ⇒ P ((k − 1) DIV 2) a LN) ⇒
        P k a (LS a')) ∧
     (∀k a t1 t2.
        (k ≠ 0 ∧ EVEN k ⇒ P ((k − 1) DIV 2) a t1) ∧
        (k ≠ 0 ∧ ¬EVEN k ⇒ P ((k − 1) DIV 2) a t2) ⇒
        P k a (BN t1 t2)) ∧
     (∀k a t1 a' t2.
        (k ≠ 0 ∧ EVEN k ⇒ P ((k − 1) DIV 2) a t1) ∧
        (k ≠ 0 ∧ ¬EVEN k ⇒ P ((k − 1) DIV 2) a t2) ⇒
        P k a (BS t1 a' t2)) ⇒
     ∀v v1 v2. P v v1 v2
insert_def
|- (∀k a.
      insert k a LN =
      if k = 0 then LS a
      else if EVEN k then BN (insert ((k − 1) DIV 2) a LN) LN
      else BN LN (insert ((k − 1) DIV 2) a LN)) ∧
   (∀k a' a.
      insert k a (LS a') =
      if k = 0 then LS a
      else if EVEN k then BS (insert ((k − 1) DIV 2) a LN) a' LN
      else BS LN a' (insert ((k − 1) DIV 2) a LN)) ∧
   (∀t2 t1 k a.
      insert k a (BN t1 t2) =
      if k = 0 then BS t1 a t2
      else if EVEN k then BN (insert ((k − 1) DIV 2) a t1) t2
      else BN t1 (insert ((k − 1) DIV 2) a t2)) ∧
   ∀t2 t1 k a' a.
     insert k a (BS t1 a' t2) =
     if k = 0 then BS t1 a t2
     else if EVEN k then BS (insert ((k − 1) DIV 2) a t1) a' t2
     else BS t1 a' (insert ((k − 1) DIV 2) a t2)
mk_BN_ind
|- ∀P.
     P LN LN ∧ (∀v14. P LN (LS v14)) ∧ (∀v15 v16. P LN (BN v15 v16)) ∧
     (∀v17 v18 v19. P LN (BS v17 v18 v19)) ∧ (∀v2 t2. P (LS v2) t2) ∧
     (∀v3 v4 t2. P (BN v3 v4) t2) ∧ (∀v5 v6 v7 t2. P (BS v5 v6 v7) t2) ⇒
     ∀v v1. P v v1
mk_BN_def
|- isEmpty (mk_BN LN LN) ∧ (mk_BN LN (LS v14) = BN LN (LS v14)) ∧
   (mk_BN LN (BN v15 v16) = BN LN (BN v15 v16)) ∧
   (mk_BN LN (BS v17 v18 v19) = BN LN (BS v17 v18 v19)) ∧
   (mk_BN (LS v2) t2 = BN (LS v2) t2) ∧
   (mk_BN (BN v3 v4) t2 = BN (BN v3 v4) t2) ∧
   (mk_BN (BS v5 v6 v7) t2 = BN (BS v5 v6 v7) t2)
mk_BS_ind
|- ∀P.
     (∀x. P LN x LN) ∧ (∀v16 x. P (LS v16) x LN) ∧
     (∀v17 v18 x. P (BN v17 v18) x LN) ∧
     (∀v19 v20 v21 x. P (BS v19 v20 v21) x LN) ∧ (∀t1 x v4. P t1 x (LS v4)) ∧
     (∀t1 x v5 v6. P t1 x (BN v5 v6)) ∧
     (∀t1 x v7 v8 v9. P t1 x (BS v7 v8 v9)) ⇒
     ∀v v1 v2. P v v1 v2
mk_BS_def
|- (mk_BS LN x LN = LS x) ∧ (mk_BS (LS v16) x LN = BS (LS v16) x LN) ∧
   (mk_BS (BN v17 v18) x LN = BS (BN v17 v18) x LN) ∧
   (mk_BS (BS v19 v20 v21) x LN = BS (BS v19 v20 v21) x LN) ∧
   (mk_BS t1 x (LS v4) = BS t1 x (LS v4)) ∧
   (mk_BS t1 x (BN v5 v6) = BS t1 x (BN v5 v6)) ∧
   (mk_BS t1 x (BS v7 v8 v9) = BS t1 x (BS v7 v8 v9))
insert_notEmpty
|- insert k a t ≠ LN
wf_insert
|- ∀k a t. wf t ⇒ wf (insert k a t)
wf_delete
|- ∀t k. wf t ⇒ wf (delete k t)
lookup_insert1
|- ∀k a t. lookup k (insert k a t) = SOME a
lookup_insert
|- ∀k2 v t k1.
     lookup k1 (insert k2 v t) = if k1 = k2 then SOME v else lookup k1 t
isEmpty_union
|- isEmpty (union m1 m2) ⇔ isEmpty m1 ∧ isEmpty m2
wf_union
|- ∀m1 m2. wf m1 ∧ wf m2 ⇒ wf (union m1 m2)
lookup_union
|- ∀m1 m2 k.
     lookup k (union m1 m2) =
     case lookup k m1 of NONE => lookup k m2 | SOME v => SOME v
wf_inter
|- ∀m1 m2. wf (inter m1 m2)
lookup_inter
|- ∀m1 m2 k.
     lookup k (inter m1 m2) =
     case (lookup k m1,lookup k m2) of (SOME v,SOME w) => SOME v | _ => NONE
lookup_inter_eq
|- ∀m1 m2 k.
     lookup k (inter_eq m1 m2) =
     case lookup k m1 of
       NONE => NONE
     | SOME v => if lookup k m2 = SOME v then SOME v else NONE
lookup_difference
|- ∀m1 m2 k.
     lookup k (difference m1 m2) =
     if lookup k m2 = NONE then lookup k m1 else NONE
lrnext_thm
|- (∀a. sptree$lrnext 0 = 1) ∧
   (∀n a. sptree$lrnext (NUMERAL n) = sptree$lrnext n) ∧
   (sptree$lrnext ZERO = 1) ∧
   (∀n. sptree$lrnext (BIT1 n) = 2 * sptree$lrnext n) ∧
   ∀n. sptree$lrnext (BIT2 n) = 2 * sptree$lrnext n
FINITE_domain
|- FINITE (domain t)
lookup_fromList
|- lookup n (fromList l) = if n < LENGTH l then SOME (EL n l) else NONE
domain_lookup
|- ∀t k. k ∈ domain t ⇔ ∃v. lookup k t = SOME v
lookup_NONE_domain
|- (lookup k t = NONE) ⇔ k ∉ domain t
domain_union
|- domain (union t1 t2) = domain t1 ∪ domain t2
domain_inter
|- domain (inter t1 t2) = domain t1 ∩ domain t2
domain_insert
|- domain (insert k v t) = k INSERT domain t
domain_sing
|- domain (insert k v LN) = {k}
domain_fromList
|- domain (fromList l) = count (LENGTH l)
lookup_delete
|- ∀t k1 k2. lookup k1 (delete k2 t) = if k1 = k2 then NONE else lookup k1 t
domain_delete
|- domain (delete k t) = domain t DELETE k
set_foldi_keys
|- ∀t a i.
     foldi (λk v a. k INSERT a) i a t =
     a ∪ IMAGE (λn. i + sptree$lrnext i * n) (domain t)
domain_foldi
|- domain t = foldi (λk v a. k INSERT a) 0 ∅ t
MEM_toAList
|- ∀t k v. MEM (k,v) (toAList t) ⇔ (lookup k t = SOME v)
ALOOKUP_toAList
|- ∀t x. ALOOKUP (toAList t) x = lookup x t
insert_union
|- ∀k v s. insert k v s = union (insert k v LN) s
domain_empty
|- ∀t. wf t ⇒ (isEmpty t ⇔ (domain t = ∅))
toListA_append
|- ∀t acc. toListA acc t = toListA [] t ++ acc
isEmpty_toListA
|- ∀t acc. wf t ⇒ (isEmpty t ⇔ (toListA acc t = acc))
isEmpty_toList
|- ∀t. wf t ⇒ (isEmpty t ⇔ (toList t = []))
spt_eq_thm
|- ∀t1 t2. wf t1 ∧ wf t2 ⇒ ((t1 = t2) ⇔ ∀n. lookup n t1 = lookup n t2)
wf_mk_wf
|- ∀t. wf (mk_wf t)
wf_mk_id
|- ∀t. wf t ⇒ (mk_wf t = t)
lookup_mk_wf
|- ∀x t. lookup x (mk_wf t) = lookup x t
domain_mk_wf
|- ∀t. domain (mk_wf t) = domain t
mk_wf_eq
|- ∀t1 t2. (mk_wf t1 = mk_wf t2) ⇔ ∀x. lookup x t1 = lookup x t2
inter_eq
|- ∀t1 t2 t3 t4.
     (inter t1 t2 = inter t3 t4) ⇔
     ∀x. lookup x (inter t1 t2) = lookup x (inter t3 t4)
union_mk_wf
|- ∀t1 t2. inter (mk_wf t1) (mk_wf t2) = mk_wf (inter t1 t2)
insert_mk_wf
|- ∀x v t. insert x v (mk_wf t) = mk_wf (insert x v t)
delete_mk_wf
|- ∀x t. delete x (mk_wf t) = mk_wf (delete x t)
union_LN
|- ∀t. (union t LN = t) ∧ (union LN t = t)
inter_LN
|- ∀t. isEmpty (inter t LN) ∧ isEmpty (inter LN t)
union_assoc
|- ∀t1 t2 t3. union t1 (union t2 t3) = union (union t1 t2) t3
inter_assoc
|- ∀t1 t2 t3. inter t1 (inter t2 t3) = inter (inter t1 t2) t3
lookup_compute
|- (lookup (NUMERAL n) t = lookup n t) ∧ (lookup 0 LN = NONE) ∧
   (lookup 0 (LS a) = SOME a) ∧ (lookup 0 (BN t1 t2) = NONE) ∧
   (lookup 0 (BS t1 a t2) = SOME a) ∧ (lookup ZERO LN = NONE) ∧
   (lookup ZERO (LS a) = SOME a) ∧ (lookup ZERO (BN t1 t2) = NONE) ∧
   (lookup ZERO (BS t1 a t2) = SOME a) ∧ (lookup (BIT1 n) LN = NONE) ∧
   (lookup (BIT1 n) (LS a) = NONE) ∧
   (lookup (BIT1 n) (BN t1 t2) = lookup n t2) ∧
   (lookup (BIT1 n) (BS t1 a t2) = lookup n t2) ∧
   (lookup (BIT2 n) LN = NONE) ∧ (lookup (BIT2 n) (LS a) = NONE) ∧
   (lookup (BIT2 n) (BN t1 t2) = lookup n t1) ∧
   (lookup (BIT2 n) (BS t1 a t2) = lookup n t1)
insert_compute
|- (insert (NUMERAL n) a t = insert n a t) ∧ (insert 0 a LN = LS a) ∧
   (insert 0 a (LS a') = LS a) ∧ (insert 0 a (BN t1 t2) = BS t1 a t2) ∧
   (insert 0 a (BS t1 a' t2) = BS t1 a t2) ∧ (insert ZERO a LN = LS a) ∧
   (insert ZERO a (LS a') = LS a) ∧ (insert ZERO a (BN t1 t2) = BS t1 a t2) ∧
   (insert ZERO a (BS t1 a' t2) = BS t1 a t2) ∧
   (insert (BIT1 n) a LN = BN LN (insert n a LN)) ∧
   (insert (BIT1 n) a (LS a') = BS LN a' (insert n a LN)) ∧
   (insert (BIT1 n) a (BN t1 t2) = BN t1 (insert n a t2)) ∧
   (insert (BIT1 n) a (BS t1 a' t2) = BS t1 a' (insert n a t2)) ∧
   (insert (BIT2 n) a LN = BN (insert n a LN) LN) ∧
   (insert (BIT2 n) a (LS a') = BS (insert n a LN) a' LN) ∧
   (insert (BIT2 n) a (BN t1 t2) = BN (insert n a t1) t2) ∧
   (insert (BIT2 n) a (BS t1 a' t2) = BS (insert n a t1) a' t2)
delete_compute
|- (delete (NUMERAL n) t = delete n t) ∧ isEmpty (delete 0 LN) ∧
   isEmpty (delete 0 (LS a)) ∧ (delete 0 (BN t1 t2) = BN t1 t2) ∧
   (delete 0 (BS t1 a t2) = BN t1 t2) ∧ isEmpty (delete ZERO LN) ∧
   isEmpty (delete ZERO (LS a)) ∧ (delete ZERO (BN t1 t2) = BN t1 t2) ∧
   (delete ZERO (BS t1 a t2) = BN t1 t2) ∧ isEmpty (delete (BIT1 n) LN) ∧
   (delete (BIT1 n) (LS a) = LS a) ∧
   (delete (BIT1 n) (BN t1 t2) = mk_BN t1 (delete n t2)) ∧
   (delete (BIT1 n) (BS t1 a t2) = mk_BS t1 a (delete n t2)) ∧
   isEmpty (delete (BIT2 n) LN) ∧ (delete (BIT2 n) (LS a) = LS a) ∧
   (delete (BIT2 n) (BN t1 t2) = mk_BN (delete n t1) t2) ∧
   (delete (BIT2 n) (BS t1 a t2) = mk_BS (delete n t1) a t2)
fromAList_ind
|- ∀P. P [] ∧ (∀x y xs. P xs ⇒ P ((x,y)::xs)) ⇒ ∀v. P v
fromAList_def
|- isEmpty (fromAList []) ∧
   ∀y xs x. fromAList ((x,y)::xs) = insert x y (fromAList xs)
lookup_fromAList
|- ∀ls x. lookup x (fromAList ls) = ALOOKUP ls x
domain_fromAList
|- ∀ls. domain (fromAList ls) = LIST_TO_SET (MAP FST ls)
lookup_fromAList_toAList
|- ∀t x. lookup x (fromAList (toAList t)) = lookup x t
wf_fromAList
|- ∀ls. wf (fromAList ls)
fromAList_toAList
|- ∀t. wf t ⇒ (fromAList (toAList t) = t)