Theory "sum"

Parents     sat   combin

Signature

Type Arity
sum 2
Constant Type
++ :(α -> γ) -> (β -> δ) -> α + β -> γ + δ
ABS_sum :(bool -> α -> β -> bool) -> α + β
INL :α -> α + β
INR :β -> α + β
ISL :α + β -> bool
ISR :α + β -> bool
IS_SUM_REP :(bool -> α -> β -> bool) -> bool
OUTL :α + β -> α
OUTR :α + β -> β
REP_sum :α + β -> bool -> α -> β -> bool
sum_CASE :α + β -> (α -> γ) -> (β -> γ) -> γ

Definitions

IS_SUM_REP
|- ∀f.
     IS_SUM_REP f ⇔
     ∃v1 v2. (f = (λb x y. (x = v1) ∧ b)) ∨ (f = (λb x y. (y = v2) ∧ ¬b))
sum_TY_DEF
|- ∃rep. TYPE_DEFINITION IS_SUM_REP rep
sum_ISO_DEF
|- (∀a. ABS_sum (REP_sum a) = a) ∧
   ∀r. IS_SUM_REP r ⇔ (REP_sum (ABS_sum r) = r)
INL_DEF
|- ∀e. INL e = ABS_sum (λb x y. (x = e) ∧ b)
INR_DEF
|- ∀e. INR e = ABS_sum (λb x y. (y = e) ∧ ¬b)
ISL
|- (∀x. ISL (INL x)) ∧ ∀y. ¬ISL (INR y)
ISR
|- (∀x. ISR (INR x)) ∧ ∀y. ¬ISR (INL y)
OUTL
|- ∀x. OUTL (INL x) = x
OUTR
|- ∀x. OUTR (INR x) = x
sum_case_def
|- (∀x f f1. sum_CASE (INL x) f f1 = f x) ∧
   ∀y f f1. sum_CASE (INR y) f f1 = f1 y
SUM_MAP_def
|- (∀f g a. (f ++ g) (INL a) = INL (f a)) ∧
   ∀f g b. (f ++ g) (INR b) = INR (g b)


Theorems

INL_11
|- (INL x = INL y) ⇔ (x = y)
INR_11
|- (INR x = INR y) ⇔ (x = y)
INR_INL_11
|- (∀y x. (INL x = INL y) ⇔ (x = y)) ∧ ∀y x. (INR x = INR y) ⇔ (x = y)
INR_neq_INL
|- ∀v1 v2. INR v2 ≠ INL v1
sum_axiom
|- ∀f g. ∃!h. (h o INL = f) ∧ (h o INR = g)
sum_INDUCT
|- ∀P. (∀x. P (INL x)) ∧ (∀y. P (INR y)) ⇒ ∀s. P s
FORALL_SUM
|- (∀s. P s) ⇔ (∀x. P (INL x)) ∧ ∀y. P (INR y)
EXISTS_SUM
|- ∀P. (∃s. P s) ⇔ (∃x. P (INL x)) ∨ ∃y. P (INR y)
sum_Axiom
|- ∀f g. ∃h. (∀x. h (INL x) = f x) ∧ ∀y. h (INR y) = g y
sum_CASES
|- ∀ss. (∃x. ss = INL x) ∨ ∃y. ss = INR y
sum_distinct
|- ∀x y. INL x ≠ INR y
sum_distinct1
|- ∀x y. INR y ≠ INL x
ISL_OR_ISR
|- ∀x. ISL x ∨ ISR x
INL
|- ∀x. ISL x ⇒ (INL (OUTL x) = x)
INR
|- ∀x. ISR x ⇒ (INR (OUTR x) = x)
sum_case_cong
|- ∀M M' f f1.
     (M = M') ∧ (∀x. (M' = INL x) ⇒ (f x = f' x)) ∧
     (∀y. (M' = INR y) ⇒ (f1 y = f1' y)) ⇒
     (sum_CASE M f f1 = sum_CASE M' f' f1')
SUM_MAP
|- ∀f g z. (f ++ g) z = if ISL z then INL (f (OUTL z)) else INR (g (OUTR z))
SUM_MAP_CASE
|- ∀f g z. (f ++ g) z = sum_CASE z (INL o f) (INR o g)
SUM_MAP_I
|- I ++ I = I
cond_sum_expand
|- (∀x y z. ((if P then INR x else INL y) = INR z) ⇔ P ∧ (z = x)) ∧
   (∀x y z. ((if P then INR x else INL y) = INL z) ⇔ ¬P ∧ (z = y)) ∧
   (∀x y z. ((if P then INL x else INR y) = INL z) ⇔ P ∧ (z = x)) ∧
   ∀x y z. ((if P then INL x else INR y) = INR z) ⇔ ¬P ∧ (z = y)
NOT_ISL_ISR
|- ∀x. ¬ISL x ⇔ ISR x
NOT_ISR_ISL
|- ∀x. ¬ISR x ⇔ ISL x
datatype_sum
|- DATATYPE (sum INL INR)