Theory "transc"

Parents     powser

Signature

Constant Type
Dint :complex -> (real -> real) -> real -> bool
acs :real -> real
asn :real -> real
atn :real -> real
cos :real -> real
division :complex -> (num -> real) -> bool
dsize :(num -> real) -> num
exp :real -> real
fine :(real -> real) -> (num -> real) reln
gauge :(real -> bool) -> (real -> real) -> bool
ln :real -> real
pi :real
root :num -> real -> real
rpow :real -> real -> real
rsum :(num -> real) # (num -> real) -> (real -> real) -> real
sin :real -> real
sqrt :real -> real
tan :real -> real
tdiv :complex -> (num -> real) reln

Definitions

atn
|- ∀y. atn y = @x. -(pi / 2) < x ∧ x < pi / 2 ∧ (tan x = y)
acs
|- ∀y. acs y = @x. 0 ≤ x ∧ x ≤ pi ∧ (cos x = y)
asn
|- ∀y. asn y = @x. -(pi / 2) ≤ x ∧ x ≤ pi / 2 ∧ (sin x = y)
tan
|- ∀x. tan x = sin x / cos x
pi
|- pi = 2 * @x. 0 ≤ x ∧ x ≤ 2 ∧ (cos x = 0)
sqrt
|- ∀x. sqrt x = root 2 x
root
|- ∀n x. root n x = @u. (0 < x ⇒ 0 < u) ∧ (u pow n = x)
exp
|- ∀x. exp x = suminf (λn. (λn. inv (&FACT n)) n * x pow n)
cos
|- ∀x.
     cos x =
     suminf
       (λn.
          (λn. if EVEN n then -1 pow (n DIV 2) / &FACT n else 0) n * x pow n)
sin
|- ∀x.
     sin x =
     suminf
       (λn.
          (λn. if EVEN n then 0 else -1 pow ((n − 1) DIV 2) / &FACT n) n *
          x pow n)
ln
|- ∀x. ln x = @u. exp u = x
division
|- ∀a b D.
     division (a,b) D ⇔
     (D 0 = a) ∧ ∃N. (∀n. n < N ⇒ D n < D (SUC n)) ∧ ∀n. n ≥ N ⇒ (D n = b)
dsize
|- ∀D. dsize D = @N. (∀n. n < N ⇒ D n < D (SUC n)) ∧ ∀n. n ≥ N ⇒ (D n = D N)
tdiv
|- ∀a b D p.
     tdiv (a,b) (D,p) ⇔ division (a,b) D ∧ ∀n. D n ≤ p n ∧ p n ≤ D (SUC n)
gauge
|- ∀E g. gauge E g ⇔ ∀x. E x ⇒ 0 < g x
fine
|- ∀g D p. fine g (D,p) ⇔ ∀n. n < dsize D ⇒ D (SUC n) − D n < g (p n)
rsum
|- ∀D p f. rsum (D,p) f = sum (0,dsize D) (λn. f (p n) * (D (SUC n) − D n))
Dint
|- ∀a b f k.
     Dint (a,b) f k ⇔
     ∀e.
       0 < e ⇒
       ∃g.
         gauge (λx. a ≤ x ∧ x ≤ b) g ∧
         ∀D p. tdiv (a,b) (D,p) ∧ fine g (D,p) ⇒ abs (rsum (D,p) f − k) < e
rpow_def
|- ∀a b. a rpow b = exp (b * ln a)


Theorems

SIN_COS_SQRT
|- ∀x. 0 ≤ sin x ⇒ (sin x = sqrt (1 − cos x pow 2))
COS_SIN_SQRT
|- ∀x. 0 ≤ cos x ⇒ (cos x = sqrt (1 − sin x pow 2))
SIN_ACS_NZ
|- ∀x. -1 < x ∧ x < 1 ⇒ sin (acs x) ≠ 0
COS_ASN_NZ
|- ∀x. -1 < x ∧ x < 1 ⇒ cos (asn x) ≠ 0
COS_ATN_NZ
|- ∀x. cos (atn x) ≠ 0
COS_SIN_SQ
|- ∀x. -(pi / 2) ≤ x ∧ x ≤ pi / 2 ⇒ (cos x = sqrt (1 − sin x pow 2))
SIN_COS_SQ
|- ∀x. 0 ≤ x ∧ x ≤ pi ⇒ (sin x = sqrt (1 − cos x pow 2))
TAN_SEC
|- ∀x. cos x ≠ 0 ⇒ (1 + tan x pow 2 = inv (cos x) pow 2)
TAN_ATN
|- ∀x. -(pi / 2) < x ∧ x < pi / 2 ⇒ (atn (tan x) = x)
ATN_BOUNDS
|- ∀y. -(pi / 2) < atn y ∧ atn y < pi / 2
ATN_TAN
|- ∀y. tan (atn y) = y
ATN
|- ∀y. -(pi / 2) < atn y ∧ atn y < pi / 2 ∧ (tan (atn y) = y)
COS_ACS
|- ∀x. 0 ≤ x ∧ x ≤ pi ⇒ (acs (cos x) = x)
ACS_BOUNDS_LT
|- ∀y. -1 < y ∧ y < 1 ⇒ 0 < acs y ∧ acs y < pi
ACS_BOUNDS
|- ∀y. -1 ≤ y ∧ y ≤ 1 ⇒ 0 ≤ acs y ∧ acs y ≤ pi
ACS_COS
|- ∀y. -1 ≤ y ∧ y ≤ 1 ⇒ (cos (acs y) = y)
ACS
|- ∀y. -1 ≤ y ∧ y ≤ 1 ⇒ 0 ≤ acs y ∧ acs y ≤ pi ∧ (cos (acs y) = y)
SIN_ASN
|- ∀x. -(pi / 2) ≤ x ∧ x ≤ pi / 2 ⇒ (asn (sin x) = x)
ASN_BOUNDS_LT
|- ∀y. -1 < y ∧ y < 1 ⇒ -(pi / 2) < asn y ∧ asn y < pi / 2
ASN_BOUNDS
|- ∀y. -1 ≤ y ∧ y ≤ 1 ⇒ -(pi / 2) ≤ asn y ∧ asn y ≤ pi / 2
ASN_SIN
|- ∀y. -1 ≤ y ∧ y ≤ 1 ⇒ (sin (asn y) = y)
ASN
|- ∀y. -1 ≤ y ∧ y ≤ 1 ⇒ -(pi / 2) ≤ asn y ∧ asn y ≤ pi / 2 ∧ (sin (asn y) = y)
TAN_TOTAL
|- ∀y. ∃!x. -(pi / 2) < x ∧ x < pi / 2 ∧ (tan x = y)
TAN_TOTAL_POS
|- ∀y. 0 ≤ y ⇒ ∃x. 0 ≤ x ∧ x < pi / 2 ∧ (tan x = y)
TAN_TOTAL_LEMMA
|- ∀y. 0 < y ⇒ ∃x. 0 < x ∧ x < pi / 2 ∧ y < tan x
DIFF_TAN
|- ∀x. cos x ≠ 0 ⇒ (tan diffl inv (cos x pow 2)) x
TAN_POS_PI2
|- ∀x. 0 < x ∧ x < pi / 2 ⇒ 0 < tan x
TAN_DOUBLE
|- ∀x.
     cos x ≠ 0 ∧ cos (2 * x) ≠ 0 ⇒
     (tan (2 * x) = 2 * tan x / (1 − tan x pow 2))
TAN_ADD
|- ∀x y.
     cos x ≠ 0 ∧ cos y ≠ 0 ∧ cos (x + y) ≠ 0 ⇒
     (tan (x + y) = (tan x + tan y) / (1 − tan x * tan y))
TAN_PERIODIC
|- ∀x. tan (x + 2 * pi) = tan x
TAN_NEG
|- ∀x. tan (-x) = -tan x
TAN_NPI
|- ∀n. tan (&n * pi) = 0
TAN_PI
|- tan pi = 0
TAN_0
|- tan 0 = 0
SIN_ZERO
|- ∀x.
     (sin x = 0) ⇔
     (∃n. EVEN n ∧ (x = &n * (pi / 2))) ∨ ∃n. EVEN n ∧ (x = -(&n * (pi / 2)))
COS_ZERO
|- ∀x.
     (cos x = 0) ⇔
     (∃n. ¬EVEN n ∧ (x = &n * (pi / 2))) ∨
     ∃n. ¬EVEN n ∧ (x = -(&n * (pi / 2)))
SIN_ZERO_LEMMA
|- ∀x. 0 ≤ x ∧ (sin x = 0) ⇒ ∃n. EVEN n ∧ (x = &n * (pi / 2))
COS_ZERO_LEMMA
|- ∀x. 0 ≤ x ∧ (cos x = 0) ⇒ ∃n. ¬EVEN n ∧ (x = &n * (pi / 2))
SIN_TOTAL
|- ∀y. -1 ≤ y ∧ y ≤ 1 ⇒ ∃!x. -(pi / 2) ≤ x ∧ x ≤ pi / 2 ∧ (sin x = y)
COS_TOTAL
|- ∀y. -1 ≤ y ∧ y ≤ 1 ⇒ ∃!x. 0 ≤ x ∧ x ≤ pi ∧ (cos x = y)
SIN_POS_PI_LE
|- ∀x. 0 ≤ x ∧ x ≤ pi ⇒ 0 ≤ sin x
SIN_POS_PI2_LE
|- ∀x. 0 ≤ x ∧ x ≤ pi / 2 ⇒ 0 ≤ sin x
COS_POS_PI_LE
|- ∀x. -(pi / 2) ≤ x ∧ x ≤ pi / 2 ⇒ 0 ≤ cos x
COS_POS_PI2_LE
|- ∀x. 0 ≤ x ∧ x ≤ pi / 2 ⇒ 0 ≤ cos x
SIN_POS_PI
|- ∀x. 0 < x ∧ x < pi ⇒ 0 < sin x
COS_POS_PI
|- ∀x. -(pi / 2) < x ∧ x < pi / 2 ⇒ 0 < cos x
COS_POS_PI2
|- ∀x. 0 < x ∧ x < pi / 2 ⇒ 0 < cos x
SIN_POS_PI2
|- ∀x. 0 < x ∧ x < pi / 2 ⇒ 0 < sin x
SIN_NPI
|- ∀n. sin (&n * pi) = 0
COS_NPI
|- ∀n. cos (&n * pi) = -1 pow n
COS_PERIODIC
|- ∀x. cos (x + 2 * pi) = cos x
SIN_PERIODIC
|- ∀x. sin (x + 2 * pi) = sin x
COS_PERIODIC_PI
|- ∀x. cos (x + pi) = -cos x
SIN_PERIODIC_PI
|- ∀x. sin (x + pi) = -sin x
COS_SIN
|- ∀x. cos x = sin (pi / 2 − x)
SIN_COS
|- ∀x. sin x = cos (pi / 2 − x)
SIN_PI
|- sin pi = 0
COS_PI
|- cos pi = -1
SIN_PI2
|- sin (pi / 2) = 1
PI_POS
|- 0 < pi
PI2_BOUNDS
|- 0 < pi / 2 ∧ pi / 2 < 2
COS_PI2
|- cos (pi / 2) = 0
PI2
|- pi / 2 = @x. 0 ≤ x ∧ x ≤ 2 ∧ (cos x = 0)
COS_ISZERO
|- ∃!x. 0 ≤ x ∧ x ≤ 2 ∧ (cos x = 0)
COS_2
|- cos 2 < 0
COS_PAIRED
|- ∀x. (λn. -1 pow n / &FACT (2 * n) * x pow (2 * n)) sums cos x
SIN_POS
|- ∀x. 0 < x ∧ x < 2 ⇒ 0 < sin x
SIN_PAIRED
|- ∀x. (λn. -1 pow n / &FACT (2 * n + 1) * x pow (2 * n + 1)) sums sin x
COS_DOUBLE
|- ∀x. cos (2 * x) = cos x pow 2 − sin x pow 2
SIN_DOUBLE
|- ∀x. sin (2 * x) = 2 * (sin x * cos x)
COS_NEG
|- ∀x. cos (-x) = cos x
SIN_NEG
|- ∀x. sin (-x) = -sin x
COS_ADD
|- ∀x y. cos (x + y) = cos x * cos y − sin x * sin y
SIN_ADD
|- ∀x y. sin (x + y) = sin x * cos y + cos x * sin y
SIN_COS_NEG
|- ∀x. (sin (-x) + sin x) pow 2 + (cos (-x) − cos x) pow 2 = 0
SIN_COS_ADD
|- ∀x y.
     (sin (x + y) − (sin x * cos y + cos x * sin y)) pow 2 +
     (cos (x + y) − (cos x * cos y − sin x * sin y)) pow 2 =
     0
COS_BOUNDS
|- ∀x. -1 ≤ cos x ∧ cos x ≤ 1
COS_BOUND
|- ∀x. abs (cos x) ≤ 1
SIN_BOUNDS
|- ∀x. -1 ≤ sin x ∧ sin x ≤ 1
SIN_BOUND
|- ∀x. abs (sin x) ≤ 1
SIN_CIRCLE
|- ∀x. sin x pow 2 + cos x pow 2 = 1
COS_0
|- cos 0 = 1
SIN_0
|- sin 0 = 0
SQRT_EQ
|- ∀x y. (x pow 2 = y) ∧ 0 ≤ x ⇒ (x = sqrt y)
REAL_DIV_SQRT
|- ∀x. 0 ≤ x ⇒ (x / sqrt x = sqrt x)
SQRT_EVEN_POW2
|- ∀n. EVEN n ⇒ (sqrt (2 pow n) = 2 pow (n DIV 2))
SQRT_MONO_LE
|- ∀x y. 0 ≤ x ∧ x ≤ y ⇒ sqrt x ≤ sqrt y
SQRT_DIV
|- ∀x y. 0 ≤ x ∧ 0 ≤ y ⇒ (sqrt (x / y) = sqrt x / sqrt y)
SQRT_INV
|- ∀x. 0 ≤ x ⇒ (sqrt (inv x) = inv (sqrt x))
SQRT_MUL
|- ∀x y. 0 ≤ x ∧ 0 ≤ y ⇒ (sqrt (x * y) = sqrt x * sqrt y)
SQRT_POS_UNIQ
|- ∀x y. 0 ≤ x ∧ 0 ≤ y ∧ (y pow 2 = x) ⇒ (sqrt x = y)
POW_2_SQRT
|- 0 ≤ x ⇒ (sqrt (x pow 2) = x)
SQRT_POW_2
|- ∀x. 0 ≤ x ⇒ (sqrt x pow 2 = x)
SQRT_POW2
|- ∀x. (sqrt x pow 2 = x) ⇔ 0 ≤ x
SQRT_POS_LE
|- ∀x. 0 ≤ x ⇒ 0 ≤ sqrt x
SQRT_POS_LT
|- ∀x. 0 < x ⇒ 0 < sqrt x
SQRT_1
|- sqrt 1 = 1
SQRT_0
|- sqrt 0 = 0
ROOT_MONO_LE
|- ∀x y. 0 ≤ x ∧ x ≤ y ⇒ root (SUC n) x ≤ root (SUC n) y
ROOT_DIV
|- ∀n x y.
     0 ≤ x ∧ 0 ≤ y ⇒ (root (SUC n) (x / y) = root (SUC n) x / root (SUC n) y)
ROOT_INV
|- ∀n x. 0 ≤ x ⇒ (root (SUC n) (inv x) = inv (root (SUC n) x))
ROOT_MUL
|- ∀n x y.
     0 ≤ x ∧ 0 ≤ y ⇒ (root (SUC n) (x * y) = root (SUC n) x * root (SUC n) y)
ROOT_POS_UNIQ
|- ∀n x y. 0 ≤ x ∧ 0 ≤ y ∧ (y pow SUC n = x) ⇒ (root (SUC n) x = y)
ROOT_POS
|- ∀n x. 0 ≤ x ⇒ 0 ≤ root (SUC n) x
POW_ROOT_POS
|- ∀n x. 0 ≤ x ⇒ (root (SUC n) (x pow SUC n) = x)
ROOT_POW_POS
|- ∀n x. 0 ≤ x ⇒ (root (SUC n) x pow SUC n = x)
ROOT_POS_LT
|- ∀n x. 0 < x ⇒ 0 < root (SUC n) x
ROOT_1
|- ∀n. root (SUC n) 1 = 1
ROOT_0
|- ∀n. root (SUC n) 0 = 0
ROOT_LN
|- ∀n x. 0 < x ⇒ (root (SUC n) x = exp (ln x / &SUC n))
ROOT_LT_LEMMA
|- ∀n x. 0 < x ⇒ (exp (ln x / &SUC n) pow SUC n = x)
EXP_CONVERGES
|- ∀x. (λn. (λn. inv (&FACT n)) n * x pow n) sums exp x
SIN_CONVERGES
|- ∀x.
     (λn.
        (λn. if EVEN n then 0 else -1 pow ((n − 1) DIV 2) / &FACT n) n *
        x pow n) sums sin x
COS_CONVERGES
|- ∀x.
     (λn.
        (λn. if EVEN n then -1 pow (n DIV 2) / &FACT n else 0) n *
        x pow n) sums cos x
EXP_FDIFF
|- diffs (λn. inv (&FACT n)) = (λn. inv (&FACT n))
SIN_FDIFF
|- diffs (λn. if EVEN n then 0 else -1 pow ((n − 1) DIV 2) / &FACT n) =
   (λn. if EVEN n then -1 pow (n DIV 2) / &FACT n else 0)
COS_FDIFF
|- diffs (λn. if EVEN n then -1 pow (n DIV 2) / &FACT n else 0) =
   (λn. -(λn. if EVEN n then 0 else -1 pow ((n − 1) DIV 2) / &FACT n) n)
SIN_NEGLEMMA
|- ∀x.
     -sin x =
     suminf
       (λn.
          -((λn. if EVEN n then 0 else -1 pow ((n − 1) DIV 2) / &FACT n) n *
            x pow n))
DIFF_EXP
|- ∀x. (exp diffl exp x) x
DIFF_SIN
|- ∀x. (sin diffl cos x) x
DIFF_COS
|- ∀x. (cos diffl -sin x) x
DIFF_COMPOSITE
|- ((f diffl l) x ∧ f x ≠ 0 ⇒ ((λx. inv (f x)) diffl -(l / f x pow 2)) x) ∧
   ((f diffl l) x ∧ (g diffl m) x ∧ g x ≠ 0 ⇒
    ((λx. f x / g x) diffl ((l * g x − m * f x) / g x pow 2)) x) ∧
   ((f diffl l) x ∧ (g diffl m) x ⇒ ((λx. f x + g x) diffl (l + m)) x) ∧
   ((f diffl l) x ∧ (g diffl m) x ⇒
    ((λx. f x * g x) diffl (l * g x + m * f x)) x) ∧
   ((f diffl l) x ∧ (g diffl m) x ⇒ ((λx. f x − g x) diffl (l − m)) x) ∧
   ((f diffl l) x ⇒ ((λx. -f x) diffl -l) x) ∧
   ((g diffl m) x ⇒ ((λx. g x pow n) diffl (&n * g x pow (n − 1) * m)) x) ∧
   ((g diffl m) x ⇒ ((λx. exp (g x)) diffl (exp (g x) * m)) x) ∧
   ((g diffl m) x ⇒ ((λx. sin (g x)) diffl (cos (g x) * m)) x) ∧
   ((g diffl m) x ⇒ ((λx. cos (g x)) diffl (-sin (g x) * m)) x)
EXP_0
|- exp 0 = 1
EXP_LE_X
|- ∀x. 0 ≤ x ⇒ 1 + x ≤ exp x
EXP_LT_1
|- ∀x. 0 < x ⇒ 1 < exp x
EXP_ADD_MUL
|- ∀x y. exp (x + y) * exp (-x) = exp y
EXP_NEG_MUL
|- ∀x. exp x * exp (-x) = 1
EXP_NEG_MUL2
|- ∀x. exp (-x) * exp x = 1
EXP_NEG
|- ∀x. exp (-x) = inv (exp x)
EXP_ADD
|- ∀x y. exp (x + y) = exp x * exp y
EXP_POS_LE
|- ∀x. 0 ≤ exp x
EXP_NZ
|- ∀x. exp x ≠ 0
EXP_POS_LT
|- ∀x. 0 < exp x
EXP_N
|- ∀n x. exp (&n * x) = exp x pow n
EXP_SUB
|- ∀x y. exp (x − y) = exp x / exp y
EXP_MONO_IMP
|- ∀x y. x < y ⇒ exp x < exp y
EXP_MONO_LT
|- ∀x y. exp x < exp y ⇔ x < y
EXP_MONO_LE
|- ∀x y. exp x ≤ exp y ⇔ x ≤ y
EXP_INJ
|- ∀x y. (exp x = exp y) ⇔ (x = y)
EXP_TOTAL_LEMMA
|- ∀y. 1 ≤ y ⇒ ∃x. 0 ≤ x ∧ x ≤ y − 1 ∧ (exp x = y)
EXP_TOTAL
|- ∀y. 0 < y ⇒ ∃x. exp x = y
LN_EXP
|- ∀x. ln (exp x) = x
EXP_LN
|- ∀x. (exp (ln x) = x) ⇔ 0 < x
LN_MUL
|- ∀x y. 0 < x ∧ 0 < y ⇒ (ln (x * y) = ln x + ln y)
LN_INJ
|- ∀x y. 0 < x ∧ 0 < y ⇒ ((ln x = ln y) ⇔ (x = y))
LN_1
|- ln 1 = 0
LN_INV
|- ∀x. 0 < x ⇒ (ln (inv x) = -ln x)
LN_DIV
|- ∀x y. 0 < x ∧ 0 < y ⇒ (ln (x / y) = ln x − ln y)
LN_MONO_LT
|- ∀x y. 0 < x ∧ 0 < y ⇒ (ln x < ln y ⇔ x < y)
LN_MONO_LE
|- ∀x y. 0 < x ∧ 0 < y ⇒ (ln x ≤ ln y ⇔ x ≤ y)
LN_POW
|- ∀n x. 0 < x ⇒ (ln (x pow n) = &n * ln x)
LN_LE
|- ∀x. 0 ≤ x ⇒ ln (1 + x) ≤ x
LN_LT_X
|- ∀x. 0 < x ⇒ ln x < x
LN_POS
|- ∀x. 1 ≤ x ⇒ 0 ≤ ln x
DIFF_LN
|- ∀x. 0 < x ⇒ (ln diffl inv x) x
DIFF_ASN_LEMMA
|- ∀x. -1 < x ∧ x < 1 ⇒ (asn diffl inv (cos (asn x))) x
DIFF_ASN
|- ∀x. -1 < x ∧ x < 1 ⇒ (asn diffl inv (sqrt (1 − x pow 2))) x
DIFF_ACS_LEMMA
|- ∀x. -1 < x ∧ x < 1 ⇒ (acs diffl inv (-sin (acs x))) x
DIFF_ACS
|- ∀x. -1 < x ∧ x < 1 ⇒ (acs diffl -inv (sqrt (1 − x pow 2))) x
DIFF_ATN
|- ∀x. (atn diffl inv (1 + x pow 2)) x
DIVISION_0
|- ∀a b. (a = b) ⇒ (dsize (λn. if n = 0 then a else b) = 0)
DIVISION_1
|- ∀a b. a < b ⇒ (dsize (λn. if n = 0 then a else b) = 1)
DIVISION_SINGLE
|- ∀a b. a ≤ b ⇒ division (a,b) (λn. if n = 0 then a else b)
DIVISION_LHS
|- ∀D a b. division (a,b) D ⇒ (D 0 = a)
DIVISION_THM
|- ∀D a b.
     division (a,b) D ⇔
     (D 0 = a) ∧ (∀n. n < dsize D ⇒ D n < D (SUC n)) ∧
     ∀n. n ≥ dsize D ⇒ (D n = b)
DIVISION_RHS
|- ∀D a b. division (a,b) D ⇒ (D (dsize D) = b)
DIVISION_LT_GEN
|- ∀D a b m n. division (a,b) D ∧ m < n ∧ n ≤ dsize D ⇒ D m < D n
DIVISION_LT
|- ∀D a b. division (a,b) D ⇒ ∀n. n < dsize D ⇒ D 0 < D (SUC n)
DIVISION_LE
|- ∀D a b. division (a,b) D ⇒ a ≤ b
DIVISION_GT
|- ∀D a b. division (a,b) D ⇒ ∀n. n < dsize D ⇒ D n < D (dsize D)
DIVISION_EQ
|- ∀D a b. division (a,b) D ⇒ ((a = b) ⇔ (dsize D = 0))
DIVISION_LBOUND
|- ∀D a b. division (a,b) D ⇒ ∀r. a ≤ D r
DIVISION_LBOUND_LT
|- ∀D a b. division (a,b) D ∧ dsize D ≠ 0 ⇒ ∀n. a < D (SUC n)
DIVISION_UBOUND
|- ∀D a b. division (a,b) D ⇒ ∀r. D r ≤ b
DIVISION_UBOUND_LT
|- ∀D a b n. division (a,b) D ∧ n < dsize D ⇒ D n < b
DIVISION_APPEND
|- ∀a b c.
     (∃D1 p1. tdiv (a,b) (D1,p1) ∧ fine g (D1,p1)) ∧
     (∃D2 p2. tdiv (b,c) (D2,p2) ∧ fine g (D2,p2)) ⇒
     ∃D p. tdiv (a,c) (D,p) ∧ fine g (D,p)
DIVISION_EXISTS
|- ∀a b g.
     a ≤ b ∧ gauge (λx. a ≤ x ∧ x ≤ b) g ⇒
     ∃D p. tdiv (a,b) (D,p) ∧ fine g (D,p)
GAUGE_MIN
|- ∀E g1 g2.
     gauge E g1 ∧ gauge E g2 ⇒
     gauge E (λx. if g1 x < g2 x then g1 x else g2 x)
FINE_MIN
|- ∀g1 g2 D p.
     fine (λx. if g1 x < g2 x then g1 x else g2 x) (D,p) ⇒
     fine g1 (D,p) ∧ fine g2 (D,p)
DINT_UNIQ
|- ∀a b f k1 k2. a ≤ b ∧ Dint (a,b) f k1 ∧ Dint (a,b) f k2 ⇒ (k1 = k2)
INTEGRAL_NULL
|- ∀f a. Dint (a,a) f 0
FTC1
|- ∀f f' a b.
     a ≤ b ∧ (∀x. a ≤ x ∧ x ≤ b ⇒ (f diffl f' x) x) ⇒
     Dint (a,b) f' (f b − f a)
MCLAURIN
|- ∀f diff h n.
     0 < h ∧ 0 < n ∧ (diff 0 = f) ∧
     (∀m t. m < n ∧ 0 ≤ t ∧ t ≤ h ⇒ (diff m diffl diff (SUC m) t) t) ⇒
     ∃t.
       0 < t ∧ t < h ∧
       (f h =
        sum (0,n) (λm. diff m 0 / &FACT m * h pow m) +
        diff n t / &FACT n * h pow n)
MCLAURIN_NEG
|- ∀f diff h n.
     h < 0 ∧ 0 < n ∧ (diff 0 = f) ∧
     (∀m t. m < n ∧ h ≤ t ∧ t ≤ 0 ⇒ (diff m diffl diff (SUC m) t) t) ⇒
     ∃t.
       h < t ∧ t < 0 ∧
       (f h =
        sum (0,n) (λm. diff m 0 / &FACT m * h pow m) +
        diff n t / &FACT n * h pow n)
MCLAURIN_ALL_LT
|- ∀f diff.
     (diff 0 = f) ∧ (∀m x. (diff m diffl diff (SUC m) x) x) ⇒
     ∀x n.
       x ≠ 0 ∧ 0 < n ⇒
       ∃t.
         0 < abs t ∧ abs t < abs x ∧
         (f x =
          sum (0,n) (λm. diff m 0 / &FACT m * x pow m) +
          diff n t / &FACT n * x pow n)
MCLAURIN_ZERO
|- ∀diff n x.
     (x = 0) ∧ 0 < n ⇒
     (sum (0,n) (λm. diff m 0 / &FACT m * x pow m) = diff 0 0)
MCLAURIN_ALL_LE
|- ∀f diff.
     (diff 0 = f) ∧ (∀m x. (diff m diffl diff (SUC m) x) x) ⇒
     ∀x n.
       ∃t.
         abs t ≤ abs x ∧
         (f x =
          sum (0,n) (λm. diff m 0 / &FACT m * x pow m) +
          diff n t / &FACT n * x pow n)
MCLAURIN_EXP_LT
|- ∀x n.
     x ≠ 0 ∧ 0 < n ⇒
     ∃t.
       0 < abs t ∧ abs t < abs x ∧
       (exp x = sum (0,n) (λm. x pow m / &FACT m) + exp t / &FACT n * x pow n)
MCLAURIN_EXP_LE
|- ∀x n.
     ∃t.
       abs t ≤ abs x ∧
       (exp x = sum (0,n) (λm. x pow m / &FACT m) + exp t / &FACT n * x pow n)
DIFF_LN_COMPOSITE
|- ∀g m x. (g diffl m) x ∧ 0 < g x ⇒ ((λx. ln (g x)) diffl (inv (g x) * m)) x
GEN_RPOW
|- ∀a n. 0 < a ⇒ (a pow n = a rpow &n)
RPOW_SUC_N
|- ∀a n. 0 < a ⇒ (a rpow (&n + 1) = a pow SUC n)
RPOW_0
|- ∀a. 0 < a ⇒ (a rpow 0 = 1)
RPOW_1
|- ∀a. 0 < a ⇒ (a rpow 1 = a)
ONE_RPOW
|- ∀a. 0 < a ⇒ (1 rpow a = 1)
RPOW_POS_LT
|- ∀a b. 0 < a ⇒ 0 < a rpow b
RPOW_NZ
|- ∀a b. 0 ≠ a ⇒ a rpow b ≠ 0
LN_RPOW
|- ∀a b. 0 < a ⇒ (ln (a rpow b) = b * ln a)
RPOW_ADD
|- ∀a b c. a rpow (b + c) = a rpow b * a rpow c
RPOW_ADD_MUL
|- ∀a b c. a rpow (b + c) * a rpow -b = a rpow c
RPOW_SUB
|- ∀a b c. a rpow (b − c) = a rpow b / a rpow c
RPOW_DIV
|- ∀a b c. 0 < a ∧ 0 < b ⇒ ((a / b) rpow c = a rpow c / b rpow c)
RPOW_INV
|- ∀a b. 0 < a ⇒ (inv a rpow b = inv (a rpow b))
RPOW_MUL
|- ∀a b c. 0 < a ∧ 0 < b ⇒ ((a * b) rpow c = a rpow c * b rpow c)
RPOW_RPOW
|- ∀a b c. 0 < a ⇒ ((a rpow b) rpow c = a rpow (b * c))
RPOW_LT
|- ∀a b c. 1 < a ⇒ (a rpow b < a rpow c ⇔ b < c)
RPOW_LE
|- ∀a b c. 1 < a ⇒ (a rpow b ≤ a rpow c ⇔ b ≤ c)
BASE_RPOW_LE
|- ∀a b c. 0 < a ∧ 0 < c ∧ 0 < b ⇒ (a rpow b ≤ c rpow b ⇔ a ≤ c)
BASE_RPOW_LT
|- ∀a b c. 0 < a ∧ 0 < c ∧ 0 < b ⇒ (a rpow b < c rpow b ⇔ a < c)
RPOW_UNIQ_BASE
|- ∀a b c. 0 < a ∧ 0 < c ∧ 0 ≠ b ∧ (a rpow b = c rpow b) ⇒ (a = c)
RPOW_UNIQ_EXP
|- ∀a b c. 1 < a ∧ 0 < c ∧ 0 < b ∧ (a rpow b = a rpow c) ⇒ (b = c)
RPOW_DIV_BASE
|- ∀x t. 0 < x ⇒ (x rpow t / x = x rpow (t − 1))
DIFF_COMPOSITE_EXP
|- ∀g m x. (g diffl m) x ⇒ ((λx. exp (g x)) diffl (exp (g x) * m)) x
DIFF_RPOW
|- ∀x y. 0 < x ⇒ ((λx. x rpow y) diffl (y * x rpow (y − 1))) x