Theory "util_prob"

Parents     real_sigma

Signature

Constant Type
DFUNSET :(α -> bool) -> (α -> β -> bool) -> (α -> β) -> bool
FUNSET :(α -> bool) -> (β -> bool) -> (α -> β) -> bool
PREIMAGE :(α -> β) -> (β -> bool) -> α -> bool
countable :(α -> bool) -> bool
enumerate :(α -> bool) -> num -> α
lg :real -> real
logr :real -> real -> real
minimal :(num -> bool) -> num
pair :(α -> bool) -> (β -> bool) -> α # β -> bool
powr :real -> real -> real
prod_sets :((α -> bool) -> bool) -> ((β -> bool) -> bool) -> (α # β -> bool) -> bool
schroeder_close :(α -> α) -> (α -> bool) -> α -> bool

Definitions

FUNSET_def
|- ∀P Q. P -> Q = (λf. ∀x. x ∈ P ⇒ f x ∈ Q)
DFUNSET_def
|- ∀P Q. P --> Q = (λf. ∀x. x ∈ P ⇒ f x ∈ Q x)
pair_def
|- ∀X Y. pair X Y = (λ(x,y). x ∈ X ∧ y ∈ Y)
powr_def
|- ∀x a. x powr a = exp (a * ln x)
logr_def
|- ∀a x. logr a x = ln x / ln a
lg_def
|- ∀x. lg x = logr 2 x
countable_def
|- ∀s. countable s ⇔ ∃f. ∀x. x ∈ s ⇒ ∃n. f n = x
enumerate_def
|- ∀s. enumerate s = @f. BIJ f 𝕌(:num) s
schroeder_close_def
|- ∀f s x. schroeder_close f s x ⇔ ∃n. x ∈ FUNPOW (IMAGE f) n s
PREIMAGE_def
|- ∀f s. PREIMAGE f s = {x | f x ∈ s}
prod_sets_def
|- ∀a b. prod_sets a b = {s × t | s ∈ a ∧ t ∈ b}
minimal_def
|- ∀p. minimal p = @n. p n ∧ ∀m. m < n ⇒ ¬p m


Theorems

EQ_T_IMP
|- ∀x. x ⇔ T ⇒ x
EQ_SUBSET_SUBSET
|- ∀s t. (s = t) ⇒ s ⊆ t ∧ t ⊆ s
IN_EQ_UNIV_IMP
|- ∀s. (s = 𝕌(:α)) ⇒ ∀v. v ∈ s
IN_FUNSET
|- ∀f P Q. f ∈ (P -> Q) ⇔ ∀x. x ∈ P ⇒ f x ∈ Q
IN_DFUNSET
|- ∀f P Q. f ∈ P --> Q ⇔ ∀x. x ∈ P ⇒ f x ∈ Q x
IN_PAIR
|- ∀x X Y. x ∈ pair X Y ⇔ FST x ∈ X ∧ SND x ∈ Y
FUNSET_THM
|- ∀s t f x. f ∈ (s -> t) ∧ x ∈ s ⇒ f x ∈ t
UNIV_FUNSET_UNIV
|- 𝕌(:α) -> 𝕌(:β) = 𝕌(:α -> β)
FUNSET_DFUNSET
|- ∀x y. x -> y = x --> K y
PAIR_UNIV
|- pair 𝕌(:α) 𝕌(:β) = 𝕌(:α # β)
SUBSET_INTER
|- ∀s t u. s ⊆ t ∩ u ⇔ s ⊆ t ∧ s ⊆ u
K_SUBSET
|- ∀x y. K x ⊆ y ⇔ ¬x ∨ 𝕌(:α) ⊆ y
SUBSET_K
|- ∀x y. x ⊆ K y ⇔ x ⊆ ∅ ∨ y
SUBSET_THM
|- ∀P Q. P ⊆ Q ⇒ ∀x. x ∈ P ⇒ x ∈ Q
PAIRED_BETA_THM
|- ∀f z. UNCURRY f z = f (FST z) (SND z)
EMPTY_FUNSET
|- ∀s. ∅ -> s = 𝕌(:α -> β)
FUNSET_EMPTY
|- ∀s f. f ∈ (s -> ∅) ⇔ (s = ∅)
MAX_LE_X
|- ∀m n k. MAX m n ≤ k ⇔ m ≤ k ∧ n ≤ k
X_LE_MAX
|- ∀m n k. k ≤ MAX m n ⇔ k ≤ m ∨ k ≤ n
TRANSFORM_2D_NUM
|- ∀P. (∀m n. P m n ⇒ P n m) ∧ (∀m n. P m (m + n)) ⇒ ∀m n. P m n
TRIANGLE_2D_NUM
|- ∀P. (∀d n. P n (d + n)) ⇒ ∀m n. m ≤ n ⇒ P m n
lg_1
|- lg 1 = 0
logr_1
|- ∀b. logr b 1 = 0
lg_nonzero
|- ∀x. x ≠ 0 ∧ 0 ≤ x ⇒ (lg x ≠ 0 ⇔ x ≠ 1)
lg_mul
|- ∀x y. 0 < x ∧ 0 < y ⇒ (lg (x * y) = lg x + lg y)
logr_mul
|- ∀b x y. 0 < x ∧ 0 < y ⇒ (logr b (x * y) = logr b x + logr b y)
lg_2
|- lg 2 = 1
lg_inv
|- ∀x. 0 < x ⇒ (lg (inv x) = -lg x)
logr_inv
|- ∀b x. 0 < x ⇒ (logr b (inv x) = -logr b x)
logr_div
|- ∀b x y. 0 < x ∧ 0 < y ⇒ (logr b (x / y) = logr b x − logr b y)
neg_lg
|- ∀x. 0 < x ⇒ (-lg x = lg (inv x))
neg_logr
|- ∀b x. 0 < x ⇒ (-logr b x = logr b (inv x))
lg_pow
|- ∀n. lg (2 pow n) = &n
SCHROEDER_CLOSE
|- ∀f s. x ∈ schroeder_close f s ⇔ ∃n. x ∈ FUNPOW (IMAGE f) n s
SCHROEDER_CLOSED
|- ∀f s. IMAGE f (schroeder_close f s) ⊆ schroeder_close f s
SCHROEDER_CLOSE_SUBSET
|- ∀f s. s ⊆ schroeder_close f s
SCHROEDER_CLOSE_SET
|- ∀f s t. f ∈ (s -> s) ∧ t ⊆ s ⇒ schroeder_close f t ⊆ s
SCHROEDER_BERNSTEIN_AUTO
|- ∀s t. t ⊆ s ∧ (∃f. INJ f s t) ⇒ ∃g. BIJ g s t
INJ_IMAGE_BIJ
|- ∀s f. (∃t. INJ f s t) ⇒ BIJ f s (IMAGE f s)
BIJ_SYM_IMP
|- ∀s t. (∃f. BIJ f s t) ⇒ ∃g. BIJ g t s
BIJ_SYM
|- ∀s t. (∃f. BIJ f s t) ⇔ ∃g. BIJ g t s
BIJ_TRANS
|- ∀s t u. (∃f. BIJ f s t) ∧ (∃g. BIJ g t u) ⇒ ∃h. BIJ h s u
SCHROEDER_BERNSTEIN
|- ∀s t. (∃f. INJ f s t) ∧ (∃g. INJ g t s) ⇒ ∃h. BIJ h s t
SURJ_IMP_INJ
|- ∀s t. (∃f. SURJ f s t) ⇒ ∃g. INJ g t s
BIJ_INJ_SURJ
|- ∀s t. (∃f. INJ f s t) ∧ (∃g. SURJ g s t) ⇒ ∃h. BIJ h s t
BIJ_INV
|- ∀f s t.
     BIJ f s t ⇒
     ∃g.
       BIJ g t s ∧ (∀x. x ∈ s ⇒ ((g o f) x = x)) ∧ ∀x. x ∈ t ⇒ ((f o g) x = x)
NUM_2D_BIJ
|- ∃f. BIJ f (𝕌(:num) × 𝕌(:num)) 𝕌(:num)
NUM_2D_BIJ_INV
|- ∃f. BIJ f 𝕌(:num) (𝕌(:num) × 𝕌(:num))
NUM_2D_BIJ_NZ
|- ∃f. BIJ f (𝕌(:num) × (𝕌(:num) DIFF {0})) 𝕌(:num)
NUM_2D_BIJ_NZ_INV
|- ∃f. BIJ f 𝕌(:num) (𝕌(:num) × (𝕌(:num) DIFF {0}))
NUM_2D_BIJ_NZ_ALT
|- ∃f. BIJ f (𝕌(:num) × 𝕌(:num)) (𝕌(:num) DIFF {0})
NUM_2D_BIJ_NZ_ALT_INV
|- ∃f. BIJ f (𝕌(:num) DIFF {0}) (𝕌(:num) × 𝕌(:num))
NUM_2D_BIJ_NZ_ALT2
|- ∃f. BIJ f ((𝕌(:num) DIFF {0}) × (𝕌(:num) DIFF {0})) 𝕌(:num)
NUM_2D_BIJ_NZ_ALT2_INV
|- ∃f. BIJ f 𝕌(:num) ((𝕌(:num) DIFF {0}) × (𝕌(:num) DIFF {0}))
BIGUNION_PAIR
|- ∀s t. BIGUNION {s; t} = s ∪ t
FINITE_COUNTABLE
|- ∀s. FINITE s ⇒ countable s
BIJ_NUM_COUNTABLE
|- ∀s. (∃f. BIJ f 𝕌(:num) s) ⇒ countable s
COUNTABLE_EMPTY
|- countable ∅
COUNTABLE_IMAGE
|- ∀s f. countable s ⇒ countable (IMAGE f s)
COUNTABLE_BIGUNION
|- ∀c. countable c ∧ (∀s. s ∈ c ⇒ countable s) ⇒ countable (BIGUNION c)
COUNTABLE_UNION
|- ∀s t. countable s ∧ countable t ⇒ countable (s ∪ t)
FINITE_INJ
|- ∀f s t. INJ f s t ∧ FINITE t ⇒ FINITE s
INFINITE_INJ
|- ∀f s t. INJ f s t ∧ INFINITE s ⇒ INFINITE t
ENUMERATE
|- ∀s. (∃f. BIJ f 𝕌(:num) s) ⇔ BIJ (enumerate s) 𝕌(:num) s
FINITE_REST
|- ∀s. FINITE (REST s) ⇔ FINITE s
EXPLICIT_ENUMERATE_MONO
|- ∀n s. FUNPOW REST n s ⊆ s
EXPLICIT_ENUMERATE_NOT_EMPTY
|- ∀n s. INFINITE s ⇒ FUNPOW REST n s ≠ ∅
INFINITE_EXPLICIT_ENUMERATE
|- ∀s. INFINITE s ⇒ INJ (λn. CHOICE (FUNPOW REST n s)) 𝕌(:num) s
COUNTABLE_ALT
|- ∀s. countable s ⇔ FINITE s ∨ BIJ (enumerate s) 𝕌(:num) s
DISJOINT_COUNT
|- ∀f.
     (∀m n. m ≠ n ⇒ DISJOINT (f m) (f n)) ⇒
     ∀n. DISJOINT (f n) (BIGUNION (IMAGE f (count n)))
K_PARTIAL
|- ∀x. K x = (λz. x)
IN_o
|- ∀x f s. x ∈ s o f ⇔ f x ∈ s
PREIMAGE_ALT
|- ∀f s. PREIMAGE f s = s o f
IN_PREIMAGE
|- ∀f s x. x ∈ PREIMAGE f s ⇔ f x ∈ s
IN_BIGUNION_IMAGE
|- ∀f s y. y ∈ BIGUNION (IMAGE f s) ⇔ ∃x. x ∈ s ∧ y ∈ f x
IN_BIGINTER_IMAGE
|- ∀x f s. x ∈ BIGINTER (IMAGE f s) ⇔ ∀y. y ∈ s ⇒ x ∈ f y
PREIMAGE_EMPTY
|- ∀f. PREIMAGE f ∅ = ∅
PREIMAGE_UNIV
|- ∀f. PREIMAGE f 𝕌(:β) = 𝕌(:α)
PREIMAGE_COMPL
|- ∀f s. PREIMAGE f (COMPL s) = COMPL (PREIMAGE f s)
PREIMAGE_UNION
|- ∀f s t. PREIMAGE f (s ∪ t) = PREIMAGE f s ∪ PREIMAGE f t
PREIMAGE_INTER
|- ∀f s t. PREIMAGE f (s ∩ t) = PREIMAGE f s ∩ PREIMAGE f t
PREIMAGE_BIGUNION
|- ∀f s. PREIMAGE f (BIGUNION s) = BIGUNION (IMAGE (PREIMAGE f) s)
PREIMAGE_COMP
|- ∀f g s. PREIMAGE f (PREIMAGE g s) = PREIMAGE (g o f) s
PREIMAGE_DIFF
|- ∀f s t. PREIMAGE f (s DIFF t) = PREIMAGE f s DIFF PREIMAGE f t
PREIMAGE_I
|- PREIMAGE I = I
IMAGE_I
|- IMAGE I = I
PREIMAGE_K
|- ∀x s. PREIMAGE (K x) s = if x ∈ s then 𝕌(:β) else ∅
PREIMAGE_DISJOINT
|- ∀f s t. DISJOINT s t ⇒ DISJOINT (PREIMAGE f s) (PREIMAGE f t)
PREIMAGE_SUBSET
|- ∀f s t. s ⊆ t ⇒ PREIMAGE f s ⊆ PREIMAGE f t
SUBSET_ADD
|- ∀f n d. (∀n. f n ⊆ f (SUC n)) ⇒ f n ⊆ f (n + d)
DISJOINT_DIFFS
|- ∀f m n.
     (∀n. f n ⊆ f (SUC n)) ∧ (∀n. g n = f (SUC n) DIFF f n) ∧ m ≠ n ⇒
     DISJOINT (g m) (g n)
IMAGE_IMAGE
|- ∀f g s. IMAGE f (IMAGE g s) = IMAGE (f o g) s
IN_PROD_SETS
|- ∀s a b. s ∈ prod_sets a b ⇔ ∃t u. (s = t × u) ∧ t ∈ a ∧ u ∈ b
PREIMAGE_CROSS
|- ∀f a b. PREIMAGE f (a × b) = PREIMAGE (FST o f) a ∩ PREIMAGE (SND o f) b
FUNSET_INTER
|- ∀a b c. a -> b ∩ c = (a -> b) ∩ (a -> c)
UNIV_NEQ_EMPTY
|- 𝕌(:α) ≠ ∅
COUNTABLE_NUM
|- ∀s. countable s
COUNTABLE_IMAGE_NUM
|- ∀f s. countable (IMAGE f s)
COUNTABLE_ENUM
|- ∀c. countable c ⇔ (c = ∅) ∨ ∃f. c = IMAGE f 𝕌(:num)
BIGUNION_IMAGE_UNIV
|- ∀f N.
     (∀n. N ≤ n ⇒ (f n = ∅)) ⇒
     (BIGUNION (IMAGE f 𝕌(:num)) = BIGUNION (IMAGE f (count N)))
BIJ_ALT
|- ∀f s t. BIJ f s t ⇔ f ∈ (s -> t) ∧ ∀y::t. ∃!x::s. y = f x
BIJ_FINITE_SUBSET
|- ∀f s t. BIJ f 𝕌(:num) s ∧ FINITE t ∧ t ⊆ s ⇒ ∃N. ∀n. N ≤ n ⇒ f n ∉ t
NUM_2D_BIJ_SMALL_SQUARE
|- ∀f k.
     BIJ f 𝕌(:num) (𝕌(:num) × 𝕌(:num)) ⇒
     ∃N. count k × count k ⊆ IMAGE f (count N)
NUM_2D_BIJ_BIG_SQUARE
|- ∀f N.
     BIJ f 𝕌(:num) (𝕌(:num) × 𝕌(:num)) ⇒
     ∃k. IMAGE f (count N) ⊆ count k × count k
finite_enumeration_of_sets_has_max_non_empty
|- ∀f s.
     FINITE s ∧ (∀x. f x ∈ s) ∧ (∀m n. m ≠ n ⇒ DISJOINT (f m) (f n)) ⇒
     ∃N. ∀n. n ≥ N ⇒ (f n = ∅)
SUBSET_INTER1
|- ∀s t. s ⊆ t ⇒ (s ∩ t = s)
SUBSET_INTER2
|- ∀s t. s ⊆ t ⇒ (t ∩ s = s)
DIFF_DIFF_SUBSET
|- ∀s t. t ⊆ s ⇒ (s DIFF (s DIFF t) = t)
BIGINTER_SUBSET
|- ∀sp s. (∀t. t ∈ s ⇒ t ⊆ sp) ∧ s ≠ ∅ ⇒ BIGINTER s ⊆ sp
DIFF_BIGINTER1
|- ∀sp s. sp DIFF BIGINTER s = BIGUNION (IMAGE (λu. sp DIFF u) s)
DIFF_BIGINTER
|- ∀sp s.
     (∀t. t ∈ s ⇒ t ⊆ sp) ∧ s ≠ ∅ ⇒
     (BIGINTER s = sp DIFF BIGUNION (IMAGE (λu. sp DIFF u) s))
DIFF_INTER
|- ∀s t g. (s DIFF t) ∩ g = s ∩ g DIFF t
DIFF_INTER2
|- ∀s t. s DIFF t ∩ s = s DIFF t
PREIMAGE_COMPL_INTER
|- ∀f t sp. PREIMAGE f (COMPL t) ∩ sp = sp DIFF PREIMAGE f t
PREIMAGE_REAL_COMPL1
|- ∀c. COMPL {x | c < x} = {x | x ≤ c}
PREIMAGE_REAL_COMPL2
|- ∀c. COMPL {x | c ≤ x} = {x | x < c}
PREIMAGE_REAL_COMPL3
|- ∀c. COMPL {x | x ≤ c} = {x | c < x}
PREIMAGE_REAL_COMPL4
|- ∀c. COMPL {x | x < c} = {x | c ≤ x}
ELT_IN_DELETE
|- ∀x s. x ∉ s DELETE x
DELETE_THEN_INSERT
|- ∀s (x::s). x INSERT s DELETE x = s
BIJ_INSERT
|- ∀f e s t.
     e ∉ s ∧ BIJ f (e INSERT s) t ⇒
     ∃u. (f e INSERT u = t) ∧ f e ∉ u ∧ BIJ f s u
FINITE_BIJ
|- ∀f s t. FINITE s ∧ BIJ f s t ⇒ FINITE t ∧ (CARD s = CARD t)
FINITE_BIJ_COUNT
|- ∀s. FINITE s ⇔ ∃c n. BIJ c (count n) s
GBIGUNION_IMAGE
|- ∀s p n. {s | ∃n. p s n} = BIGUNION (IMAGE (λn. {s | p s n}) 𝕌(:γ))
DISJOINT_ALT
|- ∀s t. DISJOINT s t ⇔ ∀x. x ∈ s ⇒ x ∉ t
DISJOINT_DIFF
|- ∀s t. DISJOINT t (s DIFF t) ∧ DISJOINT (s DIFF t) t
COUNTABLE_COUNT
|- ∀n. countable (count n)
COUNTABLE_SUBSET
|- ∀s t. s ⊆ t ∧ countable t ⇒ countable s
LT_SUC
|- ∀a b. a < SUC b ⇔ a < b ∨ (a = b)
LE_SUC
|- ∀a b. a ≤ SUC b ⇔ a ≤ b ∨ (a = SUC b)
HALF_POS
|- 0 < 1 / 2
HALF_LT_1
|- 1 / 2 < 1
HALF_CANCEL
|- 2 * (1 / 2) = 1
X_HALF_HALF
|- ∀x. 1 / 2 * x + 1 / 2 * x = x
ONE_MINUS_HALF
|- 1 − 1 / 2 = 1 / 2
POW_HALF_POS
|- ∀n. 0 < (1 / 2) pow n
POW_HALF_SMALL
|- ∀e. 0 < e ⇒ ∃n. (1 / 2) pow n < e
POW_HALF_MONO
|- ∀m n. m ≤ n ⇒ (1 / 2) pow n ≤ (1 / 2) pow m
REAL_LE_LT_MUL
|- ∀x y. 0 ≤ x ∧ 0 < y ⇒ 0 ≤ x * y
REAL_LT_LE_MUL
|- ∀x y. 0 < x ∧ 0 ≤ y ⇒ 0 ≤ x * y
REAL_MUL_IDEMPOT
|- ∀r. (r * r = r) ⇔ (r = 0) ∨ (r = 1)
REAL_SUP_LE_X
|- ∀P x. (∃r. P r) ∧ (∀r. P r ⇒ r ≤ x) ⇒ sup P ≤ x
REAL_X_LE_SUP
|- ∀P x. (∃r. P r) ∧ (∃z. ∀r. P r ⇒ r ≤ z) ∧ (∃r. P r ∧ x ≤ r) ⇒ x ≤ sup P
INF_DEF_ALT
|- ∀p. inf p = -sup (λr. -r ∈ p)
LE_INF
|- ∀p r. (∃x. x ∈ p) ∧ (∀x. x ∈ p ⇒ r ≤ x) ⇒ r ≤ inf p
INF_LE
|- ∀p r. (∃z. ∀x. x ∈ p ⇒ z ≤ x) ∧ (∃x. x ∈ p ∧ x ≤ r) ⇒ inf p ≤ r
INF_GREATER
|- ∀p z. (∃x. x ∈ p) ∧ inf p < z ⇒ ∃x. x ∈ p ∧ x < z
INF_CLOSE
|- ∀p e. (∃x. x ∈ p) ∧ 0 < e ⇒ ∃x. x ∈ p ∧ x < inf p + e
INCREASING_SEQ
|- ∀f l.
     (∀n. f n ≤ f (SUC n)) ∧ (∀n. f n ≤ l) ∧ (∀e. 0 < e ⇒ ∃n. l < f n + e) ⇒
     f --> l
SEQ_SANDWICH
|- ∀f g h l. f --> l ∧ h --> l ∧ (∀n. f n ≤ g n ∧ g n ≤ h n) ⇒ g --> l
SER_POS
|- ∀f. summable f ∧ (∀n. 0 ≤ f n) ⇒ 0 ≤ suminf f
SER_POS_MONO
|- ∀f. (∀n. 0 ≤ f n) ⇒ mono (λn. sum (0,n) f)
POS_SUMMABLE
|- ∀f. (∀n. 0 ≤ f n) ∧ (∃x. ∀n. sum (0,n) f ≤ x) ⇒ summable f
SUMMABLE_LE
|- ∀f x. summable f ∧ (∀n. sum (0,n) f ≤ x) ⇒ suminf f ≤ x
SUMS_EQ
|- ∀f x. f sums x ⇔ summable f ∧ (suminf f = x)
SUMINF_POS
|- ∀f. (∀n. 0 ≤ f n) ∧ summable f ⇒ 0 ≤ suminf f
SUM_PICK
|- ∀n k x. sum (0,n) (λm. if m = k then x else 0) = if k < n then x else 0
SUM_LT
|- ∀f g m n.
     (∀r. m ≤ r ∧ r < n + m ⇒ f r < g r) ∧ 0 < n ⇒ sum (m,n) f < sum (m,n) g
SUM_CONST
|- ∀n r. sum (0,n) (K r) = &n * r
SUMINF_ADD
|- ∀f g.
     summable f ∧ summable g ⇒
     summable (λn. f n + g n) ∧ (suminf f + suminf g = suminf (λn. f n + g n))
SUMINF_2D
|- ∀f g h.
     (∀m n. 0 ≤ f m n) ∧ (∀n. f n sums g n) ∧ summable g ∧
     BIJ h 𝕌(:num) (𝕌(:num) × 𝕌(:num)) ⇒
     UNCURRY f o h sums suminf g
POW_HALF_SER
|- (λn. (1 / 2) pow (n + 1)) sums 1
SER_POS_COMPARE
|- ∀f g.
     (∀n. 0 ≤ f n) ∧ summable g ∧ (∀n. f n ≤ g n) ⇒
     summable f ∧ suminf f ≤ suminf g
MINIMAL_EXISTS0
|- (∃n. P n) ⇔ ∃n. P n ∧ ∀m. m < n ⇒ ¬P m
MINIMAL_EXISTS
|- ∀P. (∃n. P n) ⇔ P (minimal P) ∧ ∀n. n < minimal P ⇒ ¬P n