Structure oneTheory
signature oneTheory =
sig
  type thm = Thm.thm
  (*  Definitions  *)
    val one_DEF : thm
    val one_TY_DEF : thm
    val one_case_def : thm
  (*  Theorems  *)
    val FORALL_ONE : thm
    val one : thm
    val one_Axiom : thm
    val one_axiom : thm
    val one_case_thm : thm
    val one_induction : thm
    val one_prim_rec : thm
  val one_grammars : type_grammar.grammar * term_grammar.grammar
(*
   [combin] Parent theory of "one"
   [sat] Parent theory of "one"
   [one_DEF]  Definition
      |- () = @x. T
   [one_TY_DEF]  Definition
      |- ∃rep. TYPE_DEFINITION (λb. b) rep
   [one_case_def]  Definition
      |- ∀u x. one_CASE u x = x
   [FORALL_ONE]  Theorem
      |- (∀x. P x) ⇔ P ()
   [one]  Theorem
      |- ∀v. v = ()
   [one_Axiom]  Theorem
      |- ∀e. ∃!fn. fn () = e
   [one_axiom]  Theorem
      |- ∀f g. f = g
   [one_case_thm]  Theorem
      |- ∀x. one_CASE () x = x
   [one_induction]  Theorem
      |- ∀P. P () ⇒ ∀x. P x
   [one_prim_rec]  Theorem
      |- ∀e. ∃fn. fn () = e
*)
end
HOL 4, Kananaskis-11