Structure whileTheory
signature whileTheory =
sig
  type thm = Thm.thm
  (*  Definitions  *)
    val HOARE_SPEC_DEF : thm
    val LEAST_DEF : thm
    val OLEAST_def : thm
    val OWHILE_def : thm
    val WHILE : thm
  (*  Theorems  *)
    val FULL_LEAST_INTRO : thm
    val ITERATION : thm
    val LEAST_ELIM : thm
    val LEAST_EQ : thm
    val LEAST_EXISTS : thm
    val LEAST_EXISTS_IMP : thm
    val LEAST_INTRO : thm
    val LEAST_T : thm
    val LESS_LEAST : thm
    val OLEAST_EQNS : thm
    val OLEAST_INTRO : thm
    val OWHILE_ENDCOND : thm
    val OWHILE_EQ_NONE : thm
    val OWHILE_IND : thm
    val OWHILE_INV_IND : thm
    val OWHILE_THM : thm
    val OWHILE_WHILE : thm
    val WHILE_INDUCTION : thm
    val WHILE_RULE : thm
  val while_grammars : type_grammar.grammar * term_grammar.grammar
(*
   [arithmetic] Parent theory of "while"
   [option] Parent theory of "while"
   [HOARE_SPEC_DEF]  Definition
      |- ∀P C Q. HOARE_SPEC P C Q ⇔ ∀s. P s ⇒ Q (C s)
   [LEAST_DEF]  Definition
      |- ∀P. $LEAST P = WHILE ($~ o P) SUC 0
   [OLEAST_def]  Definition
      |- ∀P. $OLEAST P = if ∃n. P n then SOME (LEAST n. P n) else NONE
   [OWHILE_def]  Definition
      |- ∀G f s.
           OWHILE G f s =
           if ∃n. ¬G (FUNPOW f n s) then
             SOME (FUNPOW f (LEAST n. ¬G (FUNPOW f n s)) s)
           else NONE
   [WHILE]  Definition
      |- ∀P g x. WHILE P g x = if P x then WHILE P g (g x) else x
   [FULL_LEAST_INTRO]  Theorem
      |- ∀x. P x ⇒ P ($LEAST P) ∧ $LEAST P ≤ x
   [ITERATION]  Theorem
      |- ∀P g. ∃f. ∀x. f x = if P x then x else f (g x)
   [LEAST_ELIM]  Theorem
      |- ∀Q P.
           (∃n. P n) ∧ (∀n. (∀m. m < n ⇒ ¬P m) ∧ P n ⇒ Q n) ⇒ Q ($LEAST P)
   [LEAST_EQ]  Theorem
      |- ((LEAST n. n = x) = x) ∧ ((LEAST n. x = n) = x)
   [LEAST_EXISTS]  Theorem
      |- ∀p. (∃n. p n) ⇔ p ($LEAST p) ∧ ∀n. n < $LEAST p ⇒ ¬p n
   [LEAST_EXISTS_IMP]  Theorem
      |- ∀p. (∃n. p n) ⇒ p ($LEAST p) ∧ ∀n. n < $LEAST p ⇒ ¬p n
   [LEAST_INTRO]  Theorem
      |- ∀P x. P x ⇒ P ($LEAST P)
   [LEAST_T]  Theorem
      |- (LEAST x. T) = 0
   [LESS_LEAST]  Theorem
      |- ∀P m. m < $LEAST P ⇒ ¬P m
   [OLEAST_EQNS]  Theorem
      |- ((OLEAST n. n = x) = SOME x) ∧ ((OLEAST n. x = n) = SOME x) ∧
         ((OLEAST n. F) = NONE) ∧ ((OLEAST n. T) = SOME 0)
   [OLEAST_INTRO]  Theorem
      |- ((∀n. ¬P n) ⇒ Q NONE) ∧
         (∀n. P n ∧ (∀m. m < n ⇒ ¬P m) ⇒ Q (SOME n)) ⇒
         Q ($OLEAST P)
   [OWHILE_ENDCOND]  Theorem
      |- (OWHILE G f s = SOME s') ⇒ ¬G s'
   [OWHILE_EQ_NONE]  Theorem
      |- (OWHILE G f s = NONE) ⇔ ∀n. G (FUNPOW f n s)
   [OWHILE_IND]  Theorem
      |- ∀P G f.
           (∀s. ¬G s ⇒ P s s) ∧ (∀s1 s2. G s1 ∧ P (f s1) s2 ⇒ P s1 s2) ⇒
           ∀s1 s2. (OWHILE G f s1 = SOME s2) ⇒ P s1 s2
   [OWHILE_INV_IND]  Theorem
      |- ∀G f s.
           P s ∧ (∀x. P x ∧ G x ⇒ P (f x)) ⇒
           ∀s'. (OWHILE G f s = SOME s') ⇒ P s'
   [OWHILE_THM]  Theorem
      |- OWHILE G f s = if G s then OWHILE G f (f s) else SOME s
   [OWHILE_WHILE]  Theorem
      |- (OWHILE G f s = SOME s') ⇒ (WHILE G f s = s')
   [WHILE_INDUCTION]  Theorem
      |- ∀B C R.
           WF R ∧ (∀s. B s ⇒ R (C s) s) ⇒
           ∀P. (∀s. (B s ⇒ P (C s)) ⇒ P s) ⇒ ∀v. P v
   [WHILE_RULE]  Theorem
      |- ∀R B C.
           WF R ∧ (∀s. B s ⇒ R (C s) s) ⇒
           HOARE_SPEC (λs. P s ∧ B s) C P ⇒
           HOARE_SPEC P (WHILE B C) (λs. P s ∧ ¬B s)
*)
end
HOL 4, Kananaskis-11