- option_TY_DEF
-
|- ∃rep. TYPE_DEFINITION (λx. T) rep
- option_REP_ABS_DEF
-
|- (∀a. option_ABS (option_REP a) = a) ∧
∀r. (λx. T) r ⇔ (option_REP (option_ABS r) = r)
- SOME_DEF
-
|- ∀x. SOME x = option_ABS (INL x)
- NONE_DEF
-
|- NONE = option_ABS (INR ())
- option_case_def
-
|- (∀v f. option_CASE NONE v f = v) ∧ ∀x v f. option_CASE (SOME x) v f = f x
- OPTION_MAP_DEF
-
|- (∀f x. OPTION_MAP f (SOME x) = SOME (f x)) ∧ ∀f. OPTION_MAP f NONE = NONE
- IS_SOME_DEF
-
|- (∀x. IS_SOME (SOME x) ⇔ T) ∧ (IS_SOME NONE ⇔ F)
- IS_NONE_DEF
-
|- (∀x. IS_NONE (SOME x) ⇔ F) ∧ (IS_NONE NONE ⇔ T)
- THE_DEF
-
|- ∀x. THE (SOME x) = x
- OPTION_MAP2_DEF
-
|- ∀f x y.
OPTION_MAP2 f x y =
if IS_SOME x ∧ IS_SOME y then SOME (f (THE x) (THE y)) else NONE
- OPTION_JOIN_DEF
-
|- (OPTION_JOIN NONE = NONE) ∧ ∀x. OPTION_JOIN (SOME x) = x
- OPTION_BIND_def
-
|- (∀f. OPTION_BIND NONE f = NONE) ∧ ∀x f. OPTION_BIND (SOME x) f = f x
- OPTION_IGNORE_BIND_def
-
|- ∀m1 m2. OPTION_IGNORE_BIND m1 m2 = OPTION_BIND m1 (K m2)
- OPTION_GUARD_def
-
|- (OPTION_GUARD T = SOME ()) ∧ (OPTION_GUARD F = NONE)
- OPTION_CHOICE_def
-
|- (∀m2. OPTION_CHOICE NONE m2 = m2) ∧
∀x m2. OPTION_CHOICE (SOME x) m2 = SOME x
- OPTION_APPLY_def
-
|- (∀x. NONE <*> x = NONE) ∧ ∀f x. SOME f <*> x = OPTION_MAP f x
- OPTREL_def
-
|- ∀R x y.
OPTREL R x y ⇔
(x = NONE) ∧ (y = NONE) ∨ ∃x0 y0. (x = SOME x0) ∧ (y = SOME y0) ∧ R x0 y0
- some_def
-
|- ∀P. $some P = if ∃x. P x then SOME (@x. P x) else NONE
- OPTION_ALL_def
-
|- (∀P. OPTION_ALL P NONE ⇔ T) ∧ ∀P x. OPTION_ALL P (SOME x) ⇔ P x
- option_Axiom
-
|- ∀e f. ∃fn. (fn NONE = e) ∧ ∀x. fn (SOME x) = f x
- option_induction
-
|- ∀P. P NONE ∧ (∀a. P (SOME a)) ⇒ ∀x. P x
- option_nchotomy
-
|- ∀opt. (opt = NONE) ∨ ∃x. opt = SOME x
- FORALL_OPTION
-
|- (∀opt. P opt) ⇔ P NONE ∧ ∀x. P (SOME x)
- EXISTS_OPTION
-
|- (∃opt. P opt) ⇔ P NONE ∨ ∃x. P (SOME x)
- SOME_11
-
|- ∀x y. (SOME x = SOME y) ⇔ (x = y)
- NOT_NONE_SOME
-
|- ∀x. NONE ≠ SOME x
- NOT_SOME_NONE
-
|- ∀x. SOME x ≠ NONE
- OPTION_MAP2_THM
-
|- (OPTION_MAP2 f (SOME x) (SOME y) = SOME (f x y)) ∧
(OPTION_MAP2 f (SOME x) NONE = NONE) ∧
(OPTION_MAP2 f NONE (SOME y) = NONE) ∧ (OPTION_MAP2 f NONE NONE = NONE)
- IS_SOME_EXISTS
-
|- ∀opt. IS_SOME opt ⇔ ∃x. opt = SOME x
- IS_NONE_EQ_NONE
-
|- ∀x. IS_NONE x ⇔ (x = NONE)
- NOT_IS_SOME_EQ_NONE
-
|- ∀x. ¬IS_SOME x ⇔ (x = NONE)
- option_case_ID
-
|- ∀x. option_CASE x NONE SOME = x
- option_case_SOME_ID
-
|- ∀x. option_CASE x x SOME = x
- option_CLAUSES
-
|- (∀x y. (SOME x = SOME y) ⇔ (x = y)) ∧ (∀x. THE (SOME x) = x) ∧
(∀x. NONE ≠ SOME x) ∧ (∀x. SOME x ≠ NONE) ∧ (∀x. IS_SOME (SOME x) ⇔ T) ∧
(IS_SOME NONE ⇔ F) ∧ (∀x. IS_NONE x ⇔ (x = NONE)) ∧
(∀x. ¬IS_SOME x ⇔ (x = NONE)) ∧ (∀x. IS_SOME x ⇒ (SOME (THE x) = x)) ∧
(∀x. option_CASE x NONE SOME = x) ∧ (∀x. option_CASE x x SOME = x) ∧
(∀x. IS_NONE x ⇒ (option_CASE x e f = e)) ∧
(∀x. IS_SOME x ⇒ (option_CASE x e f = f (THE x))) ∧
(∀x. IS_SOME x ⇒ (option_CASE x e SOME = x)) ∧
(∀v f. option_CASE NONE v f = v) ∧
(∀x v f. option_CASE (SOME x) v f = f x) ∧
(∀f x. OPTION_MAP f (SOME x) = SOME (f x)) ∧
(∀f. OPTION_MAP f NONE = NONE) ∧ (OPTION_JOIN NONE = NONE) ∧
∀x. OPTION_JOIN (SOME x) = x
- option_case_compute
-
|- option_CASE x e f = if IS_SOME x then f (THE x) else e
- IF_EQUALS_OPTION
-
|- (((if P then SOME x else NONE) = NONE) ⇔ ¬P) ∧
(((if P then NONE else SOME x) = NONE) ⇔ P) ∧
(((if P then SOME x else NONE) = SOME y) ⇔ P ∧ (x = y)) ∧
(((if P then NONE else SOME x) = SOME y) ⇔ ¬P ∧ (x = y))
- IF_NONE_EQUALS_OPTION
-
|- (((if P then X else NONE) = NONE) ⇔ P ⇒ IS_NONE X) ∧
(((if P then NONE else X) = NONE) ⇔ IS_SOME X ⇒ P) ∧
(((if P then X else NONE) = SOME x) ⇔ P ∧ (X = SOME x)) ∧
(((if P then NONE else X) = SOME x) ⇔ ¬P ∧ (X = SOME x))
- OPTION_MAP_EQ_SOME
-
|- ∀f x y. (OPTION_MAP f x = SOME y) ⇔ ∃z. (x = SOME z) ∧ (y = f z)
- OPTION_MAP_EQ_NONE
-
|- ∀f x. (OPTION_MAP f x = NONE) ⇔ (x = NONE)
- OPTION_MAP_EQ_NONE_both_ways
-
|- ((OPTION_MAP f x = NONE) ⇔ (x = NONE)) ∧
((NONE = OPTION_MAP f x) ⇔ (x = NONE))
- OPTION_MAP_COMPOSE
-
|- OPTION_MAP f (OPTION_MAP g x) = OPTION_MAP (f o g) x
- OPTION_MAP_CONG
-
|- ∀opt1 opt2 f1 f2.
(opt1 = opt2) ∧ (∀x. (opt2 = SOME x) ⇒ (f1 x = f2 x)) ⇒
(OPTION_MAP f1 opt1 = OPTION_MAP f2 opt2)
- OPTION_JOIN_EQ_SOME
-
|- ∀x y. (OPTION_JOIN x = SOME y) ⇔ (x = SOME (SOME y))
- OPTION_MAP2_SOME
-
|- (OPTION_MAP2 f o1 o2 = SOME v) ⇔
∃x1 x2. (o1 = SOME x1) ∧ (o2 = SOME x2) ∧ (v = f x1 x2)
- OPTION_MAP2_NONE
-
|- (OPTION_MAP2 f o1 o2 = NONE) ⇔ (o1 = NONE) ∨ (o2 = NONE)
- OPTION_MAP2_cong
-
|- ∀x1 x2 y1 y2 f1 f2.
(x1 = x2) ∧ (y1 = y2) ∧
(∀x y. (x2 = SOME x) ∧ (y2 = SOME y) ⇒ (f1 x y = f2 x y)) ⇒
(OPTION_MAP2 f1 x1 y1 = OPTION_MAP2 f2 x2 y2)
- OPTION_BIND_cong
-
|- ∀o1 o2 f1 f2.
(o1 = o2) ∧ (∀x. (o2 = SOME x) ⇒ (f1 x = f2 x)) ⇒
(OPTION_BIND o1 f1 = OPTION_BIND o2 f2)
- OPTION_BIND_EQUALS_OPTION
-
|- ((OPTION_BIND p f = NONE) ⇔ (p = NONE) ∨ ∃x. (p = SOME x) ∧ (f x = NONE)) ∧
((OPTION_BIND p f = SOME y) ⇔ ∃x. (p = SOME x) ∧ (f x = SOME y))
- OPTION_IGNORE_BIND_thm
-
|- (OPTION_IGNORE_BIND NONE m = NONE) ∧ (OPTION_IGNORE_BIND (SOME v) m = m)
- OPTION_GUARD_COND
-
|- OPTION_GUARD b = if b then SOME () else NONE
- OPTION_GUARD_EQ_THM
-
|- ((OPTION_GUARD b = SOME ()) ⇔ b) ∧ ((OPTION_GUARD b = NONE) ⇔ ¬b)
- OPTION_CHOICE_EQ_NONE
-
|- (OPTION_CHOICE m1 m2 = NONE) ⇔ (m1 = NONE) ∧ (m2 = NONE)
- OPTION_APPLY_MAP2
-
|- OPTION_MAP f x <*> y = OPTION_MAP2 f x y
- SOME_SOME_APPLY
-
|- SOME f <*> SOME x = SOME (f x)
- SOME_APPLY_PERMUTE
-
|- f <*> SOME x = SOME (λf. f x) <*> f
- OPTION_APPLY_o
-
|- SOME $o <*> f <*> g <*> x = f <*> (g <*> x)
- OPTREL_MONO
-
|- (∀x y. P x y ⇒ Q x y) ⇒ OPTREL P x y ⇒ OPTREL Q x y
- OPTREL_refl
-
|- (∀x. R x x) ⇒ ∀x. OPTREL R x x
- some_intro
-
|- (∀x. P x ⇒ Q (SOME x)) ∧ ((∀x. ¬P x) ⇒ Q NONE) ⇒ Q ($some P)
- some_elim
-
|- Q ($some P) ⇒ (∃x. P x ∧ Q (SOME x)) ∨ (∀x. ¬P x) ∧ Q NONE
- some_F
-
|- (some x. F) = NONE
- some_EQ
-
|- ((some x. x = y) = SOME y) ∧ ((some x. y = x) = SOME y)
- option_case_cong
-
|- ∀M M' v f.
(M = M') ∧ ((M' = NONE) ⇒ (v = v')) ∧
(∀x. (M' = SOME x) ⇒ (f x = f' x)) ⇒
(option_CASE M v f = option_CASE M' v' f')
- OPTION_ALL_MONO
-
|- (∀x. P x ⇒ P' x) ⇒ OPTION_ALL P opt ⇒ OPTION_ALL P' opt
- OPTION_ALL_CONG
-
|- ∀opt opt' P P'.
(opt = opt') ∧ (∀x. (opt' = SOME x) ⇒ (P x ⇔ P' x)) ⇒
(OPTION_ALL P opt ⇔ OPTION_ALL P' opt')
- datatype_option
-
|- DATATYPE (option NONE SOME)