- SPECIFICATION
-
|- ∀P x. x ∈ P ⇔ P x
- IN_ABS
-
|- ∀x P. x ∈ (λx. P x) ⇔ P x
- ABS_applied
-
|- T
- EXTENSION
-
|- ∀s t. (s = t) ⇔ ∀x. x ∈ s ⇔ x ∈ t
- NOT_EQUAL_SETS
-
|- ∀s t. s ≠ t ⇔ ∃x. x ∈ t ⇔ x ∉ s
- NUM_SET_WOP
-
|- ∀s. (∃n. n ∈ s) ⇔ ∃n. n ∈ s ∧ ∀m. m ∈ s ⇒ n ≤ m
- GSPECIFICATION_applied
-
|- ∀f v. GSPEC f v ⇔ ∃x. (v,T) = f x
- SET_MINIMUM
-
|- ∀s M. (∃x. x ∈ s) ⇔ ∃x. x ∈ s ∧ ∀y. y ∈ s ⇒ M x ≤ M y
- NOT_IN_EMPTY
-
|- ∀x. x ∉ ∅
- MEMBER_NOT_EMPTY
-
|- ∀s. (∃x. x ∈ s) ⇔ s ≠ ∅
- EMPTY_applied
-
|- ∅ x ⇔ F
- IN_UNIV
-
|- ∀x. x ∈ 𝕌(:α)
- UNIV_NOT_EMPTY
-
|- 𝕌(:α) ≠ ∅
- EMPTY_NOT_UNIV
-
|- ∅ ≠ 𝕌(:α)
- EQ_UNIV
-
|- (∀x. x ∈ s) ⇔ (s = 𝕌(:α))
- SUBSET_TRANS
-
|- ∀s t u. s ⊆ t ∧ t ⊆ u ⇒ s ⊆ u
- SUBSET_REFL
-
|- ∀s. s ⊆ s
- SUBSET_ANTISYM
-
|- ∀s t. s ⊆ t ∧ t ⊆ s ⇒ (s = t)
- EMPTY_SUBSET
-
|- ∀s. ∅ ⊆ s
- SUBSET_EMPTY
-
|- ∀s. s ⊆ ∅ ⇔ (s = ∅)
- SUBSET_UNIV
-
|- ∀s. s ⊆ 𝕌(:α)
- UNIV_SUBSET
-
|- ∀s. 𝕌(:α) ⊆ s ⇔ (s = 𝕌(:α))
- PSUBSET_TRANS
-
|- ∀s t u. s ⊂ t ∧ t ⊂ u ⇒ s ⊂ u
- PSUBSET_IRREFL
-
|- ∀s. ¬(s ⊂ s)
- NOT_PSUBSET_EMPTY
-
|- ∀s. ¬(s ⊂ ∅)
- NOT_UNIV_PSUBSET
-
|- ∀s. ¬(𝕌(:α) ⊂ s)
- PSUBSET_UNIV
-
|- ∀s. s ⊂ 𝕌(:α) ⇔ ∃x. x ∉ s
- IN_UNION
-
|- ∀s t x. x ∈ s ∪ t ⇔ x ∈ s ∨ x ∈ t
- UNION_applied
-
|- ∀s t x. (s ∪ t) x ⇔ x ∈ s ∨ x ∈ t
- UNION_ASSOC
-
|- ∀s t u. s ∪ (t ∪ u) = s ∪ t ∪ u
- UNION_IDEMPOT
-
|- ∀s. s ∪ s = s
- UNION_COMM
-
|- ∀s t. s ∪ t = t ∪ s
- SUBSET_UNION
-
|- (∀s t. s ⊆ s ∪ t) ∧ ∀s t. s ⊆ t ∪ s
- UNION_SUBSET
-
|- ∀s t u. s ∪ t ⊆ u ⇔ s ⊆ u ∧ t ⊆ u
- SUBSET_UNION_ABSORPTION
-
|- ∀s t. s ⊆ t ⇔ (s ∪ t = t)
- UNION_EMPTY
-
|- (∀s. ∅ ∪ s = s) ∧ ∀s. s ∪ ∅ = s
- UNION_UNIV
-
|- (∀s. 𝕌(:α) ∪ s = 𝕌(:α)) ∧ ∀s. s ∪ 𝕌(:α) = 𝕌(:α)
- EMPTY_UNION
-
|- ∀s t. (s ∪ t = ∅) ⇔ (s = ∅) ∧ (t = ∅)
- IN_INTER
-
|- ∀s t x. x ∈ s ∩ t ⇔ x ∈ s ∧ x ∈ t
- INTER_applied
-
|- ∀s t x. (s ∩ t) x ⇔ x ∈ s ∧ x ∈ t
- INTER_ASSOC
-
|- ∀s t u. s ∩ (t ∩ u) = s ∩ t ∩ u
- INTER_IDEMPOT
-
|- ∀s. s ∩ s = s
- INTER_COMM
-
|- ∀s t. s ∩ t = t ∩ s
- INTER_SUBSET
-
|- (∀s t. s ∩ t ⊆ s) ∧ ∀s t. t ∩ s ⊆ s
- SUBSET_INTER
-
|- ∀s t u. s ⊆ t ∩ u ⇔ s ⊆ t ∧ s ⊆ u
- SUBSET_INTER_ABSORPTION
-
|- ∀s t. s ⊆ t ⇔ (s ∩ t = s)
- INTER_EMPTY
-
|- (∀s. ∅ ∩ s = ∅) ∧ ∀s. s ∩ ∅ = ∅
- INTER_UNIV
-
|- (∀s. 𝕌(:α) ∩ s = s) ∧ ∀s. s ∩ 𝕌(:α) = s
- UNION_OVER_INTER
-
|- ∀s t u. s ∩ (t ∪ u) = s ∩ t ∪ s ∩ u
- INTER_OVER_UNION
-
|- ∀s t u. s ∪ t ∩ u = (s ∪ t) ∩ (s ∪ u)
- IN_DISJOINT
-
|- ∀s t. DISJOINT s t ⇔ ¬∃x. x ∈ s ∧ x ∈ t
- DISJOINT_SYM
-
|- ∀s t. DISJOINT s t ⇔ DISJOINT t s
- DISJOINT_EMPTY
-
|- ∀s. DISJOINT ∅ s ∧ DISJOINT s ∅
- DISJOINT_EMPTY_REFL
-
|- ∀s. (s = ∅) ⇔ DISJOINT s s
- DISJOINT_EMPTY_REFL_RWT
-
|- ∀s. DISJOINT s s ⇔ (s = ∅)
- DISJOINT_UNION
-
|- ∀s t u. DISJOINT (s ∪ t) u ⇔ DISJOINT s u ∧ DISJOINT t u
- DISJOINT_UNION_BOTH
-
|- ∀s t u.
(DISJOINT (s ∪ t) u ⇔ DISJOINT s u ∧ DISJOINT t u) ∧
(DISJOINT u (s ∪ t) ⇔ DISJOINT s u ∧ DISJOINT t u)
- DISJOINT_SUBSET
-
|- ∀s t u. DISJOINT s t ∧ u ⊆ t ⇒ DISJOINT s u
- IN_DIFF
-
|- ∀s t x. x ∈ s DIFF t ⇔ x ∈ s ∧ x ∉ t
- DIFF_applied
-
|- ∀s t x. (s DIFF t) x ⇔ x ∈ s ∧ x ∉ t
- DIFF_EMPTY
-
|- ∀s. s DIFF ∅ = s
- EMPTY_DIFF
-
|- ∀s. ∅ DIFF s = ∅
- DIFF_UNIV
-
|- ∀s. s DIFF 𝕌(:α) = ∅
- DIFF_DIFF
-
|- ∀s t. s DIFF t DIFF t = s DIFF t
- DIFF_EQ_EMPTY
-
|- ∀s. s DIFF s = ∅
- DIFF_SUBSET
-
|- ∀s t. s DIFF t ⊆ s
- UNION_DIFF
-
|- s ⊆ t ⇒ (s ∪ (t DIFF s) = t) ∧ (t DIFF s ∪ s = t)
- DIFF_UNION
-
|- ∀x y z. x DIFF (y ∪ z) = x DIFF y DIFF z
- DIFF_COMM
-
|- ∀x y z. x DIFF y DIFF z = x DIFF z DIFF y
- DIFF_SAME_UNION
-
|- ∀x y. (x ∪ y DIFF x = y DIFF x) ∧ (x ∪ y DIFF y = x DIFF y)
- IN_INSERT
-
|- ∀x y s. x ∈ y INSERT s ⇔ (x = y) ∨ x ∈ s
- INSERT_applied
-
|- ∀x y s. (y INSERT s) x ⇔ (x = y) ∨ x ∈ s
- COMPONENT
-
|- ∀x s. x ∈ x INSERT s
- SET_CASES
-
|- ∀s. (s = ∅) ∨ ∃x t. (s = x INSERT t) ∧ x ∉ t
- DECOMPOSITION
-
|- ∀s x. x ∈ s ⇔ ∃t. (s = x INSERT t) ∧ x ∉ t
- ABSORPTION
-
|- ∀x s. x ∈ s ⇔ (x INSERT s = s)
- ABSORPTION_RWT
-
|- ∀x s. x ∈ s ⇒ (x INSERT s = s)
- INSERT_INSERT
-
|- ∀x s. x INSERT x INSERT s = x INSERT s
- INSERT_COMM
-
|- ∀x y s. x INSERT y INSERT s = y INSERT x INSERT s
- INSERT_UNIV
-
|- ∀x. x INSERT 𝕌(:α) = 𝕌(:α)
- NOT_INSERT_EMPTY
-
|- ∀x s. x INSERT s ≠ ∅
- NOT_EMPTY_INSERT
-
|- ∀x s. ∅ ≠ x INSERT s
- INSERT_UNION
-
|- ∀x s t. (x INSERT s) ∪ t = if x ∈ t then s ∪ t else x INSERT s ∪ t
- INSERT_UNION_EQ
-
|- ∀x s t. (x INSERT s) ∪ t = x INSERT s ∪ t
- INSERT_INTER
-
|- ∀x s t. (x INSERT s) ∩ t = if x ∈ t then x INSERT s ∩ t else s ∩ t
- DISJOINT_INSERT
-
|- ∀x s t. DISJOINT (x INSERT s) t ⇔ DISJOINT s t ∧ x ∉ t
- DISJOINT_INSERT'
-
|- ∀x s t. DISJOINT t (x INSERT s) ⇔ DISJOINT t s ∧ x ∉ t
- INSERT_SUBSET
-
|- ∀x s t. x INSERT s ⊆ t ⇔ x ∈ t ∧ s ⊆ t
- SUBSET_INSERT
-
|- ∀x s. x ∉ s ⇒ ∀t. s ⊆ x INSERT t ⇔ s ⊆ t
- INSERT_DIFF
-
|- ∀s t x. (x INSERT s) DIFF t = if x ∈ t then s DIFF t else x INSERT s DIFF t
- UNIV_BOOL
-
|- 𝕌(:bool) = {T; F}
- IN_DELETE
-
|- ∀s x y. x ∈ s DELETE y ⇔ x ∈ s ∧ x ≠ y
- DELETE_applied
-
|- ∀s x y. (s DELETE y) x ⇔ x ∈ s ∧ x ≠ y
- DELETE_NON_ELEMENT
-
|- ∀x s. x ∉ s ⇔ (s DELETE x = s)
- DELETE_NON_ELEMENT_RWT
-
|- ∀x s. x ∉ s ⇒ (s DELETE x = s)
- IN_DELETE_EQ
-
|- ∀s x x'. (x ∈ s ⇔ x' ∈ s) ⇔ (x ∈ s DELETE x' ⇔ x' ∈ s DELETE x)
- EMPTY_DELETE
-
|- ∀x. ∅ DELETE x = ∅
- DELETE_DELETE
-
|- ∀x s. s DELETE x DELETE x = s DELETE x
- DELETE_COMM
-
|- ∀x y s. s DELETE x DELETE y = s DELETE y DELETE x
- DELETE_SUBSET
-
|- ∀x s. s DELETE x ⊆ s
- SUBSET_DELETE
-
|- ∀x s t. s ⊆ t DELETE x ⇔ x ∉ s ∧ s ⊆ t
- SUBSET_INSERT_DELETE
-
|- ∀x s t. s ⊆ x INSERT t ⇔ s DELETE x ⊆ t
- DIFF_INSERT
-
|- ∀s t x. s DIFF (x INSERT t) = s DELETE x DIFF t
- PSUBSET_INSERT_SUBSET
-
|- ∀s t. s ⊂ t ⇔ ∃x. x ∉ s ∧ x INSERT s ⊆ t
- PSUBSET_MEMBER
-
|- ∀s t. s ⊂ t ⇔ s ⊆ t ∧ ∃y. y ∈ t ∧ y ∉ s
- DELETE_INSERT
-
|- ∀x y s.
(x INSERT s) DELETE y = if x = y then s DELETE y else x INSERT s DELETE y
- INSERT_DELETE
-
|- ∀x s. x ∈ s ⇒ (x INSERT s DELETE x = s)
- DELETE_INTER
-
|- ∀s t x. (s DELETE x) ∩ t = s ∩ t DELETE x
- DISJOINT_DELETE_SYM
-
|- ∀s t x. DISJOINT (s DELETE x) t ⇔ DISJOINT (t DELETE x) s
- CHOICE_NOT_IN_REST
-
|- ∀s. CHOICE s ∉ REST s
- CHOICE_INSERT_REST
-
|- ∀s. s ≠ ∅ ⇒ (CHOICE s INSERT REST s = s)
- REST_SUBSET
-
|- ∀s. REST s ⊆ s
- REST_PSUBSET
-
|- ∀s. s ≠ ∅ ⇒ REST s ⊂ s
- SING
-
|- ∀x. SING {x}
- SING_EMPTY
-
|- SING ∅ ⇔ F
- SING_INSERT
-
|- SING (x INSERT s) ⇔ (s = ∅) ∨ (s = {x})
- SING_UNION
-
|- SING (s ∪ t) ⇔
SING s ∧ (t = ∅) ∨ SING t ∧ (s = ∅) ∨ SING s ∧ SING t ∧ (s = t)
- IN_SING
-
|- ∀x y. x ∈ {y} ⇔ (x = y)
- SING_applied
-
|- ∀x y. {y} x ⇔ (x = y)
- NOT_SING_EMPTY
-
|- ∀x. {x} ≠ ∅
- NOT_EMPTY_SING
-
|- ∀x. ∅ ≠ {x}
- EQUAL_SING
-
|- ∀x y. ({x} = {y}) ⇔ (x = y)
- DISJOINT_SING_EMPTY
-
|- ∀x. DISJOINT {x} ∅
- INSERT_SING_UNION
-
|- ∀s x. x INSERT s = {x} ∪ s
- SING_DELETE
-
|- ∀x. {x} DELETE x = ∅
- DELETE_EQ_SING
-
|- ∀s x. x ∈ s ⇒ ((s DELETE x = ∅) ⇔ (s = {x}))
- CHOICE_SING
-
|- ∀x. CHOICE {x} = x
- REST_SING
-
|- ∀x. REST {x} = ∅
- SING_IFF_EMPTY_REST
-
|- ∀s. SING s ⇔ s ≠ ∅ ∧ (REST s = ∅)
- IN_IMAGE
-
|- ∀y s f. y ∈ IMAGE f s ⇔ ∃x. (y = f x) ∧ x ∈ s
- IMAGE_applied
-
|- ∀y s f. IMAGE f s y ⇔ ∃x. (y = f x) ∧ x ∈ s
- IMAGE_IN
-
|- ∀x s. x ∈ s ⇒ ∀f. f x ∈ IMAGE f s
- IMAGE_EMPTY
-
|- ∀f. IMAGE f ∅ = ∅
- IMAGE_ID
-
|- ∀s. IMAGE (λx. x) s = s
- IMAGE_COMPOSE
-
|- ∀f g s. IMAGE (f o g) s = IMAGE f (IMAGE g s)
- IMAGE_INSERT
-
|- ∀f x s. IMAGE f (x INSERT s) = f x INSERT IMAGE f s
- IMAGE_EQ_EMPTY
-
|- ∀s f. (IMAGE f s = ∅) ⇔ (s = ∅)
- IMAGE_DELETE
-
|- ∀f x s. x ∉ s ⇒ (IMAGE f (s DELETE x) = IMAGE f s)
- IMAGE_UNION
-
|- ∀f s t. IMAGE f (s ∪ t) = IMAGE f s ∪ IMAGE f t
- IMAGE_SUBSET
-
|- ∀s t. s ⊆ t ⇒ ∀f. IMAGE f s ⊆ IMAGE f t
- IMAGE_INTER
-
|- ∀f s t. IMAGE f (s ∩ t) ⊆ IMAGE f s ∩ IMAGE f t
- IMAGE_11
-
|- (∀x y. (f x = f y) ⇔ (x = y)) ⇒ ((IMAGE f s1 = IMAGE f s2) ⇔ (s1 = s2))
- IMAGE_CONG
-
|- ∀f s f' s'.
(s = s') ∧ (∀x. x ∈ s' ⇒ (f x = f' x)) ⇒ (IMAGE f s = IMAGE f' s')
- INJ_IFF
-
|- INJ f s t ⇔
(∀x. x ∈ s ⇒ f x ∈ t) ∧ ∀x y. x ∈ s ∧ y ∈ s ⇒ ((f x = f y) ⇔ (x = y))
- INJ_ID
-
|- ∀s. INJ (λx. x) s s
- INJ_COMPOSE
-
|- ∀f g s t u. INJ f s t ∧ INJ g t u ⇒ INJ (g o f) s u
- INJ_EMPTY
-
|- ∀f. (∀s. INJ f ∅ s) ∧ ∀s. INJ f s ∅ ⇔ (s = ∅)
- INJ_DELETE
-
|- ∀s t f. INJ f s t ⇒ ∀e. e ∈ s ⇒ INJ f (s DELETE e) (t DELETE f e)
- INJ_INSERT
-
|- ∀f x s t.
INJ f (x INSERT s) t ⇔
INJ f s t ∧ f x ∈ t ∧ ∀y. y ∈ s ∧ (f x = f y) ⇒ (x = y)
- INJ_SUBSET
-
|- ∀f s t s0 t0. INJ f s t ∧ s0 ⊆ s ∧ t ⊆ t0 ⇒ INJ f s0 t0
- SURJ_ID
-
|- ∀s. SURJ (λx. x) s s
- SURJ_COMPOSE
-
|- ∀f g s t u. SURJ f s t ∧ SURJ g t u ⇒ SURJ (g o f) s u
- SURJ_EMPTY
-
|- ∀f. (∀s. SURJ f ∅ s ⇔ (s = ∅)) ∧ ∀s. SURJ f s ∅ ⇔ (s = ∅)
- IMAGE_SURJ
-
|- ∀f s t. SURJ f s t ⇔ (IMAGE f s = t)
- SURJ_IMAGE
-
|- SURJ f s (IMAGE f s)
- SURJ_INJ_INV
-
|- SURJ f s t ⇒ ∃g. INJ g t s ∧ ∀y. y ∈ t ⇒ (f (g y) = y)
- BIJ_ID
-
|- ∀s. BIJ (λx. x) s s
- BIJ_EMPTY
-
|- ∀f. (∀s. BIJ f ∅ s ⇔ (s = ∅)) ∧ ∀s. BIJ f s ∅ ⇔ (s = ∅)
- BIJ_COMPOSE
-
|- ∀f g s t u. BIJ f s t ∧ BIJ g t u ⇒ BIJ (g o f) s u
- BIJ_DELETE
-
|- ∀s t f. BIJ f s t ⇒ ∀e. e ∈ s ⇒ BIJ f (s DELETE e) (t DELETE f e)
- BIJ_LINV_INV
-
|- ∀f s t. BIJ f s t ⇒ ∀x. x ∈ t ⇒ (f (LINV f s x) = x)
- BIJ_LINV_BIJ
-
|- ∀f s t. BIJ f s t ⇒ BIJ (LINV f s) t s
- BIJ_IFF_INV
-
|- ∀f s t.
BIJ f s t ⇔
(∀x. x ∈ s ⇒ f x ∈ t) ∧
∃g.
(∀x. x ∈ t ⇒ g x ∈ s) ∧ (∀x. x ∈ s ⇒ (g (f x) = x)) ∧
∀x. x ∈ t ⇒ (f (g x) = x)
- BIJ_INSERT
-
|- BIJ f (e INSERT s) t ⇔
e ∉ s ∧ f e ∈ t ∧ BIJ f s (t DELETE f e) ∨ e ∈ s ∧ BIJ f s t
- FINITE_EMPTY
-
|- FINITE ∅
- FINITE_INDUCT
-
|- ∀P.
P ∅ ∧ (∀s. FINITE s ∧ P s ⇒ ∀e. e ∉ s ⇒ P (e INSERT s)) ⇒
∀s. FINITE s ⇒ P s
- FINITE_INSERT
-
|- ∀x s. FINITE (x INSERT s) ⇔ FINITE s
- FINITE_DELETE
-
|- ∀x s. FINITE (s DELETE x) ⇔ FINITE s
- FINITE_REST
-
|- ∀s. FINITE s ⇒ FINITE (REST s)
- FINITE_UNION
-
|- ∀s t. FINITE (s ∪ t) ⇔ FINITE s ∧ FINITE t
- INTER_FINITE
-
|- ∀s. FINITE s ⇒ ∀t. FINITE (s ∩ t)
- SUBSET_FINITE
-
|- ∀s. FINITE s ⇒ ∀t. t ⊆ s ⇒ FINITE t
- SUBSET_FINITE_I
-
|- ∀s t. FINITE s ∧ t ⊆ s ⇒ FINITE t
- PSUBSET_FINITE
-
|- ∀s. FINITE s ⇒ ∀t. t ⊂ s ⇒ FINITE t
- FINITE_DIFF
-
|- ∀s. FINITE s ⇒ ∀t. FINITE (s DIFF t)
- FINITE_DIFF_down
-
|- ∀P Q. FINITE (P DIFF Q) ∧ FINITE Q ⇒ FINITE P
- FINITE_SING
-
|- ∀x. FINITE {x}
- SING_FINITE
-
|- ∀s. SING s ⇒ FINITE s
- IMAGE_FINITE
-
|- ∀s. FINITE s ⇒ ∀f. FINITE (IMAGE f s)
- FINITELY_INJECTIVE_IMAGE_FINITE
-
|- ∀f. (∀x. FINITE {y | x = f y}) ⇒ ∀s. FINITE (IMAGE f s) ⇔ FINITE s
- INJECTIVE_IMAGE_FINITE
-
|- ∀f. (∀x y. (f x = f y) ⇔ (x = y)) ⇒ ∀s. FINITE (IMAGE f s) ⇔ FINITE s
- FINITE_INJ
-
|- ∀f s t. INJ f s t ∧ FINITE t ⇒ FINITE s
- REL_RESTRICT_EMPTY
-
|- REL_RESTRICT R ∅ = REMPTY
- REL_RESTRICT_SUBSET
-
|- s1 ⊆ s2 ⇒ REL_RESTRICT R s1 RSUBSET REL_RESTRICT R s2
- CARD_EMPTY
-
|- CARD ∅ = 0
- CARD_INSERT
-
|- ∀s.
FINITE s ⇒ ∀x. CARD (x INSERT s) = if x ∈ s then CARD s else SUC (CARD s)
- CARD_EQ_0
-
|- ∀s. FINITE s ⇒ ((CARD s = 0) ⇔ (s = ∅))
- CARD_DELETE
-
|- ∀s. FINITE s ⇒ ∀x. CARD (s DELETE x) = if x ∈ s then CARD s − 1 else CARD s
- CARD_INTER_LESS_EQ
-
|- ∀s. FINITE s ⇒ ∀t. CARD (s ∩ t) ≤ CARD s
- CARD_UNION
-
|- ∀s.
FINITE s ⇒ ∀t. FINITE t ⇒ (CARD (s ∪ t) + CARD (s ∩ t) = CARD s + CARD t)
- CARD_UNION_EQN
-
|- ∀s t. FINITE s ∧ FINITE t ⇒ (CARD (s ∪ t) = CARD s + CARD t − CARD (s ∩ t))
- CARD_SUBSET
-
|- ∀s. FINITE s ⇒ ∀t. t ⊆ s ⇒ CARD t ≤ CARD s
- CARD_PSUBSET
-
|- ∀s. FINITE s ⇒ ∀t. t ⊂ s ⇒ CARD t < CARD s
- SUBSET_EQ_CARD
-
|- ∀s. FINITE s ⇒ ∀t. FINITE t ∧ (CARD s = CARD t) ∧ s ⊆ t ⇒ (s = t)
- CARD_SING
-
|- ∀x. CARD {x} = 1
- SING_IFF_CARD1
-
|- ∀s. SING s ⇔ (CARD s = 1) ∧ FINITE s
- CARD_DIFF
-
|- ∀t. FINITE t ⇒ ∀s. FINITE s ⇒ (CARD (s DIFF t) = CARD s − CARD (s ∩ t))
- CARD_DIFF_EQN
-
|- ∀s. FINITE s ⇒ (CARD (s DIFF t) = CARD s − CARD (s ∩ t))
- LESS_CARD_DIFF
-
|- ∀t. FINITE t ⇒ ∀s. FINITE s ⇒ CARD t < CARD s ⇒ 0 < CARD (s DIFF t)
- BIJ_FINITE
-
|- ∀f s t. BIJ f s t ∧ FINITE s ⇒ FINITE t
- FINITE_BIJ_CARD_EQ
-
|- ∀S. FINITE S ⇒ ∀t f. BIJ f S t ∧ FINITE t ⇒ (CARD S = CARD t)
- CARD_INJ_IMAGE
-
|- ∀f s.
(∀x y. (f x = f y) ⇔ (x = y)) ∧ FINITE s ⇒ (CARD (IMAGE f s) = CARD s)
- FINITE_COMPLETE_INDUCTION
-
|- ∀P. (∀x. (∀y. y ⊂ x ⇒ P y) ⇒ FINITE x ⇒ P x) ⇒ ∀x. FINITE x ⇒ P x
- INJ_CARD
-
|- ∀f s t. INJ f s t ∧ FINITE t ⇒ CARD s ≤ CARD t
- PHP
-
|- ∀f s t. FINITE t ∧ CARD t < CARD s ⇒ ¬INJ f s t
- INFINITE_DEF
-
|- T
- NOT_IN_FINITE
-
|- INFINITE 𝕌(:α) ⇔ ∀s. FINITE s ⇒ ∃x. x ∉ s
- INFINITE_INHAB
-
|- ∀P. INFINITE P ⇒ ∃x. x ∈ P
- IMAGE_11_INFINITE
-
|- ∀f. (∀x y. (f x = f y) ⇒ (x = y)) ⇒ ∀s. INFINITE s ⇒ INFINITE (IMAGE f s)
- INFINITE_SUBSET
-
|- ∀s. INFINITE s ⇒ ∀t. s ⊆ t ⇒ INFINITE t
- IN_INFINITE_NOT_FINITE
-
|- ∀s t. INFINITE s ∧ FINITE t ⇒ ∃x. x ∈ s ∧ x ∉ t
- INFINITE_UNIV
-
|- INFINITE 𝕌(:α) ⇔ ∃f. (∀x y. (f x = f y) ⇒ (x = y)) ∧ ∃y. ∀x. f x ≠ y
- INFINITE_NUM_UNIV
-
|- INFINITE 𝕌(:num)
- FINITE_PSUBSET_INFINITE
-
|- ∀s. INFINITE s ⇔ ∀t. FINITE t ⇒ t ⊆ s ⇒ t ⊂ s
- FINITE_PSUBSET_UNIV
-
|- INFINITE 𝕌(:α) ⇔ ∀s. FINITE s ⇒ s ⊂ 𝕌(:α)
- INFINITE_DIFF_FINITE
-
|- ∀s t. INFINITE s ∧ FINITE t ⇒ s DIFF t ≠ ∅
- FINITE_ISO_NUM
-
|- ∀s.
FINITE s ⇒
∃f.
(∀n m. n < CARD s ∧ m < CARD s ⇒ (f n = f m) ⇒ (n = m)) ∧
(s = {f n | n < CARD s})
- FINITE_WEAK_ENUMERATE
-
|- ∀s. FINITE s ⇔ ∃f b. ∀e. e ∈ s ⇔ ∃n. n < b ∧ (e = f n)
- FINITE_WF_noloops
-
|- ∀s. FINITE s ⇒ (WF (REL_RESTRICT R s) ⇔ irreflexive (REL_RESTRICT R s)⁺)
- FINITE_StrongOrder_WF
-
|- ∀R s. FINITE s ∧ StrongOrder (REL_RESTRICT R s) ⇒ WF (REL_RESTRICT R s)
- IN_BIGUNION
-
|- ∀x sos. x ∈ BIGUNION sos ⇔ ∃s. x ∈ s ∧ s ∈ sos
- BIGUNION_applied
-
|- ∀x sos. BIGUNION sos x ⇔ ∃s. x ∈ s ∧ s ∈ sos
- BIGUNION_EMPTY
-
|- BIGUNION ∅ = ∅
- BIGUNION_EQ_EMPTY
-
|- ∀P.
((BIGUNION P = ∅) ⇔ (P = ∅) ∨ (P = {∅})) ∧
((∅ = BIGUNION P) ⇔ (P = ∅) ∨ (P = {∅}))
- BIGUNION_SING
-
|- ∀x. BIGUNION {x} = x
- BIGUNION_UNION
-
|- ∀s1 s2. BIGUNION (s1 ∪ s2) = BIGUNION s1 ∪ BIGUNION s2
- DISJOINT_BIGUNION
-
|- (∀s t. DISJOINT (BIGUNION s) t ⇔ ∀s'. s' ∈ s ⇒ DISJOINT s' t) ∧
∀s t. DISJOINT t (BIGUNION s) ⇔ ∀s'. s' ∈ s ⇒ DISJOINT t s'
- BIGUNION_INSERT
-
|- ∀s P. BIGUNION (s INSERT P) = s ∪ BIGUNION P
- BIGUNION_SUBSET
-
|- ∀X P. BIGUNION P ⊆ X ⇔ ∀Y. Y ∈ P ⇒ Y ⊆ X
- FINITE_BIGUNION
-
|- ∀P. FINITE P ∧ (∀s. s ∈ P ⇒ FINITE s) ⇒ FINITE (BIGUNION P)
- FINITE_BIGUNION_EQ
-
|- ∀P. FINITE (BIGUNION P) ⇔ FINITE P ∧ ∀s. s ∈ P ⇒ FINITE s
- SUBSET_BIGUNION_I
-
|- x ∈ P ⇒ x ⊆ BIGUNION P
- CARD_BIGUNION_SAME_SIZED_SETS
-
|- ∀n s.
FINITE s ∧ (∀e. e ∈ s ⇒ FINITE e ∧ (CARD e = n)) ∧
(∀e1 e2. e1 ∈ s ∧ e2 ∈ s ∧ e1 ≠ e2 ⇒ DISJOINT e1 e2) ⇒
(CARD (BIGUNION s) = CARD s * n)
- IN_BIGINTER
-
|- x ∈ BIGINTER B ⇔ ∀P. P ∈ B ⇒ x ∈ P
- BIGINTER_applied
-
|- BIGINTER B x ⇔ ∀P. P ∈ B ⇒ x ∈ P
- BIGINTER_INSERT
-
|- ∀P B. BIGINTER (P INSERT B) = P ∩ BIGINTER B
- BIGINTER_EMPTY
-
|- BIGINTER ∅ = 𝕌(:α)
- BIGINTER_INTER
-
|- ∀P Q. BIGINTER {P; Q} = P ∩ Q
- BIGINTER_SING
-
|- ∀P. BIGINTER {P} = P
- SUBSET_BIGINTER
-
|- ∀X P. X ⊆ BIGINTER P ⇔ ∀Y. Y ∈ P ⇒ X ⊆ Y
- DISJOINT_BIGINTER
-
|- ∀X Y P.
Y ∈ P ∧ DISJOINT Y X ⇒ DISJOINT X (BIGINTER P) ∧ DISJOINT (BIGINTER P) X
- BIGINTER_UNION
-
|- ∀s1 s2. BIGINTER (s1 ∪ s2) = BIGINTER s1 ∩ BIGINTER s2
- IN_CROSS
-
|- ∀P Q x. x ∈ P × Q ⇔ FST x ∈ P ∧ SND x ∈ Q
- CROSS_applied
-
|- ∀P Q x. (P × Q) x ⇔ FST x ∈ P ∧ SND x ∈ Q
- CROSS_EMPTY
-
|- ∀P. (P × ∅ = ∅) ∧ (∅ × P = ∅)
- CROSS_EMPTY_EQN
-
|- (s × t = ∅) ⇔ (s = ∅) ∨ (t = ∅)
- CROSS_INSERT_LEFT
-
|- ∀P Q x. (x INSERT P) × Q = {x} × Q ∪ P × Q
- CROSS_INSERT_RIGHT
-
|- ∀P Q x. P × (x INSERT Q) = P × {x} ∪ P × Q
- FINITE_CROSS
-
|- ∀P Q. FINITE P ∧ FINITE Q ⇒ FINITE (P × Q)
- CROSS_SINGS
-
|- ∀x y. {x} × {y} = {(x,y)}
- CARD_SING_CROSS
-
|- ∀x P. FINITE P ⇒ (CARD ({x} × P) = CARD P)
- CARD_CROSS
-
|- ∀P Q. FINITE P ∧ FINITE Q ⇒ (CARD (P × Q) = CARD P * CARD Q)
- CROSS_SUBSET
-
|- ∀P Q P0 Q0. P0 × Q0 ⊆ P × Q ⇔ (P0 = ∅) ∨ (Q0 = ∅) ∨ P0 ⊆ P ∧ Q0 ⊆ Q
- FINITE_CROSS_EQ
-
|- ∀P Q. FINITE (P × Q) ⇔ (P = ∅) ∨ (Q = ∅) ∨ FINITE P ∧ FINITE Q
- CROSS_UNIV
-
|- 𝕌(:α # β) = 𝕌(:α) × 𝕌(:β)
- INFINITE_PAIR_UNIV
-
|- FINITE 𝕌(:α # β) ⇔ FINITE 𝕌(:α) ∧ FINITE 𝕌(:β)
- SUM_UNIV
-
|- 𝕌(:α + β) = IMAGE INL 𝕌(:α) ∪ IMAGE INR 𝕌(:β)
- INJ_INL
-
|- (∀x. x ∈ s ⇒ INL x ∈ t) ⇒ INJ INL s t
- INJ_INR
-
|- (∀x. x ∈ s ⇒ INR x ∈ t) ⇒ INJ INR s t
- IN_COMPL
-
|- ∀x s. x ∈ COMPL s ⇔ x ∉ s
- COMPL_applied
-
|- ∀x s. COMPL s x ⇔ x ∉ s
- COMPL_COMPL
-
|- ∀s. COMPL (COMPL s) = s
- COMPL_CLAUSES
-
|- ∀s. (COMPL s ∩ s = ∅) ∧ (COMPL s ∪ s = 𝕌(:α))
- COMPL_SPLITS
-
|- ∀p q. p ∩ q ∪ COMPL p ∩ q = q
- INTER_UNION_COMPL
-
|- ∀s t. s ∩ t = COMPL (COMPL s ∪ COMPL t)
- COMPL_EMPTY
-
|- COMPL ∅ = 𝕌(:α)
- COMPL_INTER
-
|- (x ∩ COMPL x = ∅) ∧ (COMPL x ∩ x = ∅)
- COMPL_UNION
-
|- COMPL (s ∪ t) = COMPL s ∩ COMPL t
- IN_COUNT
-
|- ∀m n. m ∈ count n ⇔ m < n
- COUNT_applied
-
|- ∀m n. count n m ⇔ m < n
- COUNT_ZERO
-
|- count 0 = ∅
- COUNT_SUC
-
|- ∀n. count (SUC n) = n INSERT count n
- FINITE_COUNT
-
|- ∀n. FINITE (count n)
- CARD_COUNT
-
|- ∀n. CARD (count n) = n
- COUNT_11
-
|- (count n1 = count n2) ⇔ (n1 = n2)
- ITSET_ind
-
|- ∀P.
(∀s b. (FINITE s ∧ s ≠ ∅ ⇒ P (REST s) (f (CHOICE s) b)) ⇒ P s b) ⇒
∀v v1. P v v1
- ITSET_def
-
|- ∀s f b.
ITSET f s b =
if FINITE s then if s = ∅ then b else ITSET f (REST s) (f (CHOICE s) b)
else ARB
- ITSET_IND
-
|- ∀P.
(∀s b. (FINITE s ∧ s ≠ ∅ ⇒ P (REST s) (f (CHOICE s) b)) ⇒ P s b) ⇒
∀v v1. P v v1
- ITSET_THM
-
|- ∀s f b.
FINITE s ⇒
(ITSET f s b = if s = ∅ then b else ITSET f (REST s) (f (CHOICE s) b))
- ITSET_EMPTY
-
|- ∀f b. ITSET f ∅ b = b
- ITSET_INSERT
-
|- ∀s.
FINITE s ⇒
∀f x b.
ITSET f (x INSERT s) b =
ITSET f (REST (x INSERT s)) (f (CHOICE (x INSERT s)) b)
- COMMUTING_ITSET_INSERT
-
|- ∀f s.
(∀x y z. f x (f y z) = f y (f x z)) ∧ FINITE s ⇒
∀x b. ITSET f (x INSERT s) b = ITSET f (s DELETE x) (f x b)
- COMMUTING_ITSET_RECURSES
-
|- ∀f e s b.
(∀x y z. f x (f y z) = f y (f x z)) ∧ FINITE s ⇒
(ITSET f (e INSERT s) b = f e (ITSET f (s DELETE e) b))
- SUM_IMAGE_THM
-
|- ∀f.
(∑ f ∅ = 0) ∧
∀e s. FINITE s ⇒ (∑ f (e INSERT s) = f e + ∑ f (s DELETE e))
- SUM_IMAGE_SING
-
|- ∀f e. ∑ f {e} = f e
- SUM_IMAGE_SUBSET_LE
-
|- ∀f s t. FINITE s ∧ t ⊆ s ⇒ ∑ f t ≤ ∑ f s
- SUM_IMAGE_IN_LE
-
|- ∀f s e. FINITE s ∧ e ∈ s ⇒ f e ≤ ∑ f s
- SUM_IMAGE_DELETE
-
|- ∀f s.
FINITE s ⇒ ∀e. ∑ f (s DELETE e) = if e ∈ s then ∑ f s − f e else ∑ f s
- SUM_IMAGE_UNION
-
|- ∀f s t. FINITE s ∧ FINITE t ⇒ (∑ f (s ∪ t) = ∑ f s + ∑ f t − ∑ f (s ∩ t))
- SUM_IMAGE_lower_bound
-
|- ∀s. FINITE s ⇒ ∀n. (∀x. x ∈ s ⇒ n ≤ f x) ⇒ CARD s * n ≤ ∑ f s
- SUM_IMAGE_upper_bound
-
|- ∀s. FINITE s ⇒ ∀n. (∀x. x ∈ s ⇒ f x ≤ n) ⇒ ∑ f s ≤ CARD s * n
- SUM_SAME_IMAGE
-
|- ∀P.
FINITE P ⇒
∀f p. p ∈ P ∧ (∀q. q ∈ P ⇒ (f p = f q)) ⇒ (∑ f P = CARD P * f p)
- SUM_IMAGE_CONG
-
|- (s1 = s2) ∧ (∀x. x ∈ s2 ⇒ (f1 x = f2 x)) ⇒ (∑ f1 s1 = ∑ f2 s2)
- SUM_IMAGE_ZERO
-
|- ∀s. FINITE s ⇒ ((∑ f s = 0) ⇔ ∀x. x ∈ s ⇒ (f x = 0))
- ABS_DIFF_SUM_IMAGE
-
|- ∀s. FINITE s ⇒ ABS_DIFF (∑ f s) (∑ g s) ≤ ∑ (λx. ABS_DIFF (f x) (g x)) s
- SUM_IMAGE_MONO_LESS_EQ
-
|- ∀s. FINITE s ⇒ (∀x. x ∈ s ⇒ f x ≤ g x) ⇒ ∑ f s ≤ ∑ g s
- SUM_IMAGE_MONO_LESS
-
|- ∀s.
FINITE s ⇒
(∃x. x ∈ s ∧ f x < g x) ∧ (∀x. x ∈ s ⇒ f x ≤ g x) ⇒
∑ f s < ∑ g s
- SUM_SET_THM
-
|- (SUM_SET ∅ = 0) ∧
∀x s. FINITE s ⇒ (SUM_SET (x INSERT s) = x + SUM_SET (s DELETE x))
- SUM_SET_EMPTY
-
|- SUM_SET ∅ = 0
- SUM_SET_SING
-
|- ∀n. SUM_SET {n} = n
- SUM_SET_SUBSET_LE
-
|- ∀s t. FINITE t ∧ s ⊆ t ⇒ SUM_SET s ≤ SUM_SET t
- SUM_SET_IN_LE
-
|- ∀x s. FINITE s ∧ x ∈ s ⇒ x ≤ SUM_SET s
- SUM_SET_DELETE
-
|- ∀s.
FINITE s ⇒
∀e. SUM_SET (s DELETE e) = if e ∈ s then SUM_SET s − e else SUM_SET s
- SUM_SET_UNION
-
|- ∀s t.
FINITE s ∧ FINITE t ⇒
(SUM_SET (s ∪ t) = SUM_SET s + SUM_SET t − SUM_SET (s ∩ t))
- PROD_IMAGE_THM
-
|- ∀f.
(Π f ∅ = 1) ∧
∀e s. FINITE s ⇒ (Π f (e INSERT s) = f e * Π f (s DELETE e))
- PROD_SET_THM
-
|- (PROD_SET ∅ = 1) ∧
∀x s. FINITE s ⇒ (PROD_SET (x INSERT s) = x * PROD_SET (s DELETE x))
- PROD_SET_EMPTY
-
|- PROD_SET ∅ = 1
- PROD_SET_IMAGE_REDUCTION
-
|- ∀f s x.
FINITE (IMAGE f s) ∧ f x ∉ IMAGE f s ⇒
(PROD_SET (IMAGE f (x INSERT s)) = f x * PROD_SET (IMAGE f s))
- MAX_SET_THM
-
|- (MAX_SET ∅ = 0) ∧
∀e s. FINITE s ⇒ (MAX_SET (e INSERT s) = MAX e (MAX_SET s))
- MAX_SET_REWRITES
-
|- (MAX_SET ∅ = 0) ∧ (MAX_SET {e} = e)
- MAX_SET_ELIM
-
|- ∀P Q.
FINITE P ∧ ((P = ∅) ⇒ Q 0) ∧ (∀x. (∀y. y ∈ P ⇒ y ≤ x) ∧ x ∈ P ⇒ Q x) ⇒
Q (MAX_SET P)
- MIN_SET_ELIM
-
|- ∀P Q. P ≠ ∅ ∧ (∀x. (∀y. y ∈ P ⇒ x ≤ y) ∧ x ∈ P ⇒ Q x) ⇒ Q (MIN_SET P)
- MIN_SET_THM
-
|- (∀e. MIN_SET {e} = e) ∧
∀s e1 e2. MIN_SET (e1 INSERT e2 INSERT s) = MIN e1 (MIN_SET (e2 INSERT s))
- MIN_SET_LEM
-
|- ∀s. s ≠ ∅ ⇒ MIN_SET s ∈ s ∧ ∀x. x ∈ s ⇒ MIN_SET s ≤ x
- SUBSET_MIN_SET
-
|- ∀I J n. I ≠ ∅ ∧ J ≠ ∅ ∧ I ⊆ J ⇒ MIN_SET J ≤ MIN_SET I
- SUBSET_MAX_SET
-
|- ∀I J. FINITE I ∧ FINITE J ∧ I ⊆ J ⇒ MAX_SET I ≤ MAX_SET J
- MIN_SET_LEQ_MAX_SET
-
|- ∀s. s ≠ ∅ ∧ FINITE s ⇒ MIN_SET s ≤ MAX_SET s
- MIN_SET_UNION
-
|- ∀A B.
FINITE A ∧ FINITE B ∧ A ≠ ∅ ∧ B ≠ ∅ ⇒
(MIN_SET (A ∪ B) = MIN (MIN_SET A) (MIN_SET B))
- MAX_SET_UNION
-
|- ∀A B. FINITE A ∧ FINITE B ⇒ (MAX_SET (A ∪ B) = MAX (MAX_SET A) (MAX_SET B))
- IN_POW
-
|- ∀set e. e ∈ POW set ⇔ e ⊆ set
- UNIV_FUN_TO_BOOL
-
|- 𝕌(:α -> bool) = POW 𝕌(:α)
- SUBSET_POW
-
|- ∀s1 s2. s1 ⊆ s2 ⇒ POW s1 ⊆ POW s2
- SUBSET_INSERT_RIGHT
-
|- ∀e s1 s2. s1 ⊆ s2 ⇒ s1 ⊆ e INSERT s2
- SUBSET_DELETE_BOTH
-
|- ∀s1 s2 x. s1 ⊆ s2 ⇒ s1 DELETE x ⊆ s2 DELETE x
- POW_EMPTY
-
|- ∀s. POW s ≠ ∅
- POW_INSERT
-
|- ∀e s. POW (e INSERT s) = IMAGE ($INSERT e) (POW s) ∪ POW s
- POW_EQNS
-
|- (POW ∅ = {∅}) ∧
∀e s. POW (e INSERT s) = (let ps = POW s in IMAGE ($INSERT e) ps ∪ ps)
- FINITE_POW
-
|- ∀s. FINITE s ⇒ FINITE (POW s)
- CARD_POW
-
|- ∀s. FINITE s ⇒ (CARD (POW s) = 2 ** CARD s)
- GSPEC_ETA
-
|- {x | P x} = P
- GSPEC_F
-
|- {x | F} = ∅
- GSPEC_T
-
|- {x | T} = 𝕌(:α)
- GSPEC_ID
-
|- {x | x ∈ y} = y
- GSPEC_EQ
-
|- {x | x = y} = {y}
- GSPEC_EQ2
-
|- {x | y = x} = {y}
- GSPEC_F_COND
-
|- ∀f. (∀x. ¬SND (f x)) ⇒ (GSPEC f = ∅)
- GSPEC_AND
-
|- ∀P Q. {x | P x ∧ Q x} = {x | P x} ∩ {x | Q x}
- GSPEC_OR
-
|- ∀P Q. {x | P x ∨ Q x} = {x | P x} ∪ {x | Q x}
- BIGUNION_partition
-
|- R equiv_on s ⇒ (BIGUNION (partition R s) = s)
- EMPTY_NOT_IN_partition
-
|- R equiv_on s ⇒ ∅ ∉ partition R s
- partition_elements_disjoint
-
|- R equiv_on s ⇒
∀t1 t2. t1 ∈ partition R s ∧ t2 ∈ partition R s ∧ t1 ≠ t2 ⇒ DISJOINT t1 t2
- partition_elements_interrelate
-
|- R equiv_on s ⇒ ∀t. t ∈ partition R s ⇒ ∀x y. x ∈ t ∧ y ∈ t ⇒ R x y
- partition_SUBSET
-
|- ∀R s t. t ∈ partition R s ⇒ t ⊆ s
- FINITE_partition
-
|- ∀R s. FINITE s ⇒ FINITE (partition R s) ∧ ∀t. t ∈ partition R s ⇒ FINITE t
- partition_CARD
-
|- ∀R s. R equiv_on s ∧ FINITE s ⇒ (CARD s = ∑ CARD (partition R s))
- pairwise_UNION
-
|- pairwise R (s1 ∪ s2) ⇔
pairwise R s1 ∧ pairwise R s2 ∧ ∀x y. x ∈ s1 ∧ y ∈ s2 ⇒ R x y ∧ R y x
- pairwise_SUBSET
-
|- ∀R s t. pairwise R t ∧ s ⊆ t ⇒ pairwise R s
- KoenigsLemma
-
|- ∀R.
(∀x. FINITE {y | R x y}) ⇒
∀x. INFINITE {y | R^* x y} ⇒ ∃f. (f 0 = x) ∧ ∀n. R (f n) (f (SUC n))
- KoenigsLemma_WF
-
|- ∀R. (∀x. FINITE {y | R x y}) ∧ WF (inv R) ⇒ ∀x. FINITE {y | R^* x y}
- SET_EQ_SUBSET
-
|- ∀s1 s2. (s1 = s2) ⇔ s1 ⊆ s2 ∧ s2 ⊆ s1
- PSUBSET_EQN
-
|- ∀s1 s2. s1 ⊂ s2 ⇔ s1 ⊆ s2 ∧ ¬(s2 ⊆ s1)
- PSUBSET_SUBSET_TRANS
-
|- ∀s t u. s ⊂ t ∧ t ⊆ u ⇒ s ⊂ u
- SUBSET_PSUBSET_TRANS
-
|- ∀s t u. s ⊆ t ∧ t ⊂ u ⇒ s ⊂ u
- CROSS_EQNS
-
|- ∀s1 s2.
(∅ × s2 = ∅) ∧ ((a INSERT s1) × s2 = IMAGE (λy. (a,y)) s2 ∪ s1 × s2)
- count_EQN
-
|- ∀n. count n = if n = 0 then ∅ else (let p = PRE n in p INSERT count p)
- UNIQUE_MEMBER_SING
-
|- ∀x s. x ∈ s ∧ (∀y. y ∈ s ⇒ (x = y)) ⇔ (s = {x})
- inj_surj
-
|- ∀f s t. INJ f s t ⇒ (s = ∅) ∨ ∃f'. SURJ f' t s
- infinite_rest
-
|- ∀s. INFINITE s ⇒ INFINITE (REST s)
- chooser_def_compute
-
|- (∀s. chooser s 0 = CHOICE s) ∧
(∀s n.
chooser s (NUMERAL (BIT1 n)) =
chooser (REST s) (NUMERAL (BIT1 n) − 1)) ∧
∀s n. chooser s (NUMERAL (BIT2 n)) = chooser (REST s) (NUMERAL (BIT1 n))
- infinite_num_inj
-
|- ∀s. INFINITE s ⇔ ∃f. INJ f 𝕌(:num) s
- countable_image_nats
-
|- countable (IMAGE f 𝕌(:num))
- countable_surj
-
|- ∀s. countable s ⇔ (s = ∅) ∨ ∃f. SURJ f 𝕌(:num) s
- num_countable
-
|- countable 𝕌(:num)
- subset_countable
-
|- ∀s t. countable s ∧ t ⊆ s ⇒ countable t
- image_countable
-
|- ∀f s. countable s ⇒ countable (IMAGE f s)
- finite_countable
-
|- ∀s. FINITE s ⇒ countable s
- pair_to_num_formula
-
|- ∀x y. pair_to_num (x,y) = (x + y + 1) * (x + y) DIV 2 + y
- pair_to_num_inv
-
|- (∀x. pair_to_num (num_to_pair x) = x) ∧
∀x y. num_to_pair (pair_to_num (x,y)) = (x,y)
- cross_countable
-
|- ∀s t. countable s ∧ countable t ⇒ countable (s × t)
- inter_countable
-
|- ∀s t. countable s ∨ countable t ⇒ countable (s ∩ t)
- inj_countable
-
|- ∀f s t. countable t ∧ INJ f s t ⇒ countable s
- bigunion_countable
-
|- ∀s. countable s ∧ (∀x. x ∈ s ⇒ countable x) ⇒ countable (BIGUNION s)
- union_countable
-
|- ∀s t. countable s ∧ countable t ⇒ countable (s ∪ t)
- union_countable_IFF
-
|- countable (s ∪ t) ⇔ countable s ∧ countable t
- inj_image_countable_IFF
-
|- INJ f s (IMAGE f s) ⇒ (countable (IMAGE f s) ⇔ countable s)
- pow_no_surj
-
|- ∀s. ¬∃f. SURJ f s (POW s)
- infinite_pow_uncountable
-
|- ∀s. INFINITE s ⇒ ¬countable (POW s)
- countable_Usum
-
|- countable 𝕌(:α + β) ⇔ countable 𝕌(:α) ∧ countable 𝕌(:β)
- countable_EMPTY
-
|- countable ∅
- countable_INSERT
-
|- countable (x INSERT s) ⇔ countable s
- cross_countable_IFF
-
|- countable (s × t) ⇔ (s = ∅) ∨ (t = ∅) ∨ countable s ∧ countable t
- countable_Uprod
-
|- countable 𝕌(:α # β) ⇔ countable 𝕌(:α) ∧ countable 𝕌(:β)
- IMAGE_BIGUNION
-
|- ∀f M. IMAGE f (BIGUNION M) = BIGUNION (IMAGE (IMAGE f) M)
- SUBSET_DIFF
-
|- ∀s1 s2 s3. s1 ⊆ s2 DIFF s3 ⇔ s1 ⊆ s2 ∧ DISJOINT s1 s3
- INTER_SUBSET_EQN
-
|- ((A ∩ B = A) ⇔ A ⊆ B) ∧ ((A ∩ B = B) ⇔ B ⊆ A)
- PSUBSET_SING
-
|- ∀s x. x ⊂ {s} ⇔ (x = ∅)
- INTER_UNION
-
|- ((A ∪ B) ∩ A = A) ∧ ((B ∪ A) ∩ A = A) ∧ (A ∩ (A ∪ B) = A) ∧
(A ∩ (B ∪ A) = A)
- UNION_DELETE
-
|- ∀A B x. A ∪ B DELETE x = A DELETE x ∪ (B DELETE x)
- DELETE_SUBSET_INSERT
-
|- ∀s e s2. s DELETE e ⊆ s2 ⇔ s ⊆ e INSERT s2
- IN_INSERT_EXPAND
-
|- ∀x y P. x ∈ y INSERT P ⇔ (x = y) ∨ x ≠ y ∧ x ∈ P
- FINITE_INTER
-
|- ∀s1 s2. FINITE s1 ∨ FINITE s2 ⇒ FINITE (s1 ∩ s2)
- INSERT_EQ_SING
-
|- ∀s x y. (x INSERT s = {y}) ⇔ (x = y) ∧ s ⊆ {y}
- CARD_UNION_LE
-
|- FINITE s ∧ FINITE t ⇒ CARD (s ∪ t) ≤ CARD s + CARD t
- IMAGE_SUBSET_gen
-
|- ∀f s u t. s ⊆ u ∧ IMAGE f u ⊆ t ⇒ IMAGE f s ⊆ t
- CARD_REST
-
|- ∀s. FINITE s ∧ s ≠ ∅ ⇒ (CARD (REST s) = CARD s − 1)
- SUBSET_DIFF_EMPTY
-
|- ∀s t. (s DIFF t = ∅) ⇔ s ⊆ t
- DIFF_INTER_SUBSET
-
|- ∀r s t. r ⊆ s ⇒ (r DIFF s ∩ t = r DIFF t)
- UNION_DIFF_2
-
|- ∀s t. s ∪ (s DIFF t) = s
- count_add
-
|- ∀n m. count (n + m) = count n ∪ IMAGE ($+ n) (count m)
- IMAGE_EQ_SING
-
|- (IMAGE f s = {z}) ⇔ s ≠ ∅ ∧ ∀x. x ∈ s ⇒ (f x = z)
- count_add1
-
|- ∀n. count (n + 1) = n INSERT count n
- compl_insert
-
|- ∀s x. COMPL (x INSERT s) = COMPL s DELETE x
- in_max_set
-
|- ∀s. FINITE s ⇒ ∀x. x ∈ s ⇒ x ≤ MAX_SET s