EXISTS_LEFT : term list -> thm -> thm
STRUCTURE
SYNOPSIS
Existentially quantifes hypotheses of a theorem.
DESCRIPTION
In this example, assume that h1 and h3 (only) involve the free variable x.
      h1, h2, h3 |- t
   --------------------- EXISTS_LEFT [``x``]
   ?x. h1 /\ h3, h2 |- t
FAILURE
EXISTS_LEFT will fail if the term list supplied does not consist only of free variables
EXAMPLE
Where th is [p, q, g x, h y, f x y] |- r, and fvx and fvy are ``x`` and ``y``,

EXISTS_LEFT [fvx, fvy] th is [p, q, ?y. (?x. g x /\ f x y) /\ h y] |- r

EXISTS_LEFT [fvy, fvx] th is [p, q, ?x. (?y. h y /\ f x y) /\ g x] |- r

USES
Where EQ_TRANS is [] |- !x y z. (x = y) /\ (y = z) ==> (x = z) and the current goal is a = b, the tactic MATCH_MP_TAC EQ_TRANS gives a new goal ?y. (a = y) /\ (y = b) by virtue of the smart features built into MATCH_MP_TAC.

Where trans_thm is [] |- !x y z. (x = y) ==> (y = z) ==> (x = z) the same result could of course be achieved by rewriting it with AND_IMP_INTRO. But more generally, EXISTS_LEFT could be used as a building-block for a more flexible tactic. In this instance, one might start with

val trans_thm_h = UNDISCH_ALL (SPEC_ALL trans_thm) ;
EXISTS_LEFT (thm_frees trans_thm_h) trans_thm_h ;
giving [?y. (x = y) /\ (y = z)] |- x = z
SEEALSO
HOL  Kananaskis-13